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Spectra of Liouville Operators
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Abstract. Spectra of the generators of time translations ("Liouville operators")
on representation spaces determined by thermodynamic equilibrium states
are compared and their nature is investigated.

1. Introduction

For macroscopic systems the density of energy levels is approximately (AE)N

where ΔE is the energy above the groundstate and N the number of degrees of
freedom. Because of this enormous growth of level density in the thermodynamic
limit one often says that the energy spectrum becomes continuous in that limit.

It is the purpose of this paper to study spectral properties of relevant objects,
that govern the dynamics of quantum systems. In the quantum theory of a finite
number of particles the above mentioned questions are discussed in terms of the
spectral properties of the Hamiltonian, i.e. the generator of time-translations,
of the system. In a quantum mechanical treatment of a thermodynamic system,
i.e. of a system consisting of an infinite number of particles in infinite space with
a finite density, the generator of time-translations is not unambiguously defined,
let alone its spectrum.

We shall assume that we have a C*-algebra 2ϊ of quasi-local observables with
local algebras isomorphic to &(l)v), i.e. the local algebras consist of all bounded
operators on the Hilbert-space ί)v that is pertinent to the description of a quantum
system inside a volume V. The dynamics is assumed to be given by a one-parameter
group of automorphisms oct of 21 that admits of a K.M.S.-state and satisfies some
regularity conditions to be specified in section 2b. As we shall see in section 2b
these regularity conditions permit us to construct a separable C*-algebra %0

inside 91, that is σ(2ϊ, N) dense in 21. (Here N is the set of locally normal states
on 21 and the σ(2I, N) topology on 21 is the weak topology defined by N on 21.)
The construction of 2I0 depends on at and is such that <xt acts strongly continuous
on2I 0,i.e. \\aLt(A)-A\\—>0forAeSΆ0.
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For a quantum lattice system 2I0 coincides with 91 and the regularity con-
ditions we impose imply then strong continuity of ott and also that at is obtained
as a limit of local automorphisms. Hence oct, in the terminology of Powers and
Sakai [1], is approximately inner. In this case, i.e. the case of a quantum lattice
system, one might ask whether or not, for a one-parameter automorphism group
that acts strongly continuous and is approximately inner, the requirement that
it also admits of a K.M.S.-state is any further restriction at all on the automorphism
group. That this is no further restriction follows from the work of Powers and
Sakai [1] theorem 3.2. If one accepts their conjecture that every strongly continuous
one-parameter automorphism group of a U.H.F. algebra is approximately inner
one can prove the following statement: "A one-parameter group of automorphisms
on a U.H.F. algebra admits of a K.M.S.-state if and only if it is strongly continuous".
Indeed the if part follows from the conjecture and [1] theorem 3.2, whereas the
only if part follows from the conjecture and the fact that every one-parameter
automorphism group that admits of a K.M.S.-state on a simple and norm-separable
C*-algebra like a U.H.F. algebra, acts strongly continuous [2].

Let ωι and ω2 be K.M.S.-states with respect to an evolution oct of 2ί at inverse
temperatures βx and β2 (possibly β1=β2) Since every at K.M.S.-state on 21 is
invariant under the action of oct we have generators Hm and Hω2 of the unitary
groups Uf1 and Uf2 implementing at on the GeΓfand-Segal representation spaces
ί)ω i and t)ω2. The question we are going to investigate in this paper is the relation
between the spectra of Hm and Hω2. We will find (theorem A) that, with our
assumptions, the spectral sets of Hωi and Hω2 coincide, as sets. Let us apply this
to the situation where we have a non-primary K.M.S.-state ω at an inverse temper-
ature β that admits a decomposition into extremal K.M.S.-states, i.e.

where ωy is extremal K.M.S..
Theorem A implies that the spectral sets of Hω and Hωy coincide as sets. These

results generalize similar statements that could be made on the basis of work by
Kastler [3] in the case where the automorphism group ott acts strongly continuous
on 21. More detailed information is obtained from the pointwise comparison
between these spectral sets. We shall prove (theorem B) that a discrete point,
different from zero, in the spectrum of Hω appears as a discrete point ("survives
the decomposition") in the spectra oϊHωγ for γ in some set with nonzero μ-measure.
The statement is trivially true for the point zero in the spectrum of Hω; the set
for which the theorem is true has ^-measure one in this case.

Using results of Stormer [4] we are able to show that for a separating state
(i.e. a state with the property that its cyclic vector is also separating for the von
Neumann algebra on the representation space) that is invariant under the action
of a one-parameter group of automorphisms (not necessarily the dynamical
automorphism group), extremal invariance of the state and no discrete points
except zero in the spectrum of the generator of the unitary group implementing
the automorphism group, imply that the spectrum of the generator equals R 1 .

Applying the foregoing results to a state ω that is ott K.M.S., where at in addition
to satisfying the regularity criteria also acts asymptotically abelian on 21, and
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where the state ω admits a decomposition into extremal oct K.M.S.-states ωγ,
we obtain:

v

ii) zero is the only discrete point in Sp Hω with multiplicity determined by
the centre of πω(2I)".

These are precisely the spectral properties one encounters in the free Bose gas
below the critical temperature, as is easily seen by direct verification from the
results given in [5].

2. Definitions and Results

a) Results Pertaining to the Finite Quantum System

A K.M.S.-state ω at inverse temperature β with respect to a one-parameter group
of automorphisms αf of a C*-algebra 2ί is defined by the following:

i) t-+ω(AatB) is a continuous function of t; A, 2?e2I.
ii) §ω(AatB)f(t-iβ)dt = $ω{at(B)A)f(t)dt for / with Fourier-transform in D;

A,BeSX.
For a while we shall concentrate on a quantum system in a box of volume V.

As usual the algebra of observables is the algebra of all bounded operators on a
separable, infinite dimensional Hubert space ί)v. This algebra is denoted by 9I(F)
or sometimes as 8S(fov). We consider the usual faithful representation of £$(fyv)
on the Hubert space of Hilbert-Schmidt operators ί)s, i.e. AeόS(ί)v)-*π(A)eό8(fys)
π(A)K = AK, \/Keί)s. (We shall also consider π'(A)e@(\)s) defined by π'(A)K = KA,
VKeί)s and Ae^S(ί)v).) Suppose that the dynamics of the finite system under
consideration is given by a Hamiltonian H on ί)v, giving rise to a one-parameter
unitary group Ut = exp iHt which induces the automorphism group at of έ$(ί)v)
given by oct(A)=UtAU_t, Ae&(l)v). On ί)s the automorphism αf from &(l)v) is
implemented by WtK = π(Ut)-πψ.t)K9Ke1ί)s. Indeed π(at(A))=Wtπ(A)W_t,
\/Ae&(ϊ)v). As one easily shows Wt is a strongly continuous one-parameter group
of unitaries on ί)s (i.e. (Kl9 WtK2)s= Tr(KfWtK2) is a continuous function of t).

For every /eZ/fΊR) we define on J*(ί)F) the operator πί(f):π1(f)A =
j 0Lt(A)f(t)dt, where the right-hand side is obtained by the Riesz-theorem as the
unique operator defined by: j (φ, oct(A)ψ)f(t)dt = (φ, J at(A)f(t)dtψ), φ,ψeί)v. We
also define for every / e L 1 ^ ) an operator π2(f) on ί)s by π2(f)K = j WtKf(t)dt.
Here the right-hand side exists as a Bochner-integral on ί)s due to the strong
continuity of the group {Wt} on ί)s.

Giving Ẑ fΊR) its usual algebraic structure (i.e. considering L 1 ^ ) as the con-
volution group algebra of the additive group of the real numbers) it can be shown
that the map /eL 1 (ΊR)^π ί (/) is a continuous representation of LX(IR) into the
bounded linear operators on &(ΐ)v) for i = ί and on \)s for i = 2.

Following Arveson [6] one can define a spectrum for the homomorphism
f e l R 1 ^ ^ denoted by Spa which is defined as Spα = hul lkerπ l 5 where k e r ^
denotes the kernel of the representation π1 of Z/fΊR). Similarly one defines a
spectrum for the homomorphism ί e l R 1 - ^ denoted by Sp FFasSp FF = hullkerπ 2.
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It follows from this definition of spectrum that we have

and similarly

A more familiar notion of spectrum, when we talk about the unitary group Wt,
is the spectrum of its generator H. There is then the following well known [4]
lemma:

The proof of this lemma is accomplished by realizing that for the matrix elements
of πx(/) we have

where {Eλ} is the spectral resolution of H, and by realizing that the measure
(Eλφ, ψ) varies on exactly Sp W and is constant on IR^Sp W. Another lemma that
holds is the following:

Clearly this statement is proven as soon as we have established that ker π1 = ker π2.
That this statement is indeed true can be seen as follows: suppose /ekerπ l 5

then π ί ( f ) A = WA<=έ%(fyv); in particular this holds for all Hubert- Schmidt oper-
ators and hence π1(f)K = WKefys. This implies however that π2(/)K = OVKeί)s

(as vectors in ί)s this time). Therefore kerπ 1 ckerπ 2 . Suppose conversely that
/eker π2, i.e. π2(f)K = 0 as vectors on ί)s, for all Kefys. It then follows as a result
of a simple computation that π ί ( f ) K = Q, considered as an operator on f)F, \/Kefys.
All we need in order to conclude that ker π1 D ker π2 and hence that ker τιl = ker π2

is that π1(/)K = OVXeί)s implies π 1 ( f ) A = 0^fAe^v). The latter fact follows
from proposition 1.4 [6] and the fact that the Hubert- Schmidt operators are
σ(^(ί)F), ^(W*) dense in @(ϊ)v).

Let ω be a K.M.S.-state on the algebra &(l)v). Then we know that the Ham-
iltonian H should be such that Tr (e~βH)<co [7]. The cyclic representation one
considers is the one on t)s with cyclic and separating vector e~^βίί [8]. From what
we have seen above we conclude that the evolution at gives rise to a spectrum
that equals, as a set, the spectrum of the generator of time-translations on the
representation space for every state that is a K.M.S.-state for the evolution αί5

regardless of β. From this it follows that Sp Hωι and Sp Hω2 are equal as sets for
two states that are oct K.M.S. (of course at different temperatures).

From explicit construction of the representation for two <xt K.M.S.-states ωί

and ω2 [8] we know that Sp Hωι is identical with Sp Hω2 because Hωί = Hω2.

b) Regularity Conditions on the Thermo dynamical Evolution at

Most of the interesting thermodynamic evolutions are not strongly continuous,
i.e. for the one-parameter group of automorphisms at we do not have
|| oφl) — A || — »0 for all A in the quasi-local algebra 91. Rather than assuming
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strong continuity of <xt we shall assume regularity conditions on oct that permit us
to draw still a good deal of the conclusions concerning spectra, that we could
have drawn if at were strongly continuous. Part of the regularity conditions
resembles, as we shall see, the properties at would have if it were approximately
inner [1].

Given a thermodynamical evolution o^ of the quasi-local algebra 91 that
satisfies the regularity conditions (to be specified later) we are able to construct
a separable αΓinvariant sub C*-algebra 9ί0 of 91, that depends on αί5 with the
properties that it is cr(9I, N) dense in 91 and at acts strongly continuous on it.
N denotes here the set of locally normal states on 91.

Suppose we subdivide IR3 into disjoint finite volumes {Vn, neN}. Suppose V1

and V2 are two such volumes. The algebra of observables for the finite system
in Vn is 0S(f)vn)' Then we have ^(M-^(*)r i®W 2 )> w h e r e V=Vι^V2. &$Vι) is
considered as the sub-algebra «^(ί)Fl)(x)i of ^(ί)Fl(x)ί)F2) whereas ^(ί)V2) is con-
sidered as the sub-algebra i®^(ί) F 2 ) of &(fyVl®ΐ)V2) Due t o is°t°ny> ά e quasi-
local algebra 9ί is given by

where every V is the union of a finite number of FJ's and every finite subvolume
of IR3 is contained in some V.

Definition 2.1. #(ί)) denotes the C*-algebra generated by the compacts and the
scalars on the Hubert space ί). In short

; C compact, λ complex} .

For a given partition of R 3 into disjoint finite volumes {Vn,ne¥l} consider, for
a finite subset / of N with p members {nu ..., np} say, the C*-algebra ^ which is
defined as the following C*-tensor product

We shall denote by # 0 the C*-inductive limit defined as

«Ό= U ^
/CN

Clearly ^ 0 is a separable sub C*-algebra of 91.

Remark. If we would specialize to a quantum lattice algebra then every operator
on t)Fn is compact (including the unit operator) and then ^ 0 coincides with 91
(which is a separable C*-algebra for a quantum lattice). In the case of a continuous
system 91 is not separable in the norm topology because none of the algebras
0g(t)v) is and therefore ^ 0 C 91.

Lemma 2.2. N is the set of all states ofSΆ that can be obtained as projective limits
of normal states on the elements ^(ί)F) that make up the quasi-local algebra 91.

Proof See Z. Takeda [9].

Lemma 2.3. ^ 0 is σ(9I, N) dense in 91.
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Proof. Let A be arbitrary in 9Ϊ, then we can find for every ε > 0 Ane&(l)Vn) for
some Vn with \\A — An\\ <ε. Denote by Uρuε..ί = ί^κ(A) a σ(%N) neighbourhood
of A, i.e.

^ i=l,...K, QieN.

Because ^(t)Fn) is σ(&(ί)Vn)9 ^(f)Kn)*) dense in ^(ί)F n) we can find Cn such that

with Cne^(i)Vn). Putting everything together we have

\Qi(A) - Qi(Cn)\ S \Qi(Λ) - Qi(An)\ + \Qi{An) - Qi(Cn)

If we choose ε=\ inf ε{ we find |ρ£(^4) — ρ£(Cw)| < ε ^ i = l , . . . K and hence

0 . Q E.D.

Let (Ωω, \)ω, πω) be the cyclic vector, the Hubert space and the representation
of 21 on E)ω respectively as obtained from the GeΓfand-Segal construction from
a state ω.

Lemma 2.4. Ωω is cyclic for nω(^0)for ωeN [7].

Proof Suppose (χ, πω(c£0)Ωω) = 0. Because ωeN we have that π j w } is normal,
hence ω χ Ω ω ° π ω is σ(9I, Λf) continuous on 91, therefore (ω;f5Ωωoπω)(A) = 0VylG2I
because of lemma 2.3. Q.E.D.

Let us now formulate the first regularity condition on at. For every given parti-
tion of IR3 into disjoint finite volumes {Vn, neN} there exists a sequence of local
Hamiltonians Hn on i)Vn inducing automorphisms α" on J*(t)κn) given by

oζ(A) = exp iHntA exp - iHnt, Ae ^( ί) F n ) .

Consider the sequence of volumes {VN} whose elements have the properties
i) Every VN is a union of a finite number of volumes Vn

ii) VNCVN,,N^N';
iii) Every Vn is contained in some VN for Â  sufficiently large.
In 3$(Ϊ)VN) there exists a local Hamiltonian HN inducing automorphisms

off (A) = exp iHNtA exp — iHNt

with the properties that

lim off(A) = oίt(A)9 Ae {J ^ J ,
iV->oo /CM

where the limit is i) in the norm topology on ^ 0 and ii) uniformly in t on a neigh-
bourhood of zero.

This regularity condition implies that oct acts strongly continuous on ^ 0 pro-
vided we can show that off acts strongly continuous on every Ή1 with I such that
VND\J Vk. Kallman [10] has shown that α" acts strongly continuous on ^(i)Vn)

kel

The goal of the second regularity condition will be to make off act continuously
on # 0 . The problem with the latter is that it contains for instance elements of the
form (&(t)vJ®(£(fyvn,) which do not necessarily belong to #(ϊ)) for some suitable I).



Spectra of Liouville Operators 141

(Take C(χ)lFn,5 for instance with C compact on ί)Fn.) These problems do not exist
for a quantum lattice system; there we have that the first regularity condition
implies that αf acts strongly continuous on 21.

Let us now prepare the ground for the formulation of the second regularity
condition. Let yt be a one-parameter automorphism group of some ^(t)) with the
property that φ(yt(A)) is a continuous function of t for all Ae^^cj) and φe^(ί))*.
It follows from Robinson and Bratteli [11] that there exists an unbounded deriva-
tion δ of JΌ)) with domain D(δ) that is a strongly dense sub-*algebra of
D(δ) is defined as follows

D(δ)= \Ae0g(t)y3Be@(ϊj) with

Lemma 2.5. Let AeD{δ\ then it follows that \\yt(A)-A\\-^0 (cf. [12]).

Proof. Since AeD(δ) we have that

1-0 ί

exists for all φe$}(§)*• Hence for φe&(fy^ we have

sup <00 .

Because ^(ί))^ is a determining manifold we have [13]

yt(A)-A
sup

ί

<oo

implying

,411—+0. Q.E.D.

Consider two finite disjoint volumes belonging to the partition {^,neN}
of IR3, Vλ and F2 say. Consider on f)F l®ί)F 2 the unitary group U° = U[ι)®U{

t

1)

where l/}1} = exp fif^ and £/j2) = exp ίH2t. Consider Ut = exp ίHt with H the local
Hamiltonian on ί)K l®ί)K 2 Clearly £7° and Ut give both rise to automorphisms,
β° and j8t say, which in turn give rise to derivations on ^(fyVί®fyv2) denoted by
<S° and δ.

Suppose now that

D(δ)nD(δ°)n^(ί)Vl)(S)<g$V2) is uniformly dense in D{δ°)n<tf(f)Vl)®V(bV2),

then we have the following

Theorem 2.6.\\βt(B)-B\\-^0\/Be%(ϊ)Vl)®%(ϊ)V2).

Proof From Kallman [10] we know that a\(A^= Uf)AiU
{ϊlt is strongly continuous

for AieΉfyy), i=ί,2. β° implemented by C/(° acts strongly continuous on
^(1)Ki)®^(ί)κ2) Therefore since ft0 leaves ^(^v^^ihv^) invariant, we have that
D(δ°)n%(ί)Vι)®%{ί)V2) is uniformly dense in ^(ί)F l)®^(t)F 2) A fortiori
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) is uniformly dense in ^(ί)F l)®^(ί)F 2). Using lemma 2.5 the
theorem is proved.

If we now want to impose a condition that makes αf act strongly continuous
on ^ 0 , it suffices to show that it acts strongly continuous on algebras that we
denoted by Ή1 for all finite subsets /CN. This will be done by transfinite induction.
Let VN{I) be a finite volume in IR3 with

VNN{I) = (J Vk, I some finite subset of N.
kel

Consider ^ J = ( and denote as before by αf(/) the automorphism on
kel

vN{I) induced by the local Hamiltonian on ϊ)κN(I); i t s derivation is denoted
by ΛN{iy If VpnVN(I) = 0, we denote by yf° the automorphism on &§vN{I)®fyv)
given by αf(/)(χ)αf. Let αf(/) + 1 be the automorphism on ^^)vN{I)®^)Vp) generated
by the local Hamiltonian on fyvN(I)®fyvp -̂ o> ̂ jvα) + i> $P stand for the derivations
associated with yf, αf(/) + 1 and ocf respectively.

We now impose the following: second regularity condition on at

1)nD(Γ0)n%I®%(ϊ)Vp) is uniformly dense in

Theorem 2.7. Let D(AN{I))nc^1 be uniformly dense in Ή1 and let furthermore the
second regularity condition on oct be satisfied, then it follows that αf(/) + 1 acts strongly
continuous on c

Proof Take 1 and BeD(δp)n<tf(l)Vp). Then we have

-Λm)(Λ)®B-Λ®δJB)

ΐ_nfW>loc?{I\A)®B

^I\A)®δJB)~A®δJB)\\
otΓ\A)®B-A®B

-ANiI)(A)®B

•\\δJB)\\\\oι?W{A)-A\\

\\B\\-+ 0,

due to the assumptions on Aβ and the strong continuity of αf(/) on <^1. What
the above estimate shows is that A®B belongs to D(Γ0) for ^AeD(AN{I))nc^1

and V2?eZ>(<5p)n^(ϊ)F ). By assumption D{AΉ{I^n^1 is norm dense in ^ and
^(^Vp)nD(δp) is norm dense in ^{i)Vp) by the same argument as used in theorem 2.6.
Therefore we conclude that D(Γ0) has dense intersection with (^1®c^^)v^.

The same, by our second regularity condition holds for D(AN{I) + 1). Lemma 2.5
then guarantees that αf(/) + 1 acts strongly continuous on this dense set and there-
fore acts strongly continuous on all of (€ι®cβ^)v ). Q.E.D.
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By combination of the regularity conditions we have

Theorem 2.8. Let ott be a one-parameter group of automorphisms of 91 satisfying
the regularity conditions, then oct acts strongly continuous on ^0.

Proof Take arbitrary T^ = VN(I) = (J Vk. Take Vkl and Vkl from (J Vk. Theorem 2.6
kel kel

gives the strong continuity on ^(ί)κki)®^(ί)κk2) of the automorphism group in-
duced by the local Hamiltonian belonging to VkιuVkr Now by successively
applying theorem 2.7 on the remaining elements of (J Vh we obtain the strong

kel

continuity of αf on c€1. From the first regularity condition it follows that at acts
strongly continuous on ^ 0 . Q.E.D.

Nowhere it is guaranteed that ^ 0 is at invariant as a set.

Definition 2.9. 9ί0 i s t n e C*-algebra generated by all elements A of Ήo and the
translates oct.(A) thereof with tt rational.

Due to the strong continuity of ott on # 0 we can easily show that 9I0 contains
all elements oct(A) and furthermore is invariant under the action of <xt. Clearly by
construction 9ί0 is a norm separable C*-algebra contained in 91. Because 91 is
not separable in its norm topology we have that 9I0 C 91. However 9ί0 is σ(9I, N)
dense in 91 by lemma 2.3.

It follows from its construction that 9I0 will in general depend on the auto-
morphism group at. Again when we specialize to a quantum lattice algebra, there is
no such dependence on the dynamics because ^ 0 on its own coincides already with
91. Also in the case of a quantum lattice algebra, the first regularity condition on oct

implies already strong continuity of αf. The second regularity condition is trivially
satisfied because all local algebras are finite-dimensional matrices and the deriva-
tions appearing in this condition are everywhere defined. (The local Hamiltonians
are bounded operators.) Furthermore the second regularity condition is easily
verifiable for non-interacting Fermi and Bose systems. In these latter cases the
local Hamiltonians are double differentiation operators and dense subsets of
D(5)n^(t)Fl)(χ)^(ί)F2) and D(δ°)n^(ί)Vί)®^(ί)V2) can be constructed by combina-
tion of finite rank operators which are formed from suitable C°°-functions with
compact support.

c) Results for Thermodynamic Systems

We assume that there exists a partition of IR3 which we consider as fixed for our
further reasoning. We assume that our dynamics at is given by a one-parameter
group of automorphisms of the quasi-local algebra 9ί that satisfies the regularity
conditions as described in section 2b. Let ω be an αf K.M.S.-state at inverse
temperature β and ί)ω the GeΓfand-Segal representation space carrying the
representation πω of 91 with a cyclic vector Ωω that is also separating for πω(9ί)".
U™ denotes the unitary one-parameter group that implements at, Hω denotes the
generator of Uf. On f)ω one has the following representation of the convolution
algebra //(TR):
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where π(/)χ = J f(t)U?χdt, Vχeϊ)ω and the integral is in the Bochner sense. Follow-
ing Arveson we define like we did in section 2a

which by a lemma in section 2a equals the spectral set of Hω. We now state

Theorem A. Let ω be any ott K.M.S.-state at inverse temperature β, then Sp Hω

is independent ofω and β.

Proof. Since ω as an at K.M.S.-state is locally normal [7] we have by lemma 2.4
that Ωω is cyclic for πω(2I0). Furthermore observe that, since at acts strongly
continuous on 9I0 and 9ΪO is invariant under the action of av we can Bochner
integrate on 9I0. In particular we observe the existence in the Bochner sense of
objects like

l<φi)f(t)dt for feL1^) and 4e2lo

Also we then know for representations π of 2I0 that

The proof of our theorem now proceeds by proving that for any K.M.S.-state
at any inverse temperature β Φ 0

1 / with J/(0TOί =

{ y 1 / ( y ) = 0V/ with

Indeed

The latter step is due to the fact that Ωω is separating for πω(2I)" and hence
for πω(9ί0) Since 91 is simple [14] we have that

= Oo$ f(t)at(A)dt = 0,

Conversely let j /(ί)α ί(^)ώ = 0V^e2Io. Hence

For arbitrary χeί)ω we can find a suitable Ae^0 such that for every ε > 0

\\ί f(t)Ur(πω(A)^ω-χ)dt\\^s\\f\\lί

where | | / | | x is the L1 norm of /. Hence we have that

Q.E.D.
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Remark. In any system where the dynamics is given by a strongly continuous
one-parameter group of automorphisms theorem A holds (cf. [3]). In particular
this holds for a quantum lattice gas.

The content of theorem A is a global statement about the spectra of generators
of time translations as a whole in representations of states that are α, K.M.S.. In
the case of a finite quantum system (cf. section 2a) one is able to make a much
more detailed comparison, namely the spectra are identical in nature. For thermo-
dynamic systems this is no longer true. The rest of this section will be devoted
to a pointwise comparison of spectra of generators in the case where we can
decompose a given oct K.M.S.-state into extremal K.M.S.-states at a given temper-
ature.

In order to compare locally the spectra of generators of time translations,
we restrict ourselves to a comparison that involves only oct K.M.S.-states at a
fixed temperature. Moreover we assume that the set of extremal points of the
simplex Kβ of αf K.M.S.-states at a temperature β is a Borel set. (As pointed out
in [7] one way to assure the latter fact is by assuming that Kβ is compact.) Under
these assumptions we have a unique decomposition for elements ωeKβ into
extremal points ωy, i.e. ω gives rise to a Borel measure on the set of states of 91
with the property that it is concentrated on the extremal points of Kβ :

ω= j dμjy)ωγ.
ExtKβ

We can now formulatex

Theorem B. Let Uf and Ufy implement oct in the representations given by ω and ωγ

respectively. Denote the appropriate generators of U™ and U^y by Hω and Hω .
Denote the pointspectra of Hω and Hωy by P Sp Hω and P Sp Hω . The following
is true :

λeP Sp Hω^λeP Sp Hω\/ωγe VcExt Kβ where μ ω (F)Φ0.

Proof Suppose λePSpHω, then clearly by definition there exists χei)ω with

U?χ = eίλtχ.

From [15] we conclude that there exists at least one element AeπJ^Ά)" different
from zero with the property that at(Λ) = eιλtA, where at is the extension of ott

to πω(9ί)".
We are discussing K.M.S.-states, therefore the states are separating on their

associated von Neumann algebras and hence the von Neumann algebras are
σ-finite.

From [16] page 31 corrolaire and Kaplansky's density theorem it follows
that we can choose a sequence {^4n}e2I such that

1 For the following we do not have to assume that <xt satisfies the regularity conditions, nor do we
have to assume that 21 is quasi-local (or simple).
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We shall prove that we can choose a subsequence {Λnk} from {Λn} with the
property that:

Furthermore we shall show that there exists a set FcExt Kβ with μω(F) + 0 such
that for all y with ω y eV we have

φ y + 0 and U^ψy = eiλtxpγ.

Clearly the latter statement means that λeP Sp Hω .
Let 3ω be the centre of πω(9I)"5 we then have for AeπJSS)"

where Γ is the spectrum of 3ω5 Ψ4) e 3ω a n d *s defined as PAP = Pε(A) with
^ = [ 3 A ] ' furthermore ε(A) (y) is the continuous function on Γ obtained from
ε(A)e3ω by the GeΓfand isomorphism. In particular we have:

ω(B) = (Ωω, πω{B)Ωω) = J dμω(y)ε(π(B))(γ) = J dμω(y)ωy(B),

where £e5I, ωyeS(2I)nExt Kβ (cf. [7], [17]).
As we have seen above πω(An)-^>A and hence

(Ωω, μ - π ω μ j)*μ - π ω μ J)Ω j — ^ o .
/I ~^ 00

From this we conclude

f dμω(y)ε[_(πω(An)~ A)*(πω(AJ -Λ)Jy)^O .

Since the GeΓfand isomorphism is orderpreserving we know that

fn(y) = ε [ ( π ω μ J - ^)*(π ω μ n ) - ^)] (y) ̂ 0 .

In short we can say that together with the choice of the sequence {,4,,} we have
obtained a sequence of positive functions fn that tends to zero in mean. We can
therefore [18] choose a subsequence of fn that tends to zero μ-a.e. and hence we
can find a subsequence Ank such that

βCWΛJ-A)*(πω(AJ-^αOO ^ O μ-a.e.

ε(̂ 4)(y) is, for 7 fixed, a positive linear functional on πω(2I)". As such it satisfies
the Schwartz inequality:

\ε(A*B)(γ)\2 Ss(A*A)(y)ε(B*B)(y).

From this one easily sees that the following holds true:

Denoting [β{A*A\y)yt= \\A\\y we have in fact that the map Aeπω{W>\\A\\γ

is a semi-norm on πω(2I)". Let us now consider

\\πω(An-AJ\\y= \\(πω(An)-A) + (A-πω(Am))\\y ^

ί\\πω(AJ-A\\y+\\A-πω(AJ\\y.
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For An and Am from the above chosen subsequence of {An} we find μ-a.e.:

IWA) - πω(AJIIy = fcίΛ) - πω(AJ)*(πω(An) - π ^J)](y)—-+0 .

This however means that ωy((An — Am)*(An — Am))—+0, which in turn means that

in the representation space ί) , carrying the representation πωy of 91 with cyclic
vector Ωωγ, we have μ-a.e.

which means that πωy(An)Ωωv converges to a vector which we denote by ψr

We shall now show that ψγ is different from zero for all y such that ωγ belongs
to a set Vo with nonzero μ-measure. Indeed (Ωω,A*AΩω)φ0 because AφO.
(Ωω is separating for πω(9l)"!) Since the sequence {πω(An)} converges strongly to A
it follows that

(β ω , A*AΩω) = lim (Ωω, π ω μ * ) π ω μ n ) ί 2 J = lim f
« n Γ

Furthermore

= \\Pπω(A*)πω(AJP\\ £ | |π ω (Λ)l l 2 ^ Mil 2

In these estimates we used successively that the representation theorem for
commutative C*-algebras is an isomorphism, the map 3~*P3 is a n isomorphic
map and that we may choose for πω(An) a bounded sequence. (For a simple
algebra \\An\\ — ||πω(y4Π)|| and hence the estimate is immediate because ωγ(A*A^^
\\An\\2^ \\A\\2.) If we restrict our attention to the above chosen subsequence of
πω(An) we can say that ωy(A*An)*= \\πωγ(An)Ωωγ\\ is a μ-a.e. convergent sequence
that is uniformly bounded and therefore the Lebesgue dominated convergence
theorem gives then for γ with ωyeVocΓ with μ ω (F o )#0 (because (Ωω, A*AΩω)Φθ)\

\\xpy\\ =Um||π f l ) yμ i I)Ωω v | | =Um ωγ(A^An)^ + 0.

From the fact that ott(A) = eiλtA we conclude that

^ \\at(πω(An)-A)ΩJ + \\ίat(A)-eίλtπω(An)-]ΩJ =

= 2\\(πω(An)-A)Ωω\\—>0.
n—*• o o

This means

ωί(at(An) - emAn)*(at{An) - J

Like we did above we can again choose a subsequence to the effect that, with t
and λ fixed,

ωγ[_(at(An) - eίλtAn)*(at(An) - ^ 4 , ) ] — > 0 μ-a.e.
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This implies for a subset Vt of Vo with μ(V0) = μ(Vt) that

\\U?rχpγ-eiλtψy\\ ^ \\U?vy>7- U^πωγ(An)Ωωγ\\

+ || U?vπωγ(An)Ωωγ - eίλtπωγ(Λn)Ωωy ||

We can now find a subset V of Vo with μ(F) = μ(F0) such that (U^-eίλt)ψγ = 0
for all rational t and ω y eK Using strong continuity of Ufy one extends this to
all ί. Q.E.D.

3. Some Miscellaneous Results

To conclude this paper we want to discuss some situations that are special in the
sense that the spectra of the generators that we encounter coincide with all of R 1.
Some of the results we shall discuss here are somewhat disconnected from the ones
discussed in the previous sections. We shall therefore state the conditions under
which the results of this section are valid separately.

Let ocx be a one-parameter group of automorphisms of a C*-algebra 21. For
every state on 21 that we shall consider ω(Aocx(B)) is a continuous function of x.
Let ω be an αx-invariant state on 21. Then it is known that the representation π

dx χe ϊ ) ω ,

is faithful iff SpU=Sp Pω=lR1(Ux = QxpίPωx). Let ω be αx-invariant and let OLX

denote the extension of ocx to πω(2I)". Ux denotes the continuous unitary group
that implements αx. Then we have [4]

Theorem 3.1. Sp (J^IR1 if πω(2I)" is non-abelίan and nJ%)"r\U'x= {λl}.

Let 21 be a non-abelian C*-algebra and ω an extremal αx-invariant state
that gives rise to a faithful representation and is furthermore separating then
we have:

Theorem 3.2. Sp £/=IRΛ

Proof. Since 2ί is non-abelian and π ω is faithful πω(2ϊ)" is non-abelian. Extremal
invariance implies that πω(2I)'nC//

x= {λl}. The fact that ω is separating gives [19]
that πω(2I)//'r\U'x = nJ^X)'nUx= {λl}. The theorem now follows from applying
theorem 3.1. Q.E.D.

Suppose now that we have a simple C* -algebra 21, with ott a one-parameter
group of automorphisms, representing the dynamics, that acts asymptotically
abelian on 21. Let ω be at K.M.S. at an inverse temperature β admitting a decom-
position into extremal at K.M.S. states at the inverse temperature β,

ω = \dμ(y)ωy.

Since ωγ is primary and (xt acts asymptotically abelian ωy is extremal invariant
for at. Furthermore ωy is separating since it is a K.M.S.-state and hence by theo-
rem 3.2 Sp Hω =1B}. By theorem B we find that the only discrete point in Sp Hω

is zero. The multiplicity of this eigenvalue is determined by the centre because
the centre is pointwise invariant for a K.M.S.-state [19], and nj%)'nll't is con-
tained in the centre because oct acts asymptotically abelian [20].
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If we would further specialize our situation by taking for 21 the quasi-local
algebra and for at not only an automorphism group that acts asymptotically
abelian but also satisfies the regularity criteria, then we have Sp Hω = Sp H =1R1.
This is true because we are allowed to use theorem A.

We consider next for a non-abelian C*-algebra 21 the following

Theorem 3.3. Let ω be a primary, separating, ax invariant state on a C*-algebra 21
(with ω(AaxB) continuous and πω faithful) then the existence of a sequence
Xn(xn—>°°) wίth ω(C[A, ocx (£)]£>)—>0 VA,B,C,De% implies Sp U^JR1.

n —• oo n n—> oo

Proof ω(C[yi,αxJB)]Z>)->0VC,I>e2I implies that ω(Aaxβ)^ω(A)ω(B) [21] and
hence that Ωω is uniquely invariant for Ux, i.e. ω is extremal invariant. This in
turn means, because ω is separating, by theorem 3.2, that Sp U= SpR 1 . Q.E.D.

For a primary separating αx-in variant state the fact that ω(C\_A, aXn(B)~]D)^>0
is equivalent [21] with strong clustering, i.e. ω(AaXn(B))^>ω(A)ω(B), we can there-
fore reformulate theorem 3.3 as
Theorem 3.3'. Let ω be a primary, separating, strongly clustering, otx invariant
state on 2ί (with ω(AotxB) continuous and πω faithful), then Spl/ = R1.

A generalization of this theorem is

Theorem 3.4 Let ω be a non-primary, separating, strongly clustering, ocx invariant
state on (Ά(ω(AaxB) continuous and πω faithful), then Sp (y=IRA

The fact that we took separating states in theorem 3.3' and 3.4 permits us to
exclude the otherwise still existing possibility that Sp l/=IR1 + or IR1", cf. [3].

Remark. As will be clear from theorem 3.2 the faithfulness of πω in theorems 3.3,
3.3' and 3.4 could be replaced by non-abelianness of πω(2I)".
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