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Dimensionally Renormalized Green's Functions
for Theories with Massless Particles. I.
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Abstract. In the framework of dimensional renormalization the existence of
Green's functions to all orders of perturbation theory is proved for theories
of massless particles without super-renormalizable couplings. For those
Green's functions Schwinger's Action Principle holds as in the massive case.

I. Introduction

In a previous publication [1], an attempt was made to give a consistent formula-
tion of the socalled "Dimensional Renormalization" to all orders of perturbation
theory such that Schwinger's Action Principle holds. That was done under the
provision that all particles were massive. In the present paper we want to relax
this condition. More precisely we shall treat here only the case that all particles
are massless and the theory contains no interactions of super-renormalizable type.
In a subsequent publication we shall come to the general case of both massive
and massless particles, which is complicated by the fact that additional finite sub-
tractions for subgraphs with positive superficial degree of divergence have to be
made in order to guarantee their correct normalization.

In contrast to the BPHZ method the Action Principle holds unmodified by
radiative corrections in almost all cases discussed in the literature, with the ex-
ception of the few occasions where these corrections are known to be unavoidable
(e.g. Trace identities, Adler-anomaly)1.

The physical relevance of a renormalization scheme that allows the treatment
of massless particles on one hand and in which the Action Principle holds on
the other is obvious, especially in view of theories with gauge invariance of the
second kind. We want to emphasize, however, that we do not tackle the physical
infrared problem here, i.e. the definition of the S-matrix for massless particles.

* Present address: II. Institut fur Theoretische Physik der Universitat Hamburg, Luruper Chaussee
149, D-2000 Hamburg 50, Federal Republic of Germany
1 The discussion of super-symmetries is still missing in this framework
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Dimensional renormalization as outlined in [1] proceeds in two steps:
i) Dimensionally regularized Feynman amplitudes are defined by treating the

parameter n of space-time dimension as a regularizing device; a unique prescrip-
tion is given to extract the w-dependence of Lorentz covariants like spin poly-
nomials etc. these regularized Feynman amplitudes turn out to be distributions
which are meromorphic functions of n.

ii) The poles of these meromorphic functions are eliminated in a way con-
sistent with additive renormalization.

The regularized Feynman amplitudes are defined via their Feynman pa-
rameter integral representation :

where /G(p, α, n) is a distribution in p, depending parametrically on α and n.
The UV divergencies turn up as non-integrable singularities of the integrand

when certain subsets of α's vanish. The nature of these singularities can be dis-
played by a subdivision of the domain of integration and the introduction of
suitable "scaling variables" in place of the α's [2].

In the case of massless particles the integral may also diverge when certain
α's tend to infinity. These IR singularities can be analyzed by the same device [3].

Once this has been established it is just a matter of power counting to show
that in the absence of super-renormalizable interactions no such singularities of
the infrared type are encountered in a neighbourhood of n = 4 as long as ^~G(p, n)
is considered as a distribution in p (i.e. there are clearly physical region singu-
larities, like in the massive case).

The subsequent subtraction of the UV poles in n, i.e. the renormalization
proceeds like in the massive case [1]. Also in the proof of the Action Principle
there is no change.

II. Dimensionally Regularized Feynman Amplitudes

ILL Analysis of the Singularity Structure

As in the massive case, treated in [1], we start from the formal Feynman param-
eter integral representation for the amplitude corresponding to some connected
graph G with hG loops

•lim J Hdat[IGίε(p9u9ct9n)\!L=0]
ε-+o o seG

where

Π ZΛ ~ l d/du^ exP f *T(P> & S) ~ ε Σ
<?G ί ^G

the quadratic form V is given by

(3)-2eE -

and jp=(p1,...,pJb...,pM)(cf. [1]).
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As was outlined in [1] the execution of the Z/s has to produce a certain
n-dependence of IG ε in order that the Action Principle holds. An abstract algebra
of covariants was therefore developed allowing to extend certain algebraic rela-
tions between 4-dimensional Feynman amplitudes valid for tree graphs to
graphs with any number of loops.

IG,S(P>U,U, n) is first considered as a member of this abstract algebra and then
reduced to its normal form (NF) in order to make its ^-dependence explicit. The
resulting expression can be interpreted as a distribution in 4-dimensional space
depending parametrically on n.

The next step to be performed is the limit £->0.

Up to now we have not specified which are the internal and which the external
vertices of the graph G, i.e. which momenta p will eventually be set to zero and
which we want to keep as variables. In the massive case that is unimportant since
(V(p, α)- ]Γ a^mj -f iO)ω considered as distribution in p is an entire function of ω
independent of the dimension of p. This is no more true if some or all of the w/s
are zero. In fact, the distribution (p2 + iO)ω is meromorphic in ω with poles at
ω= — ΛΓ/2, — N/2— 1,... where N is the dimension of p [4]. In order to analyze
the possible singularities introduced by the limit ε-»0 it is therefore important
to control the degeneracy of the quadratic form V as a function of α.

For the same reasons it is non-trivial to construct the Feynman amplitudes
for 1 PR-graphs from those of their 1 Pi-components as it was possible in the
massive case. Therefore we include into the subsequent consideration I PR-
graphs, assume, however, for the moment that G is connected and contains no
tadpoles. We will come back to the question of tadpoles at the end of Section 3.

Once the expression for IG ε has been brought to its NF and all w/s as well
as all auxiliary momenta pt (i> K) are put to zero the quadratic form V takes the
conventional form [2]

(4)

Applying a technique developed in Ref. [3] we divide the domain of integra-
tion in α-space into sectors corresponding to labelled c^-families (̂  σ) as de-
fined in Appendix A. In each sector 2^β^ σ) given by {α Orgo^ ̂ ασ(H) for /e J£?#,
ΉeΌ we introduce "scaling variables" tH as well as auxiliary variables ηH and
ζH according to

= Π &' = & = Φ/H for He^ . (5)

In addition we introduce variables

& = α,/ζ^ for ίe&G (6)

where Hf is the smallest member of ̂  containing line t. Some of the j?/s are
identically one, namely those for which /eof^). Instead of α we take (t,§)=
(tH, He^^ #,, fφσ^β^ as new variables. In these new variables the sector

σ)is given by {0^ίG<oo,0^ίH^l for
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The Feynman integral for G decomposes into a sum of terms

0 0 G^HeVπ 0

• g,(p,t, §, n) exp iί2 [ %_ί, §) + iε Σ β^} (7)

where the following notations are employed: Π'd/^ denotes the product over
the subset of J2?G, for which jf^φl, v = 4 — n and ωG resp. ωH is the superficial
degree of divergence of G resp. H gr is a homogeneous polynomial in p of degree r
with coefficients which are C00 in (ί, β) and holomorphic in n.

gr as well as the expression in square brackets are independent of tG. There-
fore we can perform the integral over tG [absolutely convergent for ε>0 and
Re(v)>0] with the result:

[Ί (dtH/tH)tίH^ωH fΓΓ dβ<gr(£9t9§9n)
0 f / Φ G 0

8 £ β,η2

H

&G

As demonstrated in Appendk A, the quadratic form V can be brought to a
form explicitly displaying its possible degeneracy. This is achieved by taking
certain linear combinations qH [independent of (ί, β)] of the external momenta
Pi as new variables. More precisely

V(p,t,§)= £ dHH,ηHr\H,qHqH, (9)
H,H'e3f

with {dHH>(t,§)}H>H,ejr a positive definite matrix which is C°° in (t,§) fromj he
domain 2f^β^ σ). Therefore the whole degeneracy of the quadratic form V is
exhibited by the η^s. The possible singularities resulting from such a degeneracy
of the quadratic form can, however, be controlled by the following

δ-Lemma. Let [ηj9 QJ}JJ= i and {γ^ k^ κ^= 1 be real numbers in the domain:

0^j^...^ih; 0<ρ7 <4 for j=l,...,J;

γ^O and fc,,κ,>0 for t = l,...,L.

In addition take ρe(C, {dij}
J

ij=ί a positive definite matrix defining the quadratic

form d(^)= Σ d^qflj over J copies of 4-dimensional Mίnkowskί space and β(g)
i j=l

a homogeneous polynomial of degree r in g.

Then for Re(ρ)< £ Qj+2 £ ke + r
j=l /=!

0(1 flϊ Π W Π Ύk/(-id(ηjqj)+i Σ 7Λ+0)-"2

=lim β(/7 A) Π »tf' Π ίί* (- W(»ίΛ) +'' Σ TΛ+e) ~ β/2

exists in &"(IR47), is continous in (y,y) and C00 in ίfte coefficients of Q and d.

Proof. For the proof we refer to Appendix B.
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Remark. The reader may wonder why we have included masses κ^. This will
become clear in Section 3.

In view of this lemma we rewrite Equation (8) in the. form

Γ((vhG-mG
0 £ΓΦG 0

Π ̂ H(-iΦHfe)+clvAc~ωσ+r)/2 .
#e

According to Lemma 8 h is some C00 function of (£,/?), entire analytic in v; σH=
Σ QH' with f°r the moment undetermined real numbers ρH. For the renormal-

ization it is essential that we are able to choose the ρH's in such a way that in a
neighbourhood of v=0 no new singularities, in addition to the UV poles, are
introduced by the limit e->0. To decide under which conditions that is possible
we have to investigate the distribution of the numbers ωH for various subgraphs

Let tflG be the set of all external vertices of G. We state some well-known facts
about power counting [5].

(a) Let H c G be any connected subgraph of G, then a positive number δ% ̂  δ%
— the canonical dimension — is given for any vertex Va of H. The superficial
degree of divergence of H is expressed by

ωH = 4-Σ(4-δf). (12)
ί̂f

(b) If H has connectivity components Ht, then ωH= Σ ωH..
i

Definition. We split the degree ωG into the internal degree of G given by

4nt=- Σ (4-^) (13)

and the external degree of G

ωr = ωG-ωJf. (14)

For any H C G we define the relative external degree of H in G by

- Σ (4-

where Ht are again the c-components of H.

Under the assumption that the Lagrangean contains no super-renormalizable
couplings ωg'^O for all graphs G. ω{jl=0 characterizes strictly renormalizable
theories.

For the sake of clarity we divide the further discussion of the limit ε-»0
into a simpler case — Green's functions for strictly renormalizable theories — and
the general one.



44 P. Breitenlohner and D. Maison

11.2. Green's Functions for Strictly Renormalizable Interactions

In this section we treat only graphs G with δ% = 4 resp. δ^3 for all internal
resp. external vertices. In order to simplify the discussion further, we consider only
non-amputated Green's functions, i.e. we assume that every external vertex of G
is connected to the rest of the graph by exactly one line, i.e. δ% = l or 3/2. The
amplitudes for arbitrary graphs are obtained by multiplication with a suitable
polynomial in the external momenta.

In this case we get

(16)

where bH . G resp. /Hi>G is the number of boson resp. fermion lines of Ht connected
to the external vertices of G.

Lemma 1. Under the assumptions made above we get ωH<0 for all He^ where
3f is the J^-part of any c^-family.

Proof. Every c-component //^ of HeJtif contains at least two external vertices of
G, therefore ωH^ £ 0)^,0= ~ l

i

After these preliminaries we can proceed to the definition of the σ#'s resp.
ρ#'s from Equation (11). We take some real number a with 0<α< 1 and put

σH=maxθ,Σ(α-ω^G) for He^, (17)

the sum running once more over the ocomponents of H. Notice that σH is the
same for all He^ with the same H~ and σH=Q if H~ does not exist, i.e.
{ H ' e ^ ί f : H f c H } = 0. We claim that this definition meets all the requirements
needed for the application of the ε-Lemma. This is expressed by

Lemma 2. (a) — ωH — σH ̂  1 — a for all H e <β^ H φ G, which contain some H'eJtif
(i.e. if H~ exists); otherwise σH = 0;

(b) the ρH's corresponding to the σ#'s obey 0<ρH^4 — a;

Proof, (a) For every c-component Hi of H coHι^ω^tG — ί (G is connected) and
therefore

,G-α)]5:l-α. (18)

(b)

{Ojjr

σB

if there exists no H_

σH_ else.

For QH=σH~σH- there are three possibilities (Lemma 4f).
i) H and f/_ share the same external vertices with G, then ρH=4—α;

ii) H_ has one of the external vertices of G less than H, then ρH=3 or 5/2;
iii) H_ has two of the external vertices of G less than H (or H_ does not exist),
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H = 2 + α, 3/2 + αor

The subsequent Proposition collects the knowledge we have gained about the
limit fi->0.

Proposition 1. The dίmensίonally regularized Feynman amplitude 2ΓG^(p, n) can be
decomposed into a sum of integrals of the form

(20)
0

Considered as distributions over 5 (̂IR ) these integrals define meromorphic func-
tions of n by analytic continuation. In a certain finite neighbourhood of n = 4
^~G(p, n) = lim £ΓG ε(p, n) exists in '̂(IR4*) and is meromorphic in n. ^Gε(P>n) as

~ ε->0 ' '

well as &Ό(p, n} has a pole at n = 4 resulting only from t ̂ integrations corresponding
to divergent IP/ subgraphs //e^.

Proof. The meromorphy of ^G,ε(p> n) *s shown as usual, considering the powers
jvJifί-ωfί-σfί-i as distributions [2]. The preceding lemma in combination with

the ε-Lemma allows to take the limit β->0 for \n — 4|<min(α, l — a)/hG without
changing the pole structure. Two facts are responsible for that:

i) - ωH - σH ̂  1 - a > 0 for all He ̂  if there exists some H~ if H~ does not
exist, σH = 0 and H is 1 PI

ii) lim/ε(p,_ί,β, n) considered as an element of ^'(IR4^"1*) is continuos in

(ί,β) in the integration region and even C00 there in all ίH's for which σH=0, due
to Lemma 7 2.

III.3. Non-renormalizable Vertices

For the formulation of the Action Principle in its general form as established for
massive theories in [1] we have to relax the condition of strict renormalizability.
From now on we treat arbitrary graphs G without super-renormalizable (δ% < 4)
internal vertices, i.e. we allow arbitrary external vertices, but only internal vertices
of dimension δ% ̂ 4. This restriction is easily seen (up to one internal vertex of
dimension three, discussed in Section II.4) to be in general necessary for the
existence of Green's functions as distributions.

The only complication compared to the case already treated is due to the fact
that the inequality ωH<0 for all HeJtif ceases to be true. That can give rise to
seemingly non-integrable singularities in the f#-integrals for some HeJ^. These
new singularities, however, are only apparent and could be avoided by a different
sector division, namely the one employed in the massive case. Yet, there is a simple
trick to avoid that complication altogether. By hanging onto the external vertices
of G suitable new legs we enforce ω#<0 for all subgraphs containing external
vertices.

2 This differentiability is needed in order to perform the analytic continuation and to display the
poles at n = 4
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For any graph G we construct a new one, G, in the following way: We take
any one of the external vertices Va of G. If δ^3 we add one more vertex (na= 1)
and join it to Va by one single line with propagator kGl/[i(m2 — p2)-fO] kG+1 with
some integer kG. In case δ^<3 we add na = 4 — [δ ]̂ of these new vertices and
lines. Having done that for all external vertices of G the graph G results. To the
vertices of G we assign new dimensions δ% in the following way: If Va is an internal
vertex of G, we put δ% = δ%; if Va is an external vertex of G we put <5f = δ%_+na^4;
finally if Va is one of the newly added vertices, i.e. an external vertex of G, we put
<5f = 1 -2kG. We choose kG>ω%l/4.

With_these definitions G has the following properties:
(a) δa*z4 for all internal vertices Va of G;
(b) all external vertices of G are joined to the rest of the graph by exactly one

line. Let us call the set of these "external lines" JS?ext;
(c) ωH<0 for all connected graphs HcG containing at least two external

vertices of G. This is guaranteed by our choice of kG.
Clearly the amplitude for G can be recovered from that one for G by amputa-

tion of the external lines, i.e. by multiplication with a suitable polynomial in the
external momenta. For ε>0 ^G ε is independent of m, kG and the additional
momenta introduced for all vertices with na> 1; if the limit ε->0 exists for $~Gt&
and therefore also for &~Gt& then 3~G is independent of m, kG and the additional
momenta as well. From now on we treat only graphs of the type of G and denote
them again by G for simplicity.

Using the Feynman parameter representation

00

k,G\l\ι(γn — p )4~OJ G = lim J ί/ococ Gβ ί ̂ l)
e-*0 0

for the external lines, the integral corresponding to Equation (8) reads

i i
Γ((vhG-ωG + r)/2) J f] (dtH/tH)tVHH~ ωH J ΓΓ d& Π $°0r(ίM> §>n)

0 HΦG 0 JZfext

Jδfext £G \

Again having in mind the ε-Lemma we rewrite this in the form

1 i
Γ((vhG — ωG H- r)/2) j Y\ (dtH/tH) tv£H ωH σH J Π' rfjS^h(t, β,ri)

0 #ΦG 0

Jδfext J

where fί^ is the smallest member of ̂  (actually a member of Jf) containing
line t. We put all kj = kG, except when fί^ is the minimal element of ̂  in which
case we put k^=kG — ωG

l/4>0.
For the definitions of the σH's we slightly modify the formula in Equation

(17)to

σH= max }θ, [-ω^+ X (a-ω%G) ] } (24)
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where now according to our definition

ω%lG = 4-KHi(2kG + 3) (25)

if Ht has KH. of the external vertices of G. Again we notice that σH = Q if there is
no H~. The ρH's corresponding to these σH's are given by

_ (σH + ωjf - 4kG if there is no #_
ρ"~ [σH-σH_ -2(KH-KH_)kG else . l j

Going again through the different possibilities for H_ as before one proves the
analogue of Lemma 2, namely

Lemma 3. (a) — ωH — σH^ 1 — a for all He^, HΦG, which contain some H'eJti?
(i.e. if H~ exists) otherwise σH = Q;

(b) the QH$ obey Q<ρH^4-a;
(c)
(d)

With the information contained in Lemma 3 we are ready to apply the
ε-Lemma and prove the validity of Proposition 1 also in the case under discussion.

Up to now we have assumed that the graph G contains no tadpoles. In the
following we will show that lim^ ε vanishes whenever G contains tadpoles.

ε->0

Let G be a graph with tadpoles and G° the graph obtained from G by amputa-
tion of all the tadpoles (and the lines connecting them with G°). Every tadpole
Gj is connected to G° by a massless boson line with zero momentum and has
superficial degree of divergence ωGι ̂  3. The amplitude for Gt is

(and vanishes if ωG. is odd). G° has a number of super-renormalizable internal
vertices which reduce ωGo by one for every tadpole attached to it. This is, however,
overcompensated by the factor ct£

vhG> +ωG>~1 supplied by each tadpole (together
with the connecting line).

A slight modification of the ε-Lemma (compare Appendix B) ensures that

ε^O £->0 ί

i.e. the amplitude for all graphs which contain tadpoles vanishes in the limit ε->0.

II A. Green's Functions with One Internal Vertex of Dimension 3

For the formulation of normalization conditions in gauge theories it is useful to
define Green's functions with one external momentum (attached to a vertex Va

with dimension δ^ = 3) equal to zero; this is possible whenever the graph G is
IP/ with respect to Va which becomes an internal vertex by this procedure. In
order to show that such Green's functions exist, we have to estimate the degrees
and to choose the σ^'s slightly more carefully than in the previous sections.



48 P. Breitenlohner and D. Maison

Definition. We split the degree ωG into the internal degree of G

/G

the super-renormalίzable degree of G

and the external degree of G

.rnext _ /<nint Ansr

coG — cυG — ωG — COG .

For any /ίcG we define the relative super-renormalizable degree of H in G by

ω5.c=- Σ (4-^)-
OtTani^H

We only consider graphs G with ωG > -2 and assume that for every 1 PI tad-
pole Gj-CG ωGι G> — 1 holds. As in Section II.3 we construct a new graph G and
call it again G. Due to our assumption ωGι G> — 1 the amplitudes for graphs with
tadpoles vanish in the limit ε->0.

Let G be a graph of the type of G without tadpoles and ̂  a c^-family for
G; for any HeW^ with c-components Hί we choose

where max is to be taken over all H'e ̂  with μH, = μH. Once more σH=Q if there
H'

is no H~. The corresponding ρH's are given by Equation (26). Choosing — ωG/2<
a<i and proceeding further as in Section II.3, we verify Lemma 3 with two
changes:

(b')

To prove Lemma 3 (a) we have used that

whenever an JFfe^ with H' Dfl, μH, = μH^l exists; due to the construction of

c^-families, at least one c-component Hf of H is joined to the rest of G by two
or more lines.

As a consequence of Lemma 3 Proposition 1 remains true also in the case
under discussion.

III. Renormalization and the Action Principle

The renormalization of the dimensionally regularized Feynman amplitudes
(̂p, n)= lim^>ε(p, n)9 i.e. the elimination of the singularity of 3~G(p, n) at n = 4,

Works — thanks to Proposition 1 — exactly like for massive theories as outlined
in Ref. [1].
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Recursively in the number of loops (powers of h) we construct for each I PI
graph G the amplitude &~G>ε(p, n) containing already all counter terms cor-

responding to IP/ subgraphs of G with fewer loops than G. The left over singularity
at n=4—present only if ωG^0—is shown to be a homogeneous polynomial in
the external momenta of G and j/ε7 This pole term represents the counter term
corresponding to G in the construction of ̂ G>^ n) for all G' with more loops
than G. If we denote by ^G,ε(p, n) the regular part of the Laurant series expansion
of ^G,ε(P>n) around n = 4 then $G(p, n)= \im$Gi£(j), n} resp. its value at n=4 is

defined to be the dimensionally renormalized amplitude for G. In order to con-
struct MG(p, n) also for 1 PjR graphs it is sufficient to take counter terms for all
their 1 PI subgraphs into account.

Let us state the result as

Theorem 1. For any Lagrangean without super-renormalίzable couplings describing
the interaction of massless particles dimensionally renormalized Green's functions
for arbitrary compositive field operators can be defined in every order of perturba-
tion theory as distributions over <?. The renormalization is achieved by adding to
the Lagrangean local counter terms of minimal degree according to Weinberg's
power counting having poles at n = 4.

All renormalization parts with positive superficial degree of divergence ω^l
vanish at the origin in momentum space up to order ω — 1.

Proof. The statement about the structure of counter terms for ε>0 is proven
exactly like for massive theories as outlined in Ref. [1] and need not be repeated
here. Let us just remark that ε, as we have used it, acts like a mass term.

The counter terms necessary for renormalization (for ε > 0) are again of the
strictly- or non-renormalizable type (δ ̂  4), except when they are proportional to
ε resp. ε2; in this case <5Ξ>2 resp. (5^0. The argument used for the contributions
from tadpoles (end of Section II.3) applies also here and guarantees that such
contributions vanish in the limit ε-»0. The same argument ensures that the
unwanted contributions proportional to ε in the equations of motion, coming
from (D + w2 — iε), vanish in the limit.

The renormalized amplitude 01G>ε (for rcφ4) is a finite sum of the unrenor-
malized, regularized amplitude + counter terms, each of which is continuous in
^'(IR4K) for ε^O. Therefore 3$G exists in &". Since ^G>ε is analytic at n=4, 0tG

can also be continued to n — 4.
The vanishing at the origin of momentum space up to order ω — 1 for all

renormalization parts with superficial degree of divergence ω ̂  1 is a consequence
of the homogeneity properties of ^G(p, n) for rcφ4.

The important result, that Schwinger's Action Principle holds without modifi-
cations due to radiative corrections proven for massive theories in [1] remains
also true here. Let us shortly repeat the formulation given in [1]. We assume that
the Lagrangean j£? depends on quantized fields <jί>, external fields a and space-time
independent parameters λ. By Z(a, λ) we denote the connected vacuum expecta-
tion value of the perturbation series of the scattering operator corresponding to
^ i.e.

, λ) = h<Texpifc-1 f JS?lnt(<£(x), α(x
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Schwinger's Action Principle says:
i) local variations of the quantized fields φ of the form δφ(x) = P(φ(x))δε(x)

with some polynomials P leave Z invariant, i.e.

0=< Tδ^e exp ίft - * f £>int(x)dxy°c

where

δ£>= J P(φ(x))(δ^/δφ(x) - dμ δ^/δδμφ(x))δε(x)dx

ii) variations of the external fields resp. parameters result in

- iδ Z/δa(x) = <Tδ^/δa(x) exp ίh ' l J J*?int(x)άx>° ,

resp.

- idZ/dλ = (Td^ldλ expih"1 J &ίnt(x)dxy°c.

Theorem 2. Sckwinger's Action Principle as described above holds for the renor-
malized functional Z(α, λ\ if there is no explicit n-dependence involved.

Proof. Exactly like in the massive case.

Remark. For the discussion of anomalies arising from an explicit n-dependence
of the variation <5JS? we refer to [1].

Appendix A

In this appendix we have collected some information about Feynman graphs
which is needed to prove the existence of &'G= lim^~G ε. We refer to Appendix A

ε->0

of [1] for basic definitions.
Let G be a connected graph with vertices i^G={Vί9i=l9...9 M}. We divide them

into K external and M — K internal vertices. The auxiliary momenta associated
with the internal vertices will eventually be set to zero, the external momenta will
be kept variable and we have to justify the interpretation of 3~G as a distribution
over (̂IR4*). Let WG={Vi9 i =!,...,£} be the set of all external vertices. For any
subgraph HcG we define ^H = ̂ Gr\i^H and KH = \<%H\.

A tadpole is a connected subgraph H C G with °UH = 0 which is connected to
the rest of G by exactly one line. In the following we assume that G contains no
tadpoles, K^2 and that exactly one line of G is attached to each external vertex.

For any subgraph H C G we construct a graph H^ by identifying all its external
vertices. A c^-family ̂  for G is a set of subgraphs HtcG (without trivial c-com-
ponents) such that (£={Hioo} is a maximal forest for G. A labelled c^-family is
a pair (^σ) such that (#,σ) is a labelled forest. For any HeVm let Jt(H) be
the set of all maximal genuine subgraphs of H which are contained in (^ao. For
any fe £?G let H^ be the smallest member of ̂  which contains / (i.e. /e &HIJI(H^

Note. Our c^-families differ from the s^-families of Ref. [3] by the use of I PI
subgraphs instead of irreducible ones.

Lemma 4. (a) Any c^-family ^ for G contains G;
(b) any c^-family ^ for G can be labelled;
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(c) the domains Q) ((g7

00,σ)={α:0^α<f^α<7(H) for all £eJ£H} are a partition of
en-space {α:α^0 for all /} up to sets of measure zero;

(d) for any HeΉ^ H/Jί(H) has exactly one nontrivial c-component H9 which
is either a tree (hjj = 0) or I PI with one loop (/ι# = 1);

(e) &r={HE%ao:H_is IP/} has exactly hG elements; T° = G-σ(^) is a tree;

(f) j#p = {He(£00'Ή is a tree} nas exactly K — l elements which can be ordered
by inclusion. The same ordering is induced by the numbers μH=KH — (number of
c-components of H) which take all integers from 1 to K — l as values. μH = 1 always
implies KH = 2, if μH — μH, = 1 then KH — KH> equals either zero or one or two.

These statements can be proved along the lines of Refs. [1-3].
From now on we consider one particular labelled c^-family (Ή^ σ) F°r anY

He^ we denote by H_ resp. H~ the largest H'εJΊf with H' £# resp. H' cH if

such an H' exists.
We may assign a number μH to all He <β^ by the formula of Lemma 4 (f).

H~ exists iff μH^ 1 and in this case H~ is the smallest H'e^ with /%'=/%.
Let H be a member of ̂  To any vertex Va of H we assign a momentum qa

which is the sum of all pt associated with those vertices Vt which are mapped to
Va by H-+H/J?(H). Some of these sums contain external momenta pt (i^K), we
call these momenta qa as well as their vertices Va external and the other ones
auxiliary resp. internal.

Lemma 5. (a) For any HeJίf H has exactly two external vertices;
(b) for any He 2? H has either exactly one external vertex (if H_ exists) or

none (if H_ does not exists) .

Let <JH, He ̂  be the momenta associated with all but one of the vertices of
H, chosen such that for He J^ they are all auxiliary and for He 2? only the first
one, qH, is external. These new momenta £ = (^H,He(^ao) are obtained from
p = (pl5...,px,.,.,pM) by a linear transformation R:^=Rp. We decompose

in a similar way: u = (u

Lemma 6. (a) det R = ± 1
(b) detRext= ±1, where JRext is the restriction of R to pext = (pι,...,Pκ-ι) and

(c) the transformed incidence matrix eR+ =(eHH>, H, fΓe^J has the following
block structure :

eHHJ is the incidence matrix for H if H = Hf

[ indicates how Hf is contained in H if H D H' .

Proof, (a) Up to permutations # is a triangular matrix with all digonal elements
= 1 and (b) the same holds true for #ext. (c) Momentum conservation at %a6h
vertex is expressed by p + e+fe=0, where fc = (/c^/ = l,...,L) are the internal
momenta occuring in the momentum space formulation of the amplitude. The
block structure follows from g -f Re+ fc=0.

K
Remark. <jfext together with q0 = £ pt form a momentum family in the sense of

Ref. [6].
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We may now rewrite the quadratic form V(p, u, α) in terms of g = ((}HζH> He ̂ J

(1)
withM= "

where β is the diagonal matrix with elements & = «<,/£# : In addition detM=

Lemma 7. (a) M is independent of tG and bounded in 3);
(b) detM^lin^;
(c) the matrix d = (dHH,,H,H'eJ4?) given by F(pext,α)= £ ̂

i /- ^ HH'eJ?
is positive dejinite in 3)}

(d) M'1 and det M are C°° in Cί, β) from 2.

Proof, (a) Follows from eHH, = Q for HφίΓ and β^l for all /.
(b) detM= J] Π α«^= Π α^= Π CH where the sum runs over all trees in G.

T t$£τ tφ&TO &

(c) Following an argument of Ref. [3] we see that

detMd(x)=detM £ dHH,xaxH. = Σyτ2 Π ^
HH' T2 te&T2

where the first sum runs over all 2-trees in G and

Cπ3;Γ2(fί) = ̂ H + X CHH' xHr CH/CH'
H'DH

with some coefficients cHH'. Therefore d(x)^\Σ(yT2(H}ζH)2]/detM and this
L ̂  J

vanishes only if all XH are zero.
(d) This follows from M being a polynomial in (ί,β) and (b).

Lemma 8. T7ιe spin polynomials produced by the application of Z(—id/du) to
exp( — iF(pext, w,α)) αr^, αpαrί /row negative powers of ζH absorbed into Y[ t^ωH,

^oo

polynomials in g with coefficients which are C°° in (ί, @).

Proof. This follows directly from the representation (1) and Lemma 7 (d).

Appendix B. Proof of the ε-Lemma

For Re(ρ)^0 the right hand side of Equation (11.10) converges pointwise to a
continuous polynomially bounded and locally integrable function. In the fol-
lowing we assume Re(ρ)>0.
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We first use Jacobi's diagonalization procedure to determine a linear trans-
formation S:g-+cι' = Scι [3] such that S0 =0 for i>j and rf(^j)=Σ^^ 2. S and

j
S~l are C°° in (ηpd^ and Q'(q') = Q(q) is again a homogeneous polynomial with
coefficients which are C°° in ηj and in the original coefficients. For simplicity we
write again q instead of q' and assume Q'(q) to be a product of monomials Qj(q)
of degree r,- /]Γ rj = r\.

\ j I
Let Q(q) be a monomial of degree r in geIR4. Defining Q(q)/(-iq2 + tys for

0<Re(s)<2+r/2 as usual [4], the following estimate can be derived for all

where || q \\ is the euclidean norm of q. In addition we estimate for s Φ 0, — 1, — 2, ...

\Γ(s)/zs\ ^ C(ί + \Ims\)Res~i \z\~Res exp(- £π|Ims| + argz Ims) .

That permits us to use the following Mellin-integral representation (̂  > 0, y,> 0)
(we set SJ+L+ !=()):

= Π ̂ β/^A ) Π #(- * Σ ί??? + ' Σ

fl

/=!

for Re(ρ/2)>σί>...>σj+L>0 and σ}-σj+1 <(ρj-hrJ )/2, j=l,...,J. The integral
is absolutely convergent (in &") due to the above estimates. Now we stretch the
distances between the contours, shifting part of them to the left, part to the right,
always respecting the condition Re(sJ -sj+1)<(ρJ -ί-rj)/2 such that Re^— ρ/2)
becomes slightly positive and Re(sJ+^ — sJ+^+1) becomes less than kf (for
*f=l,...,L). The possibility to do so is due to the assumption Re(ρ)<£]ρJ +
^Σ ̂  + r From crossing the pole of Γ(ρ/2 — s ί ) at sί = ρ/2 we pick up a residue
which does not depend on ε, whereas the remaining integral vanishes in the
limit ε->0. That proves the existence of lim/(ε). Due to the factors ηβjj resp. γp

ε-»0

the whole expression is obviously continuous in the f/j's resp. y/s even down to
ηj=y,=Q.

Differentiability with respect to the coefficients of Q and d follows from the
fact that such differentiations reproduce the form of Equation (II. 10).
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Remark. The following generalization — needed at various places — is also seen
to hold:

^ for Re(fc)>0.

We just shift the contours as before, this time without crossing the pole of
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