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First and Second Quantised Neutron Diffusion Equations

E. B. Da vies

St. John's College, Oxford 0X1 3JP, England

Abstract. We show that a quantised linear Boltzmann equation can be obtained
as an exact contracted form of a second quantised neutron diffusion equation
in the weak coupling limit.

§ 1. Introduction

Let £F be the fermion Fock space built from a single particle space J f = L2(IR3)
and consider the evolution equation

ρ'(ί) = -ίlH,ρl-λ(Rρ + ρR)/2 + λJ(ρ), (1.1)

where ρ(t) lies in the space V = 3~s(β?) of self-adjoint trace-class operators on # \
Here H is the free Hamiltonian on $F which equals — A on Jf. The unbounded
positive linear map J'.V-^V is defined by

J(ρ)= f BxρB*dx (1.2)

where

l l i . (1.3)

In Equation (1.3), a and α* are the fermion field operators smeared by the test
functions fι

x in Schwartz space 9>. Moreover fx is defined as the translate by a
distance xeIR3 of/1 and it is supposed that f2 and / 3 have disjoint supports in
momentum space. Finally λ>0 and

JR= $ B*BJx. (1.4)

Without further loss of generality we suppose t h a t / 2 a n d / 3 have unit norm in M\
The above phenomenological evolution equation describes a variable number

of neutrons moving in a translation invariant external reservoir of unstable
atoms, which they can induce to decay emitting further neutrons. It is shown in
[2] that Equation (1.1) has the solution

ρ(t)=Γt{ρ(O)} (1.5)
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where Tt is a strongly continuous, positive, trace-preserving semigroup on V.
We shall generally not exhibit the dependence of semigroups on the parameter λ.

The same physical problem has a technically much simpler formulation which
does not involve second quantisation. One starts from the evolution equation

σf(t)=-ilH1σ']-λ(Aσ + σA)/2 + λK(σ) (1.6)

where σ(ί) lies in W = ̂ s{Jf). The bounded operator K.W-+W is given by

K = K2 + K3 (1.7)

where

$ i i σ / ί , / i > d x . (1.8)
R 3

The operator A on Jf7 is defined by

Λ= j \fiXfi\dx (1.9)
R 3

and we are using the symbol H to denote the self-adjoint operator —A on J^f as
well as the free Hamiltonian on 3F. We shall show that Equation (1.6) has the
solution

σ(t) = Dt{σ(0)} (1.10)

where Dt is a strongly continuous, positive, one-parameter semigroup on W,
which is not, however, trace-preserving. Indeed according to [2], tr[σ(ί)] is an
increasing function of t which represents the number of particles at time t.

In order to relate the above two semigroups we introduce the Banach spaces

(1.11)

where N is the number operator on # \ The equation

(1.12)

where φ,ψe3Ίf, defines a positive linear map P:V1-^W which is a contraction,
and a projection if we regard W as a subspace of Vγ in the obvious manner.

The two dynamical semigroups are related by comparing PTtρ with Dtρ
when ρe W. We show that they become asymptotically equal as λ-+0 in the sense
that for all τ o ^ 0

limj sup \\PTtρ-Dtρ\\} = 0. (1.13)

As /l-»0 the time t is allowed to become longer so that the accumulated effects
of the stochastic terms J and K are non-zero.

Results of the type of Equation (1.13) may be found in [1,3,7,8], but our
problem requires some new ideas. In Section 2 we explain the need for these
and state the main result of the paper. The associated diagrammatic analysis is
given in Section 3.

We finally remark that although technically very different, our model has a
very similar statistical mechanical significance to one studied by Kac and McKean
[4-6].



First and Second Quantised Neutron Diffusion Equations 113

§ 2. The Main Results

Our first technical problem can be explained most simply by examining the
analogous pure birth process of probability theory. In the space Z^Z4") of
absolutely summable sequences on the non-negative integers Z+ the Fokker-
Planck equation

l i ή (2.1)

with /0(0) = 1 and fn(0) = 0 for n>0, has the solution

(2.2)

One sees that f(t)el1(Z+) for all ί^O. If however one expands / in powers of
λt one finds that the series, which has coefficients in 11(Z+), has a finite radius of
convergence. This suggests that one can only hope to derive Equation (1.13) by
direct expansion of both terms in powers of λ if τ 0 is sufficiently small (a similar
difficulty arose in [7]). As in quantum field theory the difficulty is circumvented by
resummation and use of positivity.

We use the notation and results of [2] to obtain some properties of the one-
parameter semigroup Tt on F.

Lemma 2.1. The semigroup Tt leaves each of the subspaces Vn invariant, and there
are constants cn such that

\\Ttρ\\nSec»λt\\ρ\\n (2.3)

forallρeVn and all λ9 ί, n^O.

Proof. It is sufficient to construct a semigroup T~t on V such that

(N+ l)-"/2T7ρ)(iV+ 1Γ"/2 = Tt{(N+l)-n/2ρ(N+iyn/2} (2.4)

and

for all ρeV and ί^O. We define T ^ as the minimal solution of the evolution
equation

Q'(t)=Yρ + QY* + λJ~(ρ) (2.6)

where

Y=-iH-λR/2 (2.7)

commutes with N,

Γ(ρ)= J B~xρB~*dx (2.8)

and

l / 2 . (2.9)
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The application of Bx or B~x increases the particle number by one, so

l{N + 2)/(N + 1)]"/2B*BX[(ΛΓ + 2)/{N + l)Y/2dx

(2.10)

It follows by Theorem 3.6 of [2] that Equation (2.5) is satisfied.
By Theorem 4.1 of [2] and its analogue for Equation (2.6) we see that if ρ lies

in a certain dense subspace V of V and 0^2cί< 1 then

Tt(ρ) = St(ρ) + λ } St_sJSsρds + ... (2.11)
s = 0

and

Γ~f(ρ) = S,(ρ) + λ ί St^S£ds+... (2.12)
s=0

where

S & H e V ™ . (2.13)

A term by term comparison establishes that Equation (2.4) is satisfied if ρe V
and 0 ^ 2 c ί < l . Its validity for all ρeV and all ί^O follows by density and use
of the semigroup property.

Following the notation of [2] we denote by Qn the projection of ϊF onto its
ft-particle subspace 3Fn%

Lemma 2.2. //

Q = QkQQk (2.14)

then

[T t(ρ),N]=0 (2.15)

for all λ, ί ϊ O. Moreover

%)= Σ βJί) (2-16)
m = 0

for all λ, ί^O,

(2.17)

satisfies

\\ρm(t)lrSaec>λ'(l+mΓ3. (2.18)

Proof. If ρm(t) is defined by Equation (2.17) then

k (2.19)
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SO

V 3 Λ ί | | ρ | | 3

eC3λt. (2.20)

The validity of Equation (2.15) if [ρ, JV] = 0 and ρe V and 0 ^ 2 c ί < 1 may be
deduced directly from Equation (2.10). By the density of V it holds if [ρ, JV] = 0,
ρe V and 0 ^ 2 c ί < 1, and by the semigroup property it holds for all t >0 . It follows
that

Tt(ρ)= Σ Qk+mTt(Q)
m— — k

= Σ QJf) (2-21)
m— — k

We eliminate the negative indices m by obtaining explicit expressions for ρm(t)
which will be used later. The expressions are essentially just the terms of Equation
(2.11) but we need to extend the range of validity of that equation to all ί^O. This
uses notation and ideas from [2].

If ί>0then

m } . (2.22)

Now

Ί?(Q) = St(Q) + λr ί St_sJnSsρds+... (2.23)

for all ί^O, the operators Jn being bounded approximations to J. It follows
thatifm<0

M = 0 (2.24)

while if m ̂  0

Qk+mT7{Q)Qk+m = λmrm I St_sιJnSSι_S2...JnSSmρdms. (2.25)

We have introduced and will use throughout the paper the contracted notation

s = (sl9..., sm) dms = ds1ds2...dsm (2.26)

and

ί = ί Ϊ - ' I ' (2.27)

and similarly for the space variables xu ...,xm. It follows from Equations (2.22)
and (2.25) that

ρm(t) = λm J St_slJSsι_S2...JSSmρdms (2.28)
Δm

for all m^O and ί^O, while ρm(ί) = 0 if m < 0 .
We turn now to the semigroup Dt on W =
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Lemma 2.3. The evolution equation

σ'(t) = - i\_H, σ] - λ(Aσ + σA)/2 + λK(σ) (2.29)

on W has the solution

σ(t) = D,{σ(O)}

= Σ K" \ Ut.SiKUSί.S2...KUSmσdms (2.30)
m = O A™

convergent in trace norm for all t ̂  0, where

(2.31)

Moreover Dt is a strongly continuous, positive, one-parameter semigroup on W.

Proof. We first show that Equation (1.9) defines a bounded operator ^4^0 on 2tf.
If /eL2(IR3) and" denotes the unitary Fourier transform operator then

= J \h(k)\2dk (2.32)
R3

where

h(k) = {2π)~3/2 J f{y)f\y-x)—e-ix'kdydxΛ
R3

= (2π)3'2f\k)f^(k)-. (2.33)

Therefore

J \f\k)\2\p\k)\2dk (2.34)

and A is, in momentum space, the operator of multiplication by the bounded
function

α(/c) = (2π) 3 | / 1 lk ) | 2 . (2.35)

It follows that Equation (2.31) defines a strongly continuous positive one
parameter contraction semigroup Ut on W. If σe W+ then

0gtr[X(j]^2tr[Xσ] (2.36)

by Equation (1.8), so K is a bounded positive linear map on W. Therefore Equation
(2.30) converges for all ί^O and defines a semigroup Dt on W which is positive
for all ί^O.

The passage between the semigroups Tt and Dt is effected by introducing yet
another semigroup Γ" which acts on a multi-particle space with Maxwell-
Boltzmann statistics, namely

^~=CΘ^Θ(^®^)Θ.... (2.37)

The free Hamiltonian H~ on # " is defined in the obvious way while R~ is the
operator which maps (χ)"Jf into itself for all n and is given there by

R~= A® 1 <g) 1 ®... (x) 1 + 1 ®A® 1 (x)... (g) 1

(2.38)
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We define the one-parameter semigroup S~t on V~=έFs(έF~) by

S-(ρ) = eγ^ρeγ^ (2.39)

where

γ-=-ίH~-λR~/2 (2.40)

noting that although S~t leaves the subspace V of V~ invariant, its restriction
to V does not coincide with St, defined in Equation (2.13).

If xelR3 and m, n are integers with l ^ m ^ n w e define operators B~xmn on J^~
as follows. The operator is zero except on ®n^f and maps this subspace into
®n+ίje. The formula

= <ΦmJΪ>(Φl® -®Φm-l®fl®fl®Φm+l®-®Φn)

uniquely determines B~xmn on ®nM?. We define the unbounded positive linear
map J~:V~-+V~by

Γ(ρ)=Σ J'mniQ) (2.42)
m,n

where

Γmn{Q)= I B-χmnQB^xmndx . (2.43)-

It may be seen that

tr[R-ρ] (2.44)

for those ρe F~for which both sides make sense. We define

K-,,= {ρ6K-:||ρ||I1 = tr[(l+Λ0-|ρ|]<oo} (2.45)

and we define a projection P~: F~!-> W by

P~= Σ p"m n (2.46)
m, n

where P~mπ is as follows. If Q~n is the projection of J ^ o n t o its w-particle subspace
J^"π then

ί ?"m n(ρ)=ί )"m ι,(δneβn) (2-47)

For states with support in !F~n, P~mn is determined by

P~mJ\φι®-®Φ«><Φi®-®Φl,\)

= \Φm><φm\-UWΦM2 (2-48)
rΦm

if 1 g m ^ n , and P~mn = 0 otherwise.

Lemma 2.4. The minimal solution of the equation

ρ\t) = - i [H- ρ] - 4R"ρ + ρJΓ)/2 + Γ(Q) (2.49)
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where ρ(t)e V , is trace preserving and determines a semigroup T t on V . This
semigroup leaves each of the subspaces V~n invariant and there are constants such
that

\\T-tρ\\nSeCnλt\\ρ\\n

for all ρe V\ and all λ, ί^O. If ρ = QkρQk then

T-(ρ)= Σ Q-m{t)
m = O

for all λ, ί^O where

satisfies

(2.50)

(2.51)

(2.52)

(2.53)

for all λ, ί^O and all integers m.

Proof. We omit this since it is so similar to the proofs of Lemmas 2.1 and 2.2.

The following lemma explains the introduction of the semigroup T~.

Lemma 2.5. If fe ffl and ρe W is defined as

ρ = \D<f\ (2-54)

then

P~T~tρ = Dtρ (2.55)

for all ttθ.

Proof. Applying Equations (2.42) and (2.46) to Equation (2.52) leads to

P-Q-Jt)= Σ ί AΦ)Λ (2-56)
\g\ = m Δm

where μβ(s)e W+ and the sum is over all connected graphs g obtainable from

(2.57)

s m - 1

where each vertex has been labelled with the appropriate time and the number
of vertices is (|g|-h2). In a connected graph g the left hand vertex denotes the
initial state ρ, the other vertices from left to right determine which of the J~mn are
chosen and the right hand vertex determines which of the Pmn is chosen. Thus for
the graph

(2.58)
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we have

By Equations (2.51) and (2.56) we find that for all λ9 ί^O

P~Γ"ρ = ]Γvk(ί) (2.60)
k

where

v\t)= £ J μg(s)d^s (2.61)

and the skeleton g of a graph g is defined as the smallest connected subgraph
containing both end vertices of g.

Every graph g may be written as the disjoint union of its skeleton k and con-
nected subgraphs gu ...,#„, one associated with every internal vertex of k. One
may use this decomposition to obtain a new expression

vk(t)=\σk(s)\flhr(sr)\d''s (2.62)

where n is the number of internal vertices of k. In this equation the scalar hr{sr)
is a sum over all possible connected subgraphs gr associated with the r-th internal
vertex of fc, as g varies. By inspection

p (2.63)

where ψ is f\ or f\ or/, and in any case has unit norm. Since T~ is trace preserving

Ms,) = l (2-64)

The term σ*(s)e W+ is given by

σk(s) = λ"Ut_sιKaiUSι_S2...KΛnUSnρ (2.65)

where n and α t , . . . , απ depend on the graph k.

The proof is completed by comparing the last six equations with Equation
(2.30).

Theorem 2.6. If fsίf let ρe W+ be defined by

β = l/.X/l (2-66)

Then

Iim{ sup | |PΓ ( ρ-Z) t ρ| | t r l = 0 (2.67)

for all 0^Ίoή= co.

Proof. By Lemmas 2.2, 2.4, and 2.5, the bracketed expression in Equation (2.67)
is less than or equal to

sup | |Pρ M ( ί)-Fρ- M ( ί) | | t r l . (2.68)
J
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Since ρm(t) and ρ~m(t) both have support in the m-particle space, Equations (2.18)
and (2.53) imply that if 0 ^ / U ^ τ o then

\\Pρm(t)-F-ρ-m(t)\L^c(l + mΓ2 (2.69)

where c depends on τ 0 . To prove the theorem it is therefore sufficient to show
that for fixed m

lim{ sup ||Pρw(ί)-i rβΊ«(ί)lltr> = 0. (2.70)

We do this in two stages. If λ, ί^O we define

Q~Jt) = X* J S-ι-SlJS-Sl-S2...JS-Smρdms. (2.71)

In Theorem 3.2 we prove that

limί sup \\PQjt)-PQ~Jt)\\tr\=<> (2-72)

while in Theorem 3.3 we prove that

( sup \\PQ~m(t)-P-Q-m(t)L\ = 0. (2.73)

These together yield Equation (2.70) and so complete the proof.
It is explained in [2] how one may include in Equation (1.1) further terms

representing neutron-atom scattering, neutron absorption and external neutron
sources, the last having to be restricted to a finite volume in order to stay within
the Fock sector. One may also allow the initial state ρ to be more general than
we have indicated. The statement and proof of Theorem 2.6 require only the
expected changes. The theorem is however limited to fermion fields because of
our reliance on Proposition 5.2 of [2].

§ 3. The Diagrammatic Analysis

The operator R~ on # " " defined in Equation (2.38) leaves <F invariant and on
that subspace is given by

R~= ί a*(fl)a(fl)dx . (3.1)

It follows that the operator Y~ restricted to J^ is quadratic in the creation and
annihilation operators. Therefore

φ) (3.2)-iH~ λΛ/2)t

for all φeJ4f and ί e R In order to use Wick's theorem we need some estimates
on the two-point functions

,giy (3.3)

where g, g1, g2e^, xeΊR3 and ί^O.

Lemma 3.1. If0^λt^τo then

J {F^tψdx^c (3.4)
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and

ty312. (3.5)

If g and g1 have disjoint supports in momentum space then

Ffoή^O. (3.6)

^λs^o then

f Fί(xj)F2(x,s)-dx ^c(l + |s-ί |)- 3 / 2 \2dk (3.7)
IR3

while if g1 and g2 have disjoint supports in momentum space

J F1{x9t)F2{x9s)—dx^0. (3.8)
IR3

Proof. By Equation (2.35) and Fourier analysis we obtain

Ft(x, ί)= j e{-ik2~λa{k)j2)tg{k)gι{k)—^k'xdk (3.9)
IR3

so by the Plancherel theorem

J \Fι(x,t)\2dx= I \e{~ik2~λa{k)l2)tg{k)g\k)~\2dk
IR3 IR3

^e^^MlWg'Wl^ (3.10)

This proves Equation (3.4), and Equation (3.6) is an immediate consequence of
Equation (3.9).

We next define gτ by

gτ = e-ΛτlV (3.11)

so that by Equation (2.35) and Fourier analysis

{^:0gτ^τ 0} (3.12)

is a compact set in £f for the usual topology of Sf. Therefore

sup{ | |β t | | 1 :0^τ^τ o }<oo. (3.13)

Therefore if 0^/lί^τ o

3'2. (3.14)

Combining this with the estimate

IF^ή^cWg^Wg1^ (3.15)

derived from Equation (3.9) yields Equation (3.5).
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From Equation (3.9) and the Plancherel theorem we obtain

J F1{x9t)F2{x9s)—dx
R 3

= (2π) 3 J e{~ik ) — e{ik2~λa(k)/2)sg(k)—g2(k)dk. (3.16)

This is estimated in a similar fashion to obtain Equations (3.7) and (3.8).
We shall also use the following method of estimating trace norms of operators

defined initially as quadratic forms.

Lemma 3.2. // h is a function defined on R 3 m and

<σφ,ψ}= f h(xKφ9φ(x

for all φ,ψeJ^ then

j h{x)dm~1x \\φ{xm)\\ \\w{xm)\\dxm.
R3(m-1)

(3.17)

(3.18)

<σφ,ψ}= I h(xKφ,φ(xm-J><.Ψ(xm),φ>dr'x

for all φ, ψe Jίf then

f
R3(m-2)

Proof. For the first part if

g(xm)= J
R3(m-1)

then

= ί
3

so

| |σ | | t r g J |flf(xj \\φ(xm)\\ \\w(xm)\\dxm .
1R3

The other part is proved similarly.

Theorem 3.2. // 0 ̂  τ 0 < oo

limί sup ||Pem(i)-Pe
λO [Oλ

rl=O.
J

(3.19)

(3.20)

(3.22)

(3.23)

(3.24)

Proof. From Equations (1.3), (1.4), (3.1) and the anti-commutation relations we
obtain

(3.25)
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where

Ri=-ί ^{fDa^pMPMfDdx (3.26)
R3

*2 = - ί ^(ήWlWflWflWx (3.27)
R 3

and

#3 = ί ann)anfl)a^fl)a(fl)a(f2

x)a(fi)dx . (3.28)
R3

It follows by Equations (2.7) and (2.40) that if λ, ί^O then

Sf(ρ) = S-;(ρ) + λ J St-sVS-£ds (3.29)
s = 0

where the operator C on F is defined by

3

C(ρ)=-^Σ(Riβ + eRi) (330)
i = 1

By Equations (2.28), (2.71), and (3.29) we now obtain

Qm(t)-ρ~m(t)

+ 1 J S ί _ S l

+ i ρ ^ + 1 5 . (3.31)

Crude norm estimates of the part of each integrand to the left of the operator C
lead to

r Σ f \\CS-Sr_Sr+lJS-Sr+l_Sr+2J..JS-Sm+lQ\\trd
m+1s. (3.32)

To prove the theorem it is sufficient to show that if 0 £Ξ λt ̂  τ 0 and 1 ̂  r g m -f 1 then

7λ = Γ J ||CSΓ5 J S - ^ . ^ , JS"S r_2_β r_1J...JS- s l_S 2σ|| t rd
Γ5 (3.33)

converges to zero as 2-^0.
The first step is to convert the expression for Iλ into a Hubert space integral

by using Equations (1.2), (2.39), (2.66), and (3.30). We obtain

ί = l Zlr IR3(r-n

BX2e
γ'{sl~S2)f\\ H e " ^ ^ " ^ - 1 - ^ . . . B ^ e 7 " ^ 1 " ^ / ! ! ^ ^ - 1 ^ (3.34)

where x = (x2, , x,.). If we define

Jλιi=S J \\Rie
r~-...f\\2drsdr-1x (3.35)

jr R3(r-1)
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and

•W ί Ik^. /llVsd'-1* (3.36)
jr R3(r-1)

then

iaΣλ'VuJΔ112- (3-37)
i = l

If

£ = «*(/) (3-38)

and

^=«*(/ί)α*(/ί)α(/^)α(/i) (3.39)

and

X s = e y " s X e - γ " s (3.40)

for any operator X on #", then

J Λ > 1 = j ί < £ * β 2 S ϊβ*3,,...
^ R3(r+D

BtsF*FzBXrSr...BX2Sβsχacd'sd>'-1xdydz. (3.41)

By Equation (3.2) and Wick's theorem this may be expressed as a sum over all
possible contractions of graphs of the type

0 x 2 X3 y z x3 x 2 0

si s 2 s 3 0 0 s 3 s 2 s]

(3.42)

whose vertices have been labelled by the appropriate space and time coordinates.
The integrand associated to each fully contracted graph is the product of the
contributions of each of its legs, which are estimated using Lemma 3.1.

We use the legs of the triple vertices which point away from the centre to
control the space integrations with respect to xl9...,xr uniformly with respect
to time. We use the left-hand legs of the two quadruple vertices to control the
y, z integrations uniformly with respect to time. We finally use one of the right-
hand legs of the right-hand quadruple vertex to obtain time decay uniformly in
the space variables. The result is that

1 . (3.43)

We can obtain similar estimates for J λ 2 and J λ 3 , and also

Jλ^cf. (3.44)

Hence

(3.45)

which converges to zero as Λ-»0.
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Theorem 3.3. // 0 :g τ 0 < oo then

lim{ sup | |Pρ"'w(ί)-^"m(ί)lltr} = 0. (3.46)

Proof. lϊψeJ? then by Equation (1.12)

) = λm j f/(x,s)ΛΛ (3.47)

where

I(x9 s) = <£*B* 1 S 1 . . .BJ m S w α*(φ)a(ψ)B X m S m . . .B X i S 1 E r > v a c . (3.48)

By Wick's theorem

I(x9s)= £ Iβ(x,s) (3.49)

where G is the set of all complete contractions g of the graph

0 x] ••• x m 0 x m ••• XT 0 (3.50)

in which each vertex has been labelled with the appropriate space-time coordinate.
Moreover I9(x, s) is the product of the two-point functions associated to each
link of the graph g, with an appropriate sign.

Corresponding to Equation (3.49) there is a decomposition

PQ~nίf)= Σ < W (3.51)
geG

where

(σg

m(ήψ,ψ) = λm J J I9(x,s)dmxdms (3.52)
R 3m Δm

for all ψe M.Now the one-one correspondence between the set F of all g which
are symmetrical with respect to reflection about the centre, and the set of all
graphs in the sense of Lemma 2.5, leads to the formula

P~Q~m(t)=Σσ9m(t)' (3-53)
geF

We are therefore left with showing that if gφF then σg

m is asymptotically
negligible in trace norm as Λ-»0.

The space-time decay of I9(x,s) is estimated by the use of Lemma 3.1. The
outgoing legs of each triple vertex are used to control the space integrations
uniformly with respect to time by Equation (3.4). The two legs of the central
vertex cannot be used at all because they are needed to control the trace norm by
Lemma 3.2. The remaining legs must cross from one side of the graph to the
other.

These considerations already lead to the estimate

(3.54)
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so to prove σ^(ή is asymptotically negligible we have only to obtain some further
control of the time decay of the integrand I9{x, s) when g is not symmetrical.

Graphical considerations show that if g is not symmetrical one of the following
things must occur:

(i) One of the legs passing from one side of the graph to the other joins vertices
which are not opposite each other.

(ii) One of the legs passing from one side of the graph to the other joins unlike
legs of two opposite vertices.

(iii) There is a pair of opposite vertices neither of which is linked directly to the
centre, such that the legs from these vertices which go away from the centre are
joined to vertices which are not opposite to each other.

(iv) There is a pair of opposite vertices neither of which is linked directly to the
centre, such that the legs from these vertices which go away from the centre are
joined to unlike legs of two opposite vertices.

In case (i) the extra time decay comes from Equation (3.5). In case (ii) the term
vanishes identically by Equation (3.6) while in case (iv) it vanishes identically by
Equation (3.8). In case (iii) the extra time decay comes from Equation (3.7); we
remark that the significance of the pair of opposite vertices not being linked
directly to the centre is that by Lemma 3.2 we can then carry out the corresponding
space integration before taking absolute values.
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