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Abstract. We formulate local thermodynamical stability conditions for states
of quantum lattice systems, and show that these conditions are implied by,
and in the case of translationally invariant states equivalent to, those of
Kubo-Martin-Schwinger (KMS).

1. Introduction

This paper is concerned with the relationship between certain local thermo-
dynamic stability (LTS) conditions and the KMS conditions for quantum lattice
systems.

The LTS conditions, which will be precisely specified below, may be described
as follows. For each state φ of a system and each bounded region A, we define a
conditional free energy FΛ(φ) (cf. Definition 2.1): this quantity is a quantal
generalisation of that defined in [1, 2] for classical systems, and is designed to
represent the free energy of the "open system" consisting of the particles in A,
interacting with one another and with the particles outside that region. We define
the LTS conditions for φ (cf. Definition 2.2) to be that, for each bounded region A,
FΛ(φ) is minimal for variations in the state which leaves it unchanged outside A.

With these definitions, and under the assumption of tempered, translationally
invariant, finite-body (or somewhat more general) interactions, we prove the
following Theorem.

Theorem, (a) If a translationally invariant state satisfies the LTS conditions, it
satisfies the KMS conditions.

(b) A state satisfying the LTS conditions is stationary in time.
(c) A state satisfies the LTS conditions if it satisfies the KMS conditions.

We shall adopt the notations of references [3,4]. Thus, 91 denotes the C*-
algebra of quasi-local observables of the system and 91(7) its subalgebra for the
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region I. We shall denote the set {A} of bounded regions of the lattice by L.
For ΛeL, N(Λ) denotes the number of points in A, Ac the region complementary
to A. For a state φ of 21, φι denotes its restriction to 21(7).

We define the energy observable HΛ for AeL by the formula

HΛ=U(Λ)+WΛ9 (1.1)

where U(A\ WΛ are as specified in [3]: they respectively represent the interaction
energy between the particles in A, and the energy of interaction between the
particles in A and those in Ac. The time translation automorphism of 21 is denoted
byσr. For,4e2I(Λ),

{dldt)σt{A\t=0 = i[HA,A-]. (1.2)

The assumptions on the interaction potential relevant to all our results
(apart from the trivial convention that the interaction potential for trivial region
is zero) are as follows. In order to be able to define WΛ, we need a temperedness
of the potential. It is also necessary that the time translation σt satisfying (1.2)
exists. No other assumptions are needed for (c).

For (a), we use translational invariance of the potential in addition.
For (b), we use the assumption that the generator of σt is the closure of the

(normal) derivation δ, defined on (J 2I(yl) by the formula
ΛeL

S{A) = ilHA9A]9 VAeWiA). (1.3)

These assumptions are satisfied, for example, in the case treated in [3] (see
Theorem 4 in [5]).

All the arguments except (a) can be carried out in a more general setting,
where σt is a continuous one-parameter group of automorphisms of a UHF
algebra 21 (generated by an increasing sequence 2ln of finite dimensional factors)
such that the infinitesimal generator δ has a domain containing (J 2IΠ and δ(A) =

V j A
An essential tool in our discussion is the relative entropy introduced in [10]

as follows. Let M be a von Neumann algebra and let ψ and φ be normal positive
linear functionals on M. We denote their support projections by s(ψ) and s(φ),
respectively. [In our application, we need the case where ψ is faithful, i.e. s(φ) =/.]
Let Ψ and Φ be representative vectors of ψ and φ in a natural positive cone.
Then the relative modular operator ΛΦΨ is defined to be a positive selfadjoint
operator with kernel I — sM (Ψ)sM(Φ) satisfying the equation

SΦiΨsM\Ψ), (1.4)

where Sφ Ψis defined on MΨ by the equation

and where sM and sM' denote the M-support and M support, respectively, of
a vector.
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The relative entropy S(ψ/φ) is defined by

S(ψ/φ)= ] \ogλd(Φ,E(λ)Φ), (1.5)
+ o

AΦΨ=μdE(λ) (1.6)

if s(ψ)^s(φ) [and hence £( + 0)Φ = 0]; and is defined to be +oo otherwise. When
φ and ψ are faithful, this definition coincides with that given in [4]. For positive
linear functional ψ and φ of the C*-algebra 91, we define S(ψ/φ) to be given by
S(ψ/φ) if πψ quasi-contains πφ, where ψ and φ are the normal positive linear
functionals of 7 (̂91)" satisfying ψ(πψ(A)) = ψ(A) and φ(πψ(A)) = φ(A) for all ^4e9ί;
and to be + oo otherwise.

The relative entropy S(ψ/φ) so defined is related to the conditional entropy SΛ9

defined below, by the following formula, proved in [10]:

SΛ(φ) = S(ωf/φΛC) - S{τΛ®ω'/φ) (1.7)

where τΛ is the tracial state on 5ί(Λ) and where ωf is any state of 9I(/1C) of which
either S(ω'/φΛ) or S{τΛ®ω'/φ) is finite. In fact, if one of these relative entropies
is finite, then so too is the other.

Properties oϊS(ψ/φ), which we shall use, are the following ones, proved in [10]:
If ψ and φ are two states, or positive continuous linear functionals with the

same norm, then

S(ψ/φ)^0. (1.8)

(The equality holds if and only if ψ = φ)
If ψ is a separating state on 91, /Z = /Z*G2I and ψh denotes the perturbed state

specified in [10], then

S(ψh/φ)=-φ(h) + S(ψ/φ). (1.9)

2. Relation of LTS to KMS

In a usual way we define the density matrix ρ^(e2ί(/L)) corresponding to the
state φ on 9ί and the region A(eL) by the formula

and we define the entropy induced by φ on A to be

SΛ(Φ)=-τΛ(ρφ

Λlogρφ

Λ). (2.1)

Definition 2.1. The conditional entropy SΛ(φ) and the conditional free energy
Fβ

Λ{φ\ induced by the state φ on the region A, are defined by the following formulae:

SΛ(Φ)= l i m ^ lSAΦ)SA.\A(Φn > (2-2)

FΛΦ) = Φ(HΛ)-β^SΛ(Φ) (2.3)

where β is a real positive constant, called the inverse temperature.
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Definition 2.2. A state φ of 91 satisfies the LTS conditions if for each ΛeL and for
every ψ satisfying ψΛc = φΛc, the following inequality holds:

F/(φ)SFΛ

β(ψ) (2.4)

Remark. Definitions 2.1 and 2.2 provide quantal generalisations of the definitions
given in [1] for the conditional entropy, conditional free energy and local stability
for classical lattice systems: for one can infer from the martingale theorem that
Equation (7) and Definition 1 of [1] can be written in forms corresponding to
the above Equations (2.3) and (2.4). Further, in the classical case, the local stability
conditions correspond to the Dobrushin-Lanford-Ruelle equations.

Lemma 2.3. For any state φ of % the following majorization holds:

φSd(Λ)(τΛ®φΛc) (2.5)

where d(Λ) denotes the dimension of the algebra S&(A) (i.e. d(Λ) = n2 if <Ά(A) is a
type In factor).

Proof Let uφ9 j = 1,..., w) be a matrix unit for A e ^(Λ). Then A e 21 can be written

Let

φipή = φ(UijX), x G 9ί(/lc).

By the self-adjointness of φ, φij(x)* = φji(x*). By the positivity of φ,

φ({ukix + cukjy)* (ukix + cukjy)) ^ 0

for x,ye%{Ac) and arbitrary complex number c. Thus

\φiJ(χ*y)\2^φiι{χ*χ)φjJ{y*y).

Each φu is positive and φΛc= Σ φu.
i

Hence

φ(A*A)= Σ φij(A^kiAkj)

ύ Σ | Σ (0^*«^«))1/2
 ( ^ V « » 1 / J '

^ Σ ίΣ ̂ (^A ;)V / 2 (Σ ΦjM*kΛj)\

k\ =n\τΛ®φΛC){A*A). QED.

Lemma 2.4. (1) The limit in (2.2) is always defined.
(2) For any state φof%0^ SΛ(φ) ^ - logd{A).
(3) JS^ is a weakly upper semicontinuous concave function of φ.
(4) FΛ

β is a weakly lower semicontinuous convex function of φ.
(5) For a given AeL and a state ω of 2I(ΛC)> there exists a state φ of SΆ such

that φΛc = ω and FΛ

β(φ)^FΛ

β(ψ) for all states of ψ satisfying ψΛC = ω.
{6)
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Proof. (1) By the strong subadditivity of the entropy functional SΛ (cf. [6]), SΛ,(φ) —
SΛ'\Λ(Φ) i s monotone decreasing in A as soon as A contains A. Hence the limit
is defined.

(2) Suppose ADA. Then Q<Λ>\Λ = Q<Λ> for ώ = τA®φAc.

Hence by Klein's inequality (cf. [7])

SΛ{φ)SΛΛΛ{Φ)= - # o g ρ l - l o g ρ ^ 0 . (2.6)

By Lemma2.3, d(Λ)ώ^φ, and hence d{A)ώΛ^φA>, which is equivalent to

By the operator monotone property of logarithm, we obtain

Hence

SAφ)-SΛΛΛ(φ)^-\ogd(A). (2.7)

Estimates (2.6) and (2.7) establish (2).

(3) By the proof in (1), SΛ is an infimum of weakly continuous function (2.6)
and hence weakly upper semi-continuous. It is known [8] that

*CA'(QA' log ρA> - ρΛ. log σΛ) (2.8)

is convex jointly in σA., ρΛ>. Hence (2.6) is concave inφ, which implies the concavity
of the limit.

(4) follows from (3).
(5) The existence follows from (4) and the compactness of the set of φ's satisfying

ψΛc = ω.

(6) follows from the subadditivity of entropy. QED.

Proof of Theorem, (a) Assume that φ is a translationally invariant state of 3ί
satisfying the LTS conditions. We apply Equation (2.4) to the case where

G A

A c , where

ωG'Λ(A) = τΛ(Λe-βUiΛ))/τΛ(e~βU{Λ)), \/AE<Ά(Λ) . (2.9)

Then it follows from the definition of FA that

FΛ(Ψ)= -β'1 \ogτΛ(e-βu^) + xp(WΛ).

Hence Equations (2.3), (2.4) and Lemma 2.4 (6) imply that

On deviding this inequality by N(A) and using the result in [3] that

we obtain

\imΛίN(A)-\SΛ(φ)-βφ(U(A)))^\imΛ,N(A)-1 logτ>

Since the opposite inequality holds for any φ, we obtain the equality which
implies the KMS conditions for φ[9~].



108 H. Araki and G. L. Sewell

(b) Assume that φ satisfies the LTS conditions and apply (2.4) to the case where

ιp( ) = φ(eisA( )e-isA)

with seR and A = A*eW(Λ). Then it follows from (2.4) that

φ(eisAHΛe-isA)^φ(HΛ)

for all A = A*εϊΆ(Λ) and AeL. Hence

φ(ilHΛ,A])=0

foralMe2I(Λ).By(1.3),

φ(δ(A)) = 0 (2.10)

for all Ae$i(A) and for all AeL. Hence it holds for all Ae<Ά in the domain of
the infinitesimal generator <5 of σt. For such A,

(d/dt)σt(A) = δ(σt(A))>

Equation (2.10) then proves that φ(σt(A)) is independent of t for all A in the domain
of δ, and hence for all AeSΆ.

(c) Let ψ be a state of 91 satisfying the KMS condition, and ω the restriction

Since the KMS conditions imply the Gibbs conditions, we have

xpβSΛ+cI = τΛ®φ' (2.11)

where c is the normalization constant (c= — \ogψβHΛ(I)) and φ' is some state
of SΆ(AC). By the formula (1.9),

S(ψh

2/ψ1)= -V>i(fe) + S(ψ2lv>i) (2.12)

and by the formula (1.7),

SΛ(ΨI)= -Siτ^ω'/xpJ + Siω'/ω) (2.13)

for ψί satisfying {ψί)Λc

 = o), where (2.13) holds whenever either S(ω'/ω) or
S(τΛ®ω//φ1) is finite (and then both are finite).

Hence

. (2.14)

For ψ1=ψ,WQ obtain

βψ(HΛ)-SΛ(w)=-c-S(φ'/ω)

which proves that S(φ'/ω) is finite. Substituting this into (2.14), we obtain

i8(^(Vi)-^(v)) = S(v/Vi)^0, (2.15)

which proves the minimality of FΛ(ψ). QED.
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