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On the Bound State in Weakly Coupled λ(φ6—φ4)2
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Abstract. We consider the λ(φ6-φ4) quantum field theory in two space-time
dimensions. Using the Bethe-Salpeter equation, we show that there is a
unique two particle bound state if the coupling constant λ>0 is sufficiently
small. If m is the mass of single particles then the bound state mass is given by

\2

1. The Bound State Problem

We consider relativistic scalar boson quantum field theories in two dimensional
space-time with polynomial interactions and we discuss some properties of
bound states below the two particle threshold For the model with interaction
polynomial P(φ) = λ(φ6 — φ% coupling constant λ>0 and bare mass m0, bound
states are known to exist if λ/ml is sufficiently small. This result is implicit in the
combination of the two papers [4] and [7]. In the first paper, Glimm et al. argue
that the λ(φ6 — φ4) model has mass spectrum above the one particle mass shell
and below the two particle threshold. (They assumed that the physical mass
m=m(λ, m0) has an asymptotic expansion as a function of λ near λ = Q; this was
subsequently proved in [2].) Secondly, Spencer and Zirilli, based on estimates
by Spencer [6], showed that for any even P the mass operator has only discrete
spectrum below 2m, and that on each eigenspace of the mass operator the repre-
sentation of the Poincare group decomposes into a finite sum of irreducible
representations. Thus the spectrum in question is interpreted as bound state
particles.

In this paper we continue the study of the λ(φβ — φ4') model and sharpen the
above results. It is convenient (though not essential) to choose the bare mass
mo = mo(λ) such that the physical mass m = m(λ, mo(λ)) is fixed [2]. Our main
result is:
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Theorem 1. Given m>0, the λ(φ6 — φ4) model has, for sufficiently small coupling
constant λ>0 exactly one bound state below the two particle threshold. The mass
κB of this bound state is of the form

κB{λ) = 2m(l- 9-(^ +tf(A 3)j. (1.1)

We remark that the theorem holds for any polynomial interaction of the form

a2N>0, A ^ 3 ,

with the same constants in (1.1). The term a2Nφ2N ensures that the model exists,
while — φ 4 gives an attractive force in first order and makes binding possible.

The proof of Theorem 1 is given at the end of Section 3. Here we outline it
briefly. By considering the Bethe-Salpeter equation the problem of locating
bound state masses is reduced to the solution of a non-linear eigenvalue problem
on a certain Hubert space of functions on R2. If one replaces the Bethe-Salpeter
kernel by its lowest order term in λ (a point interaction) this problem can be
solved explicitly and one finds that there is exactly one eigenvalue. By adapting
the techniques of analytic perturbation theory to the nonlinear case at hand we
show that the isolated eigenvalue persists when the higher order terms in the
Bethe-Salpeter kernel are added. Spectrum away from this primary solution is
ruled out in Section 3 by a variation of the technique that [7] use to rule out

N

any bound states in P(φ) = λ\ £ α 2 π φ 2 n + <p4 models.
\w=3 /

To fix the notation we now review the formulation of the Bethe-Salpeter
equation as given in Spencer [6] and Spencer-Zirilli [7]. See also [8, 1, 3].

1. Let ©w tλ be the w-point Schwinger function for a weakly coupled P(φ)2

model with coupling constant λ [4]. The ®Λ j λ are translation invariant real
analytic functions except at coincident points where they have logarithmic singu-
larities [3].

2. Define

Dλ(xu X2, X3, X 4 ) = ®4,λ(*l> X2> *3> XA) ~ ®2,λ(*l> X2)^2,λ(X^ X^) ,

These functions are the kernels of bounded symmetric operators on

L2(IR2)(x) sL2(IR2).

One further defines a bounded symmetric operator Kl (essentially Kl = Dχl- D Q / )
so that the Bethe-Salpeter equation holds:

Dλ = Doλ-DoλK{Dλ.

3. Next the equation is transformed to momentum space and reduced to
fixed total momentum. These operations are indicated by their action on the
kernels of the operators. These kernels are functions of

ξ = xί-x2, η = x3-x4, τ = {-(x1+x2-x3-x4),
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and we define

Rλ(k,p,q) = (2τι

Roλ(k,p,q) = (2τ

Kλ(k,p,q) = (2τ

Then the equation

Rλ(k,p,q) = Roλ

which corresponds

c)~3 \e~
i{kτ+pξ

Λ-l ΐe~i{kτ + pξ

becomes

(/c, p, q)— J R0/

+ qη)Dλ(τ,ξ,η)dτdξdη,
+qη)Doλ(τ,ξ,η)dτdξdη
+ qη)K{(τ,ξ,η)dτdξdη

κ(k, p, p')Kλ(K p\ qf)R,

to an operator equation

q)dpfdqf,

k), (1.2)

defined on If2(R2), the even subspace of L2(IR2). [Note: Our definitions differ
slightly from those of [7], e.g. Rλ(k, p, q)= constRs

λ

z(K 2p9 2g).] We change nota-
tion to an energy variable κ, and we write Rλ(κ) instead of Rλ{k) for k = (iκ, 0), etc.
By the cluster expansion [4], Rλ(κ) is well defined for Reκ small.

4. The fundamental result of Spencer [6] is that for λ sufficiently small, the
kernel Kλ(κ, p, q) is analytic and bounded (uniformly in λ) in a region

(1.3)

provided that δ0 + δ x < m. We take 5 0 = 3m/4 — ε, δ x = m/4 — ε.
5. Consider the Hardy space Aδ of functions analytic in | Imp o | < δθ9 \ lvnpί | < (5X

and such that f(p) = / ( — p), with norm

= sup ί
|αol <^o
| α i | < ^ i

where w(p) = (p2 + 16m 2)" 2 / 3. Using the analyticity of Kλ(κ) and the explicit form
for Roλ(κ), Spencer and Zirilli show that Kλ(κ)Roλ(κ) extends from If2nAδ to Aδ

and defines a compact operator there. Furthermore, Kλ(κ)Roλ(κ) has an analytic
continuation to |Reκ|<2m (as compact operators). It follows by the analytic
Fredholm theorem that (\ + Kλ{κ)RQλ(κ))~ι is meromorphic in |Reκ|<2m.

6. Next the Bethe-Salpeter equation is realized on Aδ and extended to
I Re κ| < 2m. First note that # O A M is analytic in this region, and that for/, ge L\

Thus Roλ(κ) defines a bounded bilinear form on Aδ x Aδ and hence an operator
in S£(Ab9 A%\ where Af is the dual of Aδ. We write

where <, > is the pairing between Aδ and Af. Next let |Reκ| be small and take g
of the form g = (ί +Kλ(κ)Roλ(κ))h with heLe

2nAδ. Such functions are dense in Aδ

and by the adjoint of Equation (1.2),

(/ Rχ(κ)g)2=(f, (Rλ(κ) + Rλ(κ)Kλ(κ)R0λ(κ))h)2
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It follows that Rλ(κ) defines an operator in <£{Ab,A%) such that (/,Rλ(κ)g)2 =
</, Rλ(κ)g} and that

We see that Rλ(κ) has a meromorphic continuation to |Reκ| <2m, by the analytic
Fredholm theorem.

7. Let dE(p) be the energy-momentum spectral measure for the field theory
and let f(po>Pi) = g(PiT with g e C ^ R 1 ) . Then one has an identity of the form

ί ( V 4 ) λ E{p)θ{g)), (1.4)

where

) = j φ{x)φ{ - x)g(x)Ωdx - (β, J φ(x)φ( - x)g(x)dxΩ)Ω,

and φ(x) is a time zero field. The identity allows one to conclude that any point
in the mass spectrum in (m, 2m) must be a pole of Rλ(κ), or equivalently a real
value of κ such that Kλ(κ)Roλ(κ) has eigenvalue —1. Here one uses the fact that
vectors of the form Ω and e~iPxθ{g) span the even subspace of the field theory
up to energy 4m — ε, ε > 0 [4]. (It is sufficient to consider the even subspace since
the odd subspace has only single particle spectrum below 3m — ε.)

2. The Eigenvalue Problem

Motivated by the previous discussion, we study the spectrum of Kλ(κ)Roλ{κ) on
the Hubert space Aδ. For the λ(φβ-φA) model we have [6],

Kλ(κ)= -λK^ + λ2Kψ{κ), (2.1)

where Kf^κ) is bounded in λ and has a kernel K{χ\κ, p, q) which is analytic in
the region (1.3). The operator K{1) corresponds to the diagram

and has the kernel K{1)(p,q) = 3/π. [This comes from the x-space kernel
KΛ{ί)(xvX2,x^x4) = 6δ(x1—X2)δ(x2 — x3)δ(x3 — x4).'] We also decompose Roλ(κ)
which has a kernel given by

ROλ{κ, P, q)=2(2π)S; ( p - ^ ) Sλ~ (p+ ^ ) δ(p + q)

= roλ{x,p)δ{p + q), (2.2)

where Sλ is defined by &2,λ(xι>x2) = Sλ(xι-χ2) F ° Γ ^-=0 this becomes

p-

(2.3)
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Then we define RoΊ(κ) (f°r λ>0) by

. (2.4)

We shall see that RoΊ(κ) *s bounded as λ-^0 so that this definition is appropriate.
Collecting (2.1), (2.3) we write

Kλ(κ)Roλ(κ)= -λT^Xκ) + λ2T[2Xκ), (2.5)

where

and therefore

We proceed to study the operator T(1)(κ).

Lemma 2.1. For |Reκ|<2m the operator T{1)(κ) has rank one and it has the single
non-zero eigenvalue

12 1 arcsin(κ/2m)

~π (4m2 -κ2)112 κ '

Proof. By definition, we have for ψeAδ,

Thus the range of Γ(1)(κ) is the constant functions (they are in Aδ\ and therefore

the only eigenfunction is ψ = constant. The eigenvalue is - ro o(κ), where
π

= 4
o

= 4(4m2 - κ2) ~1/2 arcsin (κ/2m)/κ . (2.6)

The q0 integral (first equality above) is done by a contour integral [7] and the q1

integral is accomplished by the change of variables x = qi(ql+4m2)~ί/2.
Because of point 7 of Section 1 we concentrate our interest on those values

of κ for which — λT{ί)(κ) has eigenvalue —1. This will turn out to be the correct
second order approximation in λ to the bound state energy.

Lemma 2.2. For λ>0 sufficiently small there exists a unique κ = κ*(λ) in (0,2m)
such that —λT{1)(κ) has eigenvalue — 1.

Proof By Lemma 2.1, the unique eigenvalue of -λTa)(κ) is roo(κ). By the
n

integral representation (2.6) for roo(κ), the eigenvalue is monotone decreasing
and unbounded as κ->2m and so the assertion follows.
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Lemma 2.3. Define κ*(0) = 2m. Then κ*(λ) is a C°° function on an interval [0, λ0)
/or sufficiently small λo>0 and has the asymptotic expansion

(2.7)

Proof Define for λ>0 and σ small the function

(2.8)

F extends to a C°° function in a neighborhood of (A, σ) = (0,0). We note that
F(0,0) = - 1 and that 3σF(0,0) + 0. By the implicit function theorem, there is a
C00 function σ*(λ) such that σ*(0) = 0 and F(λ, σ*(λ))= - 1. By definition, we have
for λ>0,

(2.9)

and this identity extends to λ = 0. Thus κ*(λ) is C00 up to zero and since |σ*(Λ.)| =
Θ(λ% Equation (2.7) is proved. [Higher order coefficients δjκ*(θ) in the expansion
for κ*(/ί) can be calculated from (2.9) and the expressions for 3Jσ*(0).]

As a prelude to the perturbation theory for the A27j2)(κ) part of Kλ(κ)Roλ(κ)
we estimate the norms of the operators in question. The bounds of the next four
lemmas hold in the region

{κ||Reκ|<2m, | I m κ | < m } . (2.10)

Define zl(κ) = (4m 2 -(Reκ) 2 )~ 1 / 2 .

Lemma 2.4. | |T ( 1 )(κ)| | = \\K{l)R00(κ)\\ £Θ(Δ(x)).

Since K{1) is constant (and hence bounded) the proof of this lemma is the same as
the proof of Lemma 2.5 and we omit it.

Lemma 2.5. \\Kf\κ)R00(κ)\\ £ &{Λ{κ)\

Proof We estimate the norm by the Hilbert-Schmidt norm. The latter is com-
puted via a unitary transformation from Λδ to L2(IR2, dx). As in [7] this gives

κ, p + iδ9 q')rU^ «')

w-\q')Bδ(q'-q)dq'\2dpdq, (2.11)

where Bδ{q) = {q2+δ2

oy
1{q2+δ2yί. As noted in (1.3),

Using also J w(p)~2w(q)~2dpdq<co we obtain a bound on ||^(λ2)(κ)^oo(κ)llH.s.
the form

This integral is bounded by considering the regions \q'\<m and \qf\^m separately.
In the first region, \w~1(q)w~1(q')Bδ(q — q')\ = Θ(ϊ) so it suffices to bound
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ί lroo(κ>#')W. ^ u t by applying the the inequality |αfo|^2~1(|α|2 + |fe|2) to the two
factors in the definition (2.3) of ro o(κ, q') we see that

This gives

J koo(κ, q')\dq' ύ r

and hence a bound Θ(Δ(κ)) for (2.12). In the region \q'\^.m, we use |roo(κ,q')\S
Θ(\qf\'4) to obtain the bound Θ(ί) for (2.12). This completes the proof of Lemma 2.5.

Lemma 2.6. \\K{1)R$(x)\\^O(Δ(x)).

Proof. We use the Lehmann spectral representation for the two point function

5 A » = (2π)-1(Z2

A(p2 + m 2 ) - 1 + J(p 2 + α 2)- 1Jρ λ(α)), (2.13)

where suppρλ is bounded away from m. First Rffl is expanded as

+ λ-2(Zt-l)R00(κ). (2.14)

The perturbation expansion for the field strength renormalization constant Zλ is
asymptotic [2] and one has |1—Z 2 |^^(A 2 ). Thus the second term in (2.14) con-
tributes Θ{Λ(κ)) to \\Ka)R^l(κ)\\, by Lemma 2.4. The first term in (2.14) acts as
a multiplication by

+ two similar terms . (2.15)

Following the proof of Lemma 2.5, it is sufficient to show

$\δrλ(κ,q')\dq%Θ(A(κ)),

to complete the proof. Since we have a canonical theory,

and thus the first bound follows from

- 1

^ ί dp((p0 - Im κ)2 + p\ + Am2 - (Re x)2) " 1

• ((p0 + Im x)2 +p2 + 4a2- (Re x)2)'1

for all αesuppρΛ. The two other terms in (2.15) are bounded in the same way.
Finally the $(|p|~4) bound on δrλ(κ,p) follows by inspection from (2.15). This
completes the proof of Lemma 2.6.
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In exactly the same way, using the boundedness of K(2)(κ, p, q) one shows

Lemma 2.7. \\Kf\κ)R$(κ)\\^Θ(A(κ)).

We now control the spectrum of Kλ(κ)Roλ(κ) through perturbation theory.
Define

so that

Kλ(x)R0λ(x)=Tλ(λ2,x).

For |Reκ| <2m, Tλ(μ, κ) is analytic in μ, κ.

Lemma 2.8. There exist constants α>0, b>0 such that for λ>0 sufficiently small
and \μ\<aλ, \κ — κ*(λ)\<bλ2, the spectrum of Tλ(μ,κ) is contained in

i or |ί|<i}.

Proof We know that Tλ(0, κ*(/l)) has spectrum {0, -1}. The perturbation is

δTλ(μ,κ)=Tλ(μ,κ)-Tλ(O,κ*(λ))

We estimate the norm of δTλ(μ, κ). First note that there is a constant c such that
\κ-κ*(λ)\<cλ2 implies | 2m-Reκ |^0( iμ 2 and hence ^ ( κ ) ^ © ^ 1 ) . Thus in
this region we have by Lemma 2.4,

(2.16)

Since T(1)(κ) is an analytic family of operators we have for |κ — κ*(λ)\^bλ2 and
b<\c,

λT{1)(κ')dκ'
= (2π)"1|κ-κ*μ)|

For |κ — κ*(λ)\f^bλ2 and \μ\^aλ we have by Lemma 2.5, 2.6, and 2.7

Thus the overall bound is

\\δTλ{μ,κ)\\Ua + b)Θ{\). (2.17).

Next we estimate ||(ζ— 7̂ (0, κ*(λ)))~x || for C + 0, - 1 . Since Tλ(0,κ*(λ)) is a rank
one operator, the estimate on this norm can be reduced to an estimate on the
norm of a 2x2 matrix. After a short calculation one finds

(2.18)
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Finally, combining (2.16), (2.17), (2.18) we have for | ζ Γ \ |C + 1Γ X <4,

\\δTλ(μ, κ)\\ \\(ζ- Tλ(0, κ*(λ))Γι\\ £(

By choosing a and b sufficiently small this is less than one and so (ζ— Tλ(μ, κ))" 1

exists as a Neumann series. Thus the spectrum of Tλ(μ, κ) is contained in the
complement of Id" 1 , \ζ+ I I " 1 <4. This completes the proof.

By using Lemma 2.8 and analytic perturbation theory [5], we conclude

Corollary 2.9. There exist constants α>0, b>0 such that for λ>0 sufficiently
small and \μ\^a, \κ — κ*(λ)\^bλ2 the spectrum of Tλ(μ,κ) consists of

(a) A simple eigenvalue αλ(μ, κ\ analytic in μ, κ and satisfying |α A (μ,κ)+l |<£.
(b) Other spectrum in {ζ\ |ζ| < i } .

Lemma 2.10. For μ, κ real, ccλ(μ, κ) is real.

Proof For μ, κ real, Tλ(μ, κ) commutes with complex conjugation. Thus both
αλ(μ, κ) and αλ(μ, κ)~ are eigenvalues. This is only consistent with the uniqueness
of aλ if aλ is real.

We now determine the critical value for κ.

Lemma 2.11. Let λ>0 be sufficiently small and μ, κ real For \μ\^2λ2, there exists
a unique κ = κλ(μ) in \κ — κ*(λ)\'^^bλ2 such that ctλ(μ,κλ(μ))= —1.

Proof We start by bounding various derivatives of αλ(μ, κ) by using contour
integrals, with μ,κ in the region |μ|fg2λ2, |κ — κ*(λ)\^jbλ2:

\dμaλ{μ,κ)\=(2πY dμ'

\dμdxuλ(μ,κ)\=(2π)-2

\κ''-κ*(λ)\=bλ2

{μ-μ'f

(2.19)

3 ) . (2.20)

Thus in the same region

and in particular

|αλ(μ,κ*(λ))+l|gβ?μ). (2.21)

On the other hand, by (2.20),

dκaλ(μ, κ)<Ξdκxλ(0, κ) + 2λ2 sup\dμdκccλ{μ\ κ)|

3 ) ^ -c 2 A~ 2 , (2.22)

for λ sufficiently small. We have used αA(0, κ)= — 3Aπ~1r00(κ) and the bound

, c > 0 , (2.23)
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which may be proved starting with (2.6). Thus αA(μ, κ) is a decreasing function
of κ. Furthermore, for λ sufficiently small,

αλ(μ, κ*(A) + 2 - 1 M 2 ) = αA(μ, κ (λ))+ f </κ'3καA(μ, κ')
κ*(λ)

2-ιbc2<-\, (2.24)

by (2.21) and (2.22). Similarly, otλ(μ,κ*(λ)-2~1bλ2)> -1. The existence and
uniqueness follow.

Lemma 2.12. The function κλ(μ) is a real analytic function of μ for \μ\<2λ2 and

Proof The function κλ(μ) solves αA(μ, κλ(μ))= — 1. Since αA(μ, κ) is analytic and
3καA(μ, κ)φθ [by (2.22)], it follows from the implicit function theorem that κλ(α)
is analytic in a neighborhood of any μ and

dμκλ(μ)= {~ dμaλ(μ, κ)/dκccλ(μ, κ)}\κ=κλiμ).

We estimate the dμ derivate by (2.19) and the dκ derivative by (2.22) so that

\dμκλ{μ)\ύ&{λ). (2.25)

The second derivative is

) = {(- %*λ(μ, κ) ~ dμdχ*λ(μ, κ)dμκλ(μ))/dκccλ(μ, κ)

+ dμocλ(μ, κ)(dμdκocλ(μ, κ) + d2

κccλ(μ, κ)dμκλ(μ))/(dκccλ(μ, κ))2}\κ=κΛμ).

Estimating the derivatives by contour integrals (roughly dμ~Θ(λ~ι\ dκ~Θ(λ~2))
gives \d2

μκλ(μ)\^Θ{\). Continuing in this manner gives the general bound.
We now define (the bound state mass)

κB(λ) = κλ(λ2). (2.26)

This is the unique κ in \κ*(λ)-κ\Sτbλ2 such that Tλ(λ2, κ)= Kλ(κ)Roλ(κ) has
eigenvalue — 1 .

Lemma 2.13. We have the expansion

Proof

\κB(λ)-κ*(λ)\ = \κλ(λ2)-κλ(0)\

^λ2 sup \dμκλ(μ)\

^<9(λ3), [by (2.25)]

The result now follows by Lemma 2.3.

Remark. By expanding κλ(μ) up to n-th order we have
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This gives a (variable coefficient) asymptotic series for κB(λ) in which the /c-th
term is Θ(λ2~kλ2k) = Θ(λk+2). We believe that this series can be rearranged to
yield an asymptotic expansion for κB(λ) at λ = Q, and we hope to come back to
the details of this expansion in a further publication.

3. Absence of Poles

In this section we exclude poles of Rλ(κ) away from the pole established in
Section 2 and we prove Theorem 1. The treatment follows closely that of Spencer
and Zirilli [7, §4]. Let roλ(κ)= J" rQλ(κ,p)dp and let R'0(κ,p, q) be the bounded
operator defined for 3λπ~1rOA(κ)4=l and |Reκ|<2m by

R'oλ(*, P> q) = rOλ(*, P)δ(P + <?) + z—τj^zj—ΓT roλ(x, p)roλ(κ9 q). (3.1)

1 — JΛπ roλ[X)

By explicit computation one finds that

RM = Roλ(κ)-Roλ(κ)(-λK^)R'oλ(κ). (3.2)

One can show that R'oλ(κ) extends to Aδ x Λδ and that (3.2) can be written in

x))-1. (3.3)

Note that λK{1)Roλ{κ) has the single non-zero eigenvalue 3Aπ~1r0A(κ). Further
one can show that λ2Kf)(κ)Rf

oλ(κ) extends to an analytic compact operator
valued function in J£(Aδ, Af) and that

Rλ(κ) = R'0λ(κ)(l + λ2Kf\κ)R'0λ(κ))-1, (3.4)

except for a discrete set of κ's. We use this formula to exclude poles near the
threshold at 2m.

Lemma 3.1. For λ sufficiently small R'oλ(κ) has no poles in 2m — λ5/2^κ<2m.

Proof. The only poles come when 3πλ~ 1 r O λ (κ)=l. However by proceeding as in
2the proof of Lemma 2.6 we obtain \roo(κ) — roλ(κ)\^Θ(λ2A(κ)). Since r o

for some constant c 1 > 0 , it follows that roλ(κ)^c2A(κ) for some c 2 > 0 . For
2m—λ5/2^κ<2m, we have zl(κ)^c3A~5/4, c 3 > 0 , and hence for λ small

(3.5)

Thus there is no pole.

Lemma 3.2. For λ sufficiently small Rλ(κ) has no pole in 2m — λ5/2^κ<2m.

Proof By (3.4) and Lemma 3.1 it suffices to prove

\\λ2Kf\κ)R'0λ(κ)\\^Θ(λ) (3.6)

Estimating the norm by the Hilbert-Schmidt norm this will follow from

IJ dpdqKf\x, p' + iδ, p)R'oλ(κ, P, ί)w " ι(q)BJtf - q)\
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This is of the form | j f(p)g(q)Rf

Oλ(κ, p, q)dpdq | where

Inserting (3.1) we have

ί /(p)0(tf)K'oλ(κ> P>

= ί (Mg{p)-f{0)g{0))roλ(x, p)dp

3 ^ i ^ (

^ q)(g(q)-g(O))dpdq

TermXγ. Let h(p) = f{p)g(p). [7] argue that it suffices to bound

The potentially singular part of this integral coming from p = 0 is bounded by

ί roo(κ, p)p\
| p i | < 2 m

fΛ"(0,Plτ)(l-τ)dτ (3.7)

[since ro o(κ, p) is even] which in turn is bounded uniformly in κ and is &(w(q')).
The bound is uniform in λ because Kf\x, p\ p) is analytic and uniformly bounded
in the region (1.3) and so the second partial derivatives are also uniformly
bounded. [The same bounds hold for κ complex with ro o(κ,p) replaced by
ro o(Reκ,p).]

TermX2. Since |/(O)|^0(1) and \g(O)\^Θ(w(q')) it suffices to prove

ι) (3.8)

This follows from (3.5) and the fact that for x ^ 2 , |x(l— x) 1 | ^ 2 . (Remark: a
careful analysis shows that this bound also holds for complex κ away from the
pole.)

Term X3. We use the method of Term X1 for the p integration, the bound of
Term X2 for the leading factor and g(0) = Θ(w(q')) to obtain the bound.

TermX4. We write /(p) = (/(p)-/(0)) + /(0), apply the method of Term Xx for
g(p) — g(0) and a variant of this method for the term coming from (/(p) — /(0)).
For the leading factor we use the bound from Term X 2 The overall bound is
Θ(w(q')). This completes the proof of Equation (3.6) and hence of Lemma 3.2.
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Lemma 3.3. For λ>0 sufficiently small Rλ(κ) has no pole in

or

Proof. As in Section 2 it is sufficient to show that Tλ{κ)= -λT{1)(κ) + λ2Tl2)(κ)
does not have eigenvalue — 1. We know that -λTa)(κ) has spectrum

and hence as in (2.18)

1 —^ 2 max 1,
- 1

1 —
V

By Lemma 2.4 we have for κ ^ 2 m —A5/2,

- 1

μτ<»(κ)|| .

By (2.23) there exists a constant c > 0 such that for \κ — κ*(λ)\^:jbλ2,

3λ

π

Thus in the region of the lemma

On the other hand, by Lemma 2.5, 2.6, 2.7,

The product of the last two norms is Θ(λ1/2)<1 and so —1 is in the resolvent
set of Tλ(κ).

Proof of Theorem 1. By Lemma 2.11 for λ>0 sufficiently small there is exactly
one point κB(λ) in the interval (κ*(/l) — jbλ2, κ*(λ) + ̂ bλ2) where Rλ(κ) has a pole.
By Lemmas 3.2 and 3.3 there are no other points in (m, 2m) which are poles. Thus
any bound state must have mass κB(λ). Since bound states exist, there are bound
states of mass κB(λ). Now consider the representation of the Poincare group on
the subspace of mass κB(λ). As explained in [7, Lemma 5.2], the representation
is at most n times reducible where n is the multiplicity of the eigenvalue — 1 of
Kλ(κB(λ))ROλ(κB(λ)). By Corollary 2.9, n= 1. Hence the representation is irreducible,
and there is exactly one bound state with mass κB(λ). Finally the expansion for
κB(λ) is given in Lemma 2.13.
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Note Added in Proof

In a subsequent paper (to appear in Annals of Physics) we continue the study of two-body bound
states in λP(φ)2 models. The results include a full asymptotic expansion for κB{λ).




