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Quasi-free States and Automorphisms of the CCR-Algebra

M. Fannes*
Instituut voor Theoretische Natuurkunde, Rijksuniversiteit Groningen, Groningen, The Netherlands

Abstract. We show that any automorphism of the CCR algebra, leaving the
quasi-free states globally invariant, is monoparticular.

1. Introduction

The analogous problem for infinite Fermi systems has been studied in two recent
papers. In [2] Hugenholtz and Kadison assume that the gauge invariant quasi-
free states are globally invariant under the action of an automorphism whereas
in [6] Wolfe treats also the situation where all quasi-free states are globally
invariant. The conclusion that the automorphism is monoparticular is reached
by completely different methods.

The method used in this paper seems again to be quite different from those
used in [2] and [6]. The main idea is to introduce an order relation in the set of
quasi-free states. We say that o, S w, if v, <yw, for some yelR; < defines an
ordering because of the exponential character of the quasi-free states.

The main use of < is to show that adding scalars to the fields a,(-) and a(-)
in the representation of a given quasi-free state w corresponds to the same kind of
transformation for the fields a,,.,(-) and a¥. (), where a denotes the automor-
phism in question.

2. Preliminaries [3-5]

Let & be a separable (possibly finite dimensional) Hilbert space over € with inner
product (- | -) (antilinear in the first component) and H its underlying real Hilbert
space. H=u# as a set and the inner product { -|-> of H is given by

(ply>=Re(¢ly) o, peH.
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Define the bounded linear operator J on H by
Jop=i¢p

then J2= —1 and J*= —J. We need also the nondegenerate symplectic form
a(-|-) on H given by

o(@ly)=Im(p|p)={Joly) ¢, peH.

The CCR-algebra A(H, o) is the C*-algebra obtained by completing the
*-algebra Span {6,|ywe H}. The elements J,, satisfy the “Weyl”-relations:

—Lowie)
d,0,=e ? 8,+6 ¢weH,
(0,)*=0d_, weH.

A(H, o) is a simple, non-separable, C*-algebra.
For ¢eH one defines an automorphism 1z, of A(H, g) by

THX)=04%x0_4
and one has
T9°T6,=Tgr49, P1-P26H.

A Te%(H) such that J¥*T*JT=TJ*T*J=1 (equivalently o(T¢|Ty)=o(¢|yp)
¢,peH) is called a Bogoliubov transformation and it defines an automorphism
ar of A(H, o) by:

ar(0,)=0r, weH.

The quasi-free automorphisms of A(H, o) are those of the form 7,-0; where ¢pe H
and T is a Bogoliubov transformation.

The quasi-free states w44, AcQ and ¢eH, on A(H, o) are defined by the
formula

Oup)(0,) =@ ems VI ey
where
Q={AcBH)|A=0 and A~ <J*4J}.

AS 0 4,4)=D(4,0°Typ> D(a,g 1S pure iff w4 o) is pure and this is the case iff 420
and A~ "'=J*AJ. The pure states w, o are also called Fock-states.

3. A Partial Order Relation on the Quasi-free States
Definition 3.1. Given A, A,€Q and ¢,, ¢,€ H, we write

Oy, ) S D00

if there exists a yeIR such that

w(A1,¢1)§yw(A2,¢2) .
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Proposition 3.2. 1) 4, 4,y O 4,4, iMplies Ay <Ay and ¢ —dre[(A,—A)H]™;
i) X defines a partial ordering on the set of quasi-free states.

Proof. 1) Let yeR be such that
Oa 1,60 =V (43,40 -
We then also have
Day,¢1- 62 = Diar,60)° iy
SVOUs,42)° Trvg
=VW045,0) -
We prove now that w4, ) <7w4,. o) implies
A=A, and yel[(4,—A4)H] .
For any non-zero 6 H the function
(R0, 0/0) = D, (O = 7™ H AN — 10 g 3010

is a continuous function of positive type on the group (R, +). By Bochner’s
theorem its Fourier transform

e 1 _(k+{p0))?
{A2016) __ <A41016>

Y
keR—»>-————¢ e
{4,010 <4,010>*
is positive.

This implies

(A.010><{A4,816) if <yp|0)>=+0

(A4,010>={A4,010> if <(yl0>=0
and so

A=A, and yel[(4,—A4,)H] .

i) Reflexivity and transitivity follow immediately from the definition. Anti-
symmetry is an immediate consequence of i). [

It seems to be quite difficult in general to translate the partial ordening on
the states w4 4 in terms of 4 and ¢. However, if we restrict to classes of states
4.4 Where A “belongs” to a fixed “gauge” this can be done.

Let AeQ and define an inner product <-|->, on H by

(plyy =<{Adly> ¢, peH.

If J*4=K ,|A|, is the polar decomposition of J*4 with respect to {-|->, one
shows that JK, defines a Fock state, [K,, |4]|,]1=0 and |4|,= ,1. Furthermore
{e'*4|telR} is a group of Bogoliubov transformations on H and the corresponding
group of automorphisms on A(H, o) is called the gauge-group corresponding to
K ,. An operator BeQ is said to belong to the gauge K 4 iff wp ¢) is invariant under
the corresponding gauge-group. Equivalently BeQ belongs to the gauge K,
iff the polar decomposition of J*B with respect to {-|->p is of the form

J*B=K,Bly [5].

We first prove two lemma’s.
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Lemma 3.3. Suppose that:
i) S is a complex separable Hilbert space.
i) A is a (possibly unbounded) self-adjoint linear operator on H# such that
e e B(H).
iii) Qe A, |Q| =1 and E, is the orthogonal projection operator on CQ.
Then, there exists a yeR such that Eo<ye ™ iff Qe Dom(e'!/?4).

Proof. 1. Suppose that Qe Dom (e!'/?4); we show that y=[|e/"/?4Q|? is a good
choice:
For yes#':

CEqu|y) =Ky |2
=Ke Pyplet?Q))?
Slet2Q)2<e™yly)
=y<e “‘ply).
2. Conversely suppose that E,<ye 4. Define for ¢ Dom(e'}/?4)
f(@)=<Qle!Pg) .
f(-) is a linear functional and
If@)1P=KQleP4p) 2
— <€(1/2)A¢ ‘ EQe(lll)A¢>
§y<e(l/2)A¢| e—Ae(I/Z)A¢>

=ylol?.

Hence

(Qle'P4¢y =(y1¢p)  PpeDom(e!'/?4)
and so
QeDom(et/24) O

In the next lemma we compute some estimates for the one boson case: H =IR?,
If {¢, J¢p} is an orthonormal basis for H we denote by J,, the element

5pd>+ql¢ p,qeR.
Lemma 3.4. Consider A(R?, ¢) and, using the same notation as above, the states
wl(g;p,q)zei(1p+uq)e—%(1+a1)(p2+qz)
and
w2(5p,q)= e~ H1+ad(p?+q?) ,
where A, ueR, 0<a, <a,, a,, a,eR.
Then w, S, and the least yeR such that w, <yw, satisfies
11 A2+ u?

PEEA

1 /12+'u2
<ny< - — .
g = ny= 2(02 a)+ 0y —a,
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By Lemma 4.4 (x) can only be satisfied if 1—{o,(4, A+ o)), weH is affine
and so if A—a,(A4, Ap+ ) is affine or:

#5(A; A+ po)=0ta(A; o)+ AH{tz(A,  + Po) — ax(A, o)} - (1
Substituting (1) in (x), performing the integral and equation both sides we get

(A4, po)=c2(A+kp® P, Po) @

o3 (A) + k(02(A, @ + Po) — aa(A; $0) @ (@02(A, P + o) —%2(4, Po))

=0, (A+kdpR9). (3)

As the right hand side of (3) is independent of ¢,

(A, @+ o) —ax(A, Po)=0x(A, §)— (4, 0)
or:

[o2(A4, @ + o) —ax(4, 0)]

=[0oy(A, @) —0t5(A, 0)] + [2(A, o) —t2(A, 0)] P, poe H .
Hence the mapping:

T,:peH—-0,(A, p)—0a,(A4,0)eH

is linear and bounded by Remark 4.2ii).
Let A, BeQ then A+ BeQ. Using Equation (2) for the case ¢,=0 and again
Remark 4.21i) we find:

05(A4, 0)=0,(A + B, 0)=a,(B, 0) =o€ H .
Using this (2) reads:
Liy=T, 190w weH.
Using again the same argument as above one has
L,=T,=T, A, BeQ.
Finally (3) becomes
o, (A)+kTo(¢p®@P) T =0, (A +k¢p®¢) k=20 ¢eH
and this implies that there exists a Ce () such that
o,(A)=TyATsF+ C(A) .
By the same argument as above one gets
C(4)=C(B)=C, A,BeQ
and so
0 (A)=ToAT5+Cy, AeQ.

We show that C,=0.
First of all C,=0; indeed since o;(4)e Q one has

Ty ATF+Co20 AeQ.
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Observing as in Proposition 3.2i) that (yw, —w,) (-) is a function of posita
type on the group

0 1 w  |teR
(A2 +u2)-% (,12+ﬂ2)%

and using again Bochner’s theorem we have that

_ k2 1 _(k+(/’»2+u2)%)2
keR— — " e UFa)_ i T+a;
(1+a,) (1+4a,)*

is non-negative. Therefore

Loyt 220
T \l+a,
and so
_ 2 2

=§ 1+a2 02—01'

Theorem 3.5. Let A, BeQ belong to the same gauge K and let ¢, peH. w443
1) ASB;ii) B— A s trace class on H iii) ¢ —pe Dom((B— A) |z aym-) -

Proof. As there exists a Bogoliubov transformation mapping J*K into J*J(=1)
and as the statement of the theorem remains unchanged by performing such
a transformation we may suppose K=J. We can also assume, without loss of
generality, that p=0.

(«) Since AeQ and [A,J]=0,1<A<B. Consider now the states

,(8g) = €i<910> g~ 4010
and
,(89) = e~ H(W+B-A)016)

It is sufficient to show that w,Sw, as by multiplying w, and w, by the positive
type function

O o~ FCA-1)0[6)
we will have
O, SO (5,0) -

By ii) and [(B—A),J]=0 there exists an orthonormal basis {¢,Jd;, P,,
Jo,, ...} of H such that

(B_A)¢k=ak¢k OCkG]R+ k=1, 2,
(B—A)Jp =,

and

Y wy<oo. (%)
k=1
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Let
e8]
b= z (APt mdbi) Ao i€R
k=1

then by iii):
0 /’{2 2
y i i <o
k=1 %

Forn=1,2,... let

H= (@ Hk) @H",
k=1

(x)

where
Hy=Span {¢,, J@,} .
As we have

JH,=H,, JH*=H* k=1,2,...

and as the algebras A(H,, |y,) and A(H, o) are simple we have

A(H,0)= (® A(H, Ulnk)) ® A(H", )
k=1

= (@ Ak>®A"‘
k=1
Now

W= (,@ wl’Ak) Wi

and the same holds for w, .

Using Lemma 3.4 we get that
n < WH| n= 1, 2, e
® 4 (kUI yk) 2|@ 4

k=1

W1

and

/12+ 2
0<Iny, < doy+ o BE,
k

Using (*) and (**) we therefore have

lim [] ype=y<o

n—ow k=1
and so w; <y, .

(—) Let yeR be such that w4 4 < 7ywg,0). Proposition 3.2 gives us condition i)
and also ¢pe[(B—A)H]".
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Multiplying w4 4 and g o, by the positive type function
0 o~ + <4l - 016>

we get w; Syw,, where
0,(8g) = €i<91#> g~ <1 4l016>

and
w,(8))=e” Al +B-A)6]0)

Let 2={1,2,...4dimH} and let (H,),.; be an increasing sequence of sub-
spaces of H, exhausting H and such that
dimH,=2n ne@
JH,=H,.
For ne 2 define an operator C, as

<Cn909x>=<(”A”+B_A)Hax> 0, XGH,,

then:
1y, 114111y, < G, =14l + [ By,
[Cp, I, 1=0.

Write also

¢=¢,+9¢", ¢.eH, ¢"=HOH,.

Restricting the inequality w; <yw, to the subalgebra Span {d,|60cH,} of A(H, o)
we get w]<yw; where o] and o} are the states w41, ,) and o, On
A(Hn’o-lHn)'

Performing the spectral decomposition of C, and using again as in («)
Lemma 34 we get

Iny=3|C,II7 " Tr(C,— | Al1g,) + I(C,— [ 4l1Lg,) " * ¢,
227 Y(lAl+ 1Bl Trg, (B— A+ (C,— 4] 1g,) "2 ull®-
Taking the limit with respect to n we see that
Tr(B—A)<
and
ge Dom(((B_A)I[(B—-A)H]‘)—%) . O

4. Automorphisms Leaving the Quasi-free States Globally Invariant
From now on we will assume that:

4.1. o is an automorphism of A(H, g) such that its transpose maps the quasi-
free states on A(H, o) into themselves. We use the following notation:

O4,4)°%=Daya.paray AEQ, PpeH.
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Remark 4.2. If a satisfies 4.1 then

1) (4, §)—(a1(4, ), x3(4, ¢)) is injective;

ii) (4, p)—(y(4, @), 2,(4, ¢)) is continuous with respect to weak operator
convergence on Hx weak convergence on H.

Proof. 1) is immediate.
i) Since any xeA(H, o) can be approximated in norm by a finite linear
combination of elements J,, e H, and since

W p0,) = €A1V @ HCAVIV>

it follows that
By, Y O,
iff
A, A and ¢, ¢.
It is then sufficient to remark that w; o wea is equivalent with 0, %> w. 0O
Lemma 4.3. Let o satisfy 4.1. Then for any AeQ and peH
OCI(A’ ¢)= al(Aa 0) E'al(A) .
Proof. Let K be the gauge corresponding to 4 and define
C= E¢ + EK*(P

where E, is the projection operator on Ry. For 120 4+ACeQ and belongs to
the same gauge as 4. Applying Theorem 3.5 we therefore have for 0<i, <1,

w(A.¢)5CU(A + A,C,O)Swm +2C,9) *
So, after applying «:
Oay(4,4),a2(4,4) Swmu +21C,0),az(A + ilC,O)s(w(al(A +22C,4),a2(A + 42C,4)) *
Then by Proposition 3.21)
(4, P) sy (A+4,C,0)=0,(A+4,C, ¢).
Taking now the limit 4, | 4, | 0 and using Remark 4.2ii) we get
OCI(A’ ¢)§al(Aa 0)§061(A, ¢) D
Lemma 4.4. Suppose that AeR — f(1)eR is continuous and

n 2 [dle™ PP =e 1D yreR.
R
Then either f(A)=4 or f(A)= —A.

Proof. One has

e“(1/4)t2=n—- 1/2 j‘ d),e“’lze‘“
R
and so:

Hj{die‘“e"'m)z nj;d/le‘pe‘“ VteRR. (%)



64 M. Fannes

Consider the Hilbert space # =%%*IR, e *"dx). For neN choose a,eC, t,cR
i=1...n, then by (x):

n 2
itjA
Y, oge
j=1

Since {A—e"*|teR} is a total set in #, the mapping U,:¢—¢-f extends to a
isometry on . This implies that f is one to one. By (x) the range of f is the whole
of R. Indeed if ]x,, x,[ CR\Ran f choose a non-zero positive function x— h(x)e
PR, dx) such that supphC]x,, x,[ and such that he Z (R, dx) (where i denotes
the Fourier transform of k). Using () one gets:

0= [dth(t) | dAe* /™
R R

n 2
Y et/

J
j=1

= [dth(t) [ dhe ¥
R R

= [dAh(A)e™*
R

>0.
This implies that U is a unitary and so

[die " g(f(A)=[dre ¥ g() geL'(Re *dx).
R R

Clearly f has to be absolutely continuous. One has either
f(+0)=0 or f(4+ow)=—00.

In the first case one gets
e~F = fi(R)e 1

or
+ o +ao
[ e ¥ds= [ e 5ds
i o)
and so
i=1h).
In the second case one gets f(4)= — A. a

Theorem 4.5. If o satisfies 4.1 then o is a quasi-free automorphism.

Proof. We use the notation ¢®vy, p,peH to denote the operator ye H—
{p|ly>weH. For k>0, ¢, pocH and AcQ one has

(mk)~ 1/ n{ 2™ D 4 14+ 40y = Ot + k@00
Applying this on elements a(x), xe A(H, g) and using Lemma 4.3 we get:
(mk)~ 1/ £ 3™ K0 04 204,10 + 900 = Dl 4 + kp@ )02 + kp B0
Let weH and evaluate both sides on 4,,, teR.
(mK) ™12 [ dje™ Pk gitCaad ket do) )
R

= eit<a2(A+k¢®¢,¢o)lw> e~ (WA a4 +kp®) —ay(A)w|v) (*)
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By Lemma 4.4 (x) can only be satisfied if A—<a,(A4, 1+ do)|ywD, weH is affine
and so if A—ay(A4, A+ ¢) is affine or:

(A, AP+ o) =a(A, Po)+ A{az(A, ¢+ Po) — (4, Po)} - (1
Substituting (1) in (), performing the integral and equation both sides we get
%5(A, o) =a3(A+kp @, do) i)
oy (A) + k(05(A,  +Po) —%2(A, §o) D (22(A, P+ Po) — a4, P))
=a(A+kd¢®R). 3)

As the right hand side of (3) is independent of ¢,

%x(A, ¢+ o) — (4, po)=0y(A, §)—a5(4,0)
or:

[oa(A, @ + Po) —ax(A, 0)]

=[0(4, ¢)— (4, )] + [05(A4, o) —a5(A4, 0)] ¢, poe H .
Hence the mapping:

T,:peH-o,(A, §)—0,(A4,0)e H

is linear and bounded by Remark 4.21ii).
Let A, BeQ then A+ BeQ. Using Equation (2) for the case ¢,=0 and again
Remark 4.21i) we find:

o5(A, 0)=0,(A + B, 0)=0,(B,0)=y,eH .
Using this (2) reads:
Tw=T,, yoe¥ YeH.
Using again the same argument as above one has
T,=Ty=T, A, BeQ.
Finally (3) becomes
1, (A)+kT(p@P) T =a(A+k¢p®¢) k20 ¢eH
and this implies that there exists a Ce #(#°) such that
o (A)=ToATg + C(A) .
By the same argument as above one gets
C(4)=C(B)=C, A,BeQ
and so
0 (A)=ToATF+C, AeQ.

We show that C,=0.
First of all C,=0; indeed since o,(4)e Q one has

T, AT} +Co20 AeQ.
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Clearly C,=C§. Suppose that there is a e H such that {C,0|0> <0. It is always
possible to choose an AeQ such that (TgF0|ATg*0> < —%{C,0|0>, but this
contradicts the positivity of TyA T + C,.

We prove now that C, <0. Let 8¢ H. Since the convex combinations of quasi-
free states are weakly dense in the set of all states on A(H, ¢) and since o is an
automorphism one has:

1=[0,]
= [lddg)
N
= Sup Z i©9(4,.6)(%(00))
0=k, Y A=l -
A,egi:l,eu} (=1 ..N.NeN
N
=sup Zl 2O (ToATo+Co.Tos, + ) (O0)

N
<sup Y 4o #Co010>
i=1

<o <Co010>

and so Cy =0.
We conclude that, as for A€ Q, pc H

o0 (A)==THATs
ay(4, )=Todp+wo

o is a quasi-free automorphism. O
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