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Abstract. Let Q°(R", G) denote the group of infinitely differentiable maps
from rc-dimensional Euclidean space into a simply connected and connected
Lie group, which have compact support. This paper introduces a class of
factorisable unitary representations of C™(Rn, G) with the property that the
unitary operator Uf corresponding to a function / in C£(Rn, G) depends not
only on /, but also on the derivatives of / up to a certain order. In particular
these representations can not be extended to the group of all continuous
functions from Rn to G with compact support.

§ 1. Introduction

Let G be a simply connected and connected Lie group and let & be its Lie algebra.
Let exp:^->G denote the exponential map. We denote by C™(R, G) the class of
all C00 maps from R into G with compact support. A map φ.R^G is said to have
compact support if takes the value e, i.e., the identity element of G outside a
compact set. Let Q?(R, $) denote the class of all infinitely differentiable maps
from R into the vector space ^ with compact support. For any fe CQ(R, &), we
define Exp/e C?(R, G) by writing (Exp/)(x) = exp/(x), for all xeR. Cf(R,G)
is a group (under pointwise multiplication) and Q^JR, ^) is a Lie algebra (under
pointwise addition, scalar multiplication and Lie brackets). These may respectively
be called as current group and current algebra over R. We give CQ(R, <S) the
usual Schwarz topology. A homomorphism φ^ΊJφ of the group Cf(R, G) into
the group of unitary operators on a Hubert space H is said to be a unitary
representation or simply a representation if UΈxpfn converges weakly to UExpf

whenever / „ - • / as n->oo in the topology of CQ(R,^).

For any compact set Kc R, let C(K, G) C C${R, G) be the subgroup of all those
maps with support contained in K. If X 1 ? K2 are two disjoint compact subsets
of R, C(K1uK2,G) can be identified in a natural manner with the cartesian
product C(X1? G) x C(K2, G). Indeed, for any φe QK^^ G), define

φi(x) = φ(x) if xeKt

= e if xφKi9 i = l , 2 .
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Then (p = (Pi(p2> The map φ-*(φi,φ 2 ) gives the required identification. For any
representation U of C™(R, G), we define the representation Uκ of the subgroup
QK, G) by

We say that a representation U of Cf(R9 G) is factorisable if, for any two disjoint
compact sets Kl9K2CR, the representation UKί^Kl is unitarily equivalent to the
tensor product UKl (x) UKl. This unitary equivalence will of course depend on
K1 and K2. Examples of such factorisable representations based on the unitary
representations of G and their first cohomologies were first constructed by
Streater [6] and Araki [1]. Further development of these ideas may be found in
the works of Parthasarathy and Schmidt [4, 3], Vershik, Gelfand and Graev [7],
and Guichardet [2]. However, most of these examples have the degenerate prop-
erty that they factorise completely. These representations extend to borel maps
from R into G and the factorisability property extends to pairs of disjoint borel
sets. This is mainly because the representations constructed in these papers do
not involve the derivatives of smooth maps in a certain sense. One may compare
this with the following situation in the classical theory of distributions. To evaluate
the Dirac δ at a testing function φ one need not know the derivations of φ. However
to evaluate the distributions δ', δ'\ ... one requires a knowledge of φ\ φ",.... The
main aim of this paper is to construct factorisable representations U which for
their evaluation at Exp/,/eQ?(jR, 0) requires a knowledge of / , / ' , / " , . . . .
A beginning in this direction was already made by Schmidt [5] in the case when
G is the Heisenberg group, whose representations lead to canonical commutation
relations.

§ 2. The Leibnitz Extension of a Lie Algebra

In order to outline the method of constructing factorisable representations we
need to construct an extension of the Lie algebra ^ . To this end consider the
space (3n which is the n + 1-fold Cartesian product of (S. Any element X of ^n can
be written as

X = (X09X1,...,XάXie& foreachi.

Between two elements X and X' in <gn define the bracket operation by

where

^M) ~ L^0> X0 J •>

An easy computation shows that for X,

[[X,Y]Z] = Γ
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where

7> Σ

This shows that

[[X, F], Z] + [[F, Z] , X] + [[Z, X], F] - 0 .

In other words ^ n becomes a Lie algebra. We shall call <&n the rcth Leibnitz extension
of the Lie algebra <§. The mapping X->(X,0,0, ...,0) is an isomorphism of ^
into 0Π. All elements of the form (0, X 1 ? X2, ..., XJ, -X\e0, i = 1, 2...n constitute
a nilpotent Lie subalgebra ^("} of ^ n . Further

l(X,0909...,0),(0,X1,X2,...,XJ]

=(α[x5x1],[x,x2]?...?[x,xj).
Thus ^ acts as a Lie algebra of derivations of the nilpotent Lie algebra Λ{n\ In
other words <Sn is a semi-direct sum of ̂  and ̂ f("}.

Remark 2.1. Since any Lie algebra ^ can be represented as a Lie algebra of matrices,
we shall assume that ^ is a Lie algebra of real matrices in all our computations
hereafter. Let the order of the matrices in 9 be k x L

Lemma 2.2. The map

A:(0,X1,X2,...,Xn)^A(X1,X2,...,Xn),Xie%,i = l,2...n

where

/0 XJV. X 2/2! . . . XJn\

0 0 XJW X2/2! . . . Xn_Jn-\\

A(X19X2,...,XJ= 0 0 0 XJV. ... Xn-2/n-2\

\0 0 0 0

is an isomorphism of the Lie algebra Λ{n) into the Lie algebra of all matrices of order

Proof. This follows from a routine computation and is left to the reader.

Lemma 2.3. Let A be the map defined in the preceding lemma. Then the matrix
Γl5 X2,..., Xn) is of the form

I A, A2 An

0 / A1 A2 ... An_1

0 0 I A, ... An_2

0 0 0 0



170 K. R. Parthasarathy and K. Schmidt

where

Aj= £ i/p! X mίr
1xmιm2r

ίxm2...mpr
ίxmp.

p=ί mι+... +nιp=j

Proof. It is left to the reader.

Remark 2.4. Let H be the group generated (algebraically) by all matrices of the
form QxpA(XvX2, ...,Xn\ X^e^, i=l,2...n. Its Lie algebra is isomorphic with
i{n). Let G be the simply connected group for which the Lie algebra is ̂ . Then
for any Xoe^, the element expX0 of G acts as an automorphism of H as follows:

expX0:QxpA(Xu X2,..., Xn)
dX°(X1)9 eΆάX°{X2\ ..., e*dX°(Xn)).

Hence we can form the semi-direct product GQH of the two groups G and H.
GQH consists of all pairs (g,h\ geG, heH. The multiplication operation is
defined by

where h-+g(hf) is the automorphism of if induced by g. The Lie algebra of the
group G OH is then isomorphic to the Lie algebra <&n. In particular ^ is the
Lie algebra of the semidirect product of G and the additive group <&, where G
acts as the adjoint representation in (3.

Lemma 2.4. For any X = (Xθ9Xv . . . 5 I B ) e ? B , the exponential map from C3n into
G QH is defined as follows: let

AM= Σ Σ ί
ρ=ί mi + ... + mp=j 0<ίi <t2< . . . <tp<t \k=ί

1 ^τnι^ j

for 7=1,2. . .w. Lei

^ i A ^ ί ) ^ 2 ( ί ) . . . 4 n ( ί ) N

0 I A^t) ...A^iit)

A(t)= 0 0 I ...An_2{t)

0 0 0 I

Then

QxptX = (QxptX0,A(ή) for all teR.

Proof. Indeed, differentiating (2.2) at ί = 0, we get
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171

dA(t)/dt\t = 0=\

'0 XJV. ... XJn\ N

0 0 XJV. ... Xn_J(n-l)\

\0 0 0 0

Further

(exp tX0, A(ή) - (exp sX0, A(s))

= (exp (ί + s)Xθ9 A{t) exp tX0{A{s)),

where

h Bi ••• Bn

.0 I B1 . . . £ „ _ ,
eκptX0(A(s))=\

0

\0 0 0 ... /

and

Bj = Bj(t,s) = etX°Aj(s)e-tχo

Σ V Γ FT Λtk + t)Ά

L J 1 1 β

p = l mi + . . . + m p =i 0 < ί i < ί 2 < ... < ί P <s k=l
mt ^ 1 for all i

J P

= Σ Σ ί Π etk°d

p=l mi + ... + mp=j 0<ti<t2< ... <tp<t + s k=l
mι ^ 1 for all i

A straightforward matrix multiplication shows that

l i c e c

0 / d ... CM_

\o o o ... //
where

(2.3)

and where y4r and 5 r is defined by (2.2) and (2.3) respectively. Now an easy computa-
tion gives Cj = Aj(t + s). This shows that (exp tXθ9 A(t)) is a one parameter group
with the generator (Xθ9Xl9X29 ...,Xn). The proof is complete.
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Corollary 2.5. When n = l and G QH is identified with the semidίrect product of G
and the additive group &, where G acts as adjoint representation in &, we have

forallteR.

Proof. This follows from the preceding lemma by noting that

§ 3. Representation of Current Algebras and Current Groups

In the preceding section we gave a complete description of the group associated
with the n-th Leibnitz extension (Sn of a Lie algebra ^. The following lemma
yields the required embedding of CQ(R, <&) into CQ(R, ^ J for writing down our
representations.

Lemma 3.1. Let Πn be the map from C%(R9 &) into C%(R, &„) defined by

Πn(f)(x) = (/(x), f'(x), A x ) , . ,f{n)(x))

for allxeR,feC${R,&).
Then Πn is a Lie algebra isomorphism of C$(R, <S) into C$(R, &„).

Proof. This follows immediately from the fact that

dJlf,gl/dχJ= Σ ΰ)[/ ( Γ )M^ϋ"" r )W]
r = 0

and the commutation rules in <3n are defined by (2.1).

As mentioned in § 1, we define for any / G C J ( K , ^ ) , Exp/ as the element in
C?{R, G) with the property

(Exp/)(x) = exp/(x), x e R.

Consider the group G OH described in Remark 2.4. We shall call it the n-th
Leibnitz extension of the group G. For any fe CQ(R, @), we define ExpM/ as the
element in C?(R, G QH) with the property

where

// A{(x) A{{x) ... A{{x)

0 / A{{x) ...Aζ.^x)
AJ(x)=\

\θ 0 0 ... /
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= Σ Σ ί Π etk*dfix)

p=ί mι + ... + mp=j 0 < t ι < t 2 < . . . < t p < l k= 1

mi ^ 1 for all ί

mkΓ
ιfm^(x)dt1dt2...dtp, (3.1)

for j= 1, 2...n. With this notation we have the following corollary to Lemma 3.1.

Theorem 3.2. Let G be a connected and simply connected Lie group whose n-th
Leibnitz extension is Gn. Suppose φ->Uφ is a factorisable representation of the
current group Cf(R, Gn). Then the map

determines a factorisable representation of the current group C™(R, G). In particular
this determines a factorisable representation of the current algebra CQ(R,$).

Remark 3.3. To construct a factorisable representation U of the current group
Q°(JR, Gn) one may start with a projection valued measure on the Borel subsets
of R, a unitary represention V of the group Gn commuting with the projection
valued measure and a first order cocycle for the representation F, and adopt the
procedure outlined in [4]. Since G is a subgroup of Gn it follows that Q°(R, G)
is a subgroup of Cf{R, Gn). Hence the restriction of U to C?(R, G) yields a re-
presentation U{0) of C?(R, G). The representation U{n) of Theorem 3.1 obtained
from U may be considered as the n-th derivative of the representation U(0).

Example 3.4. We shall now illustrate the procedure outlined in the preceding
remark in a special case. Let G be a compact, connected, simply connected and
semi-simple Lie group with Lie algebra ^ and Cartan Killing form B(X, Y\
X, Ye^. Let g-+Adg be the adjoint representation of G acting in ̂ . Let G t denote
the first Leibnitz extension of G. Then Gx is the semi direct product of G and the
additive group ^ in which G acts as a group of automorphisms through the
adjoint representation. Any element of G1 can be expressed as a pair (g, X), geG,
Xe&. Then (g,X)-+Adg is an irreducible unitary representation U of G1 acting
in the vector space ^ with the positive definite inner product — B. Define the map

Then δ is a first order cocycle for the representation U. Hence the function

is an infinitely divisible positive definite function on the group Gv

Let now φ: R-+& be a C% map from R into ^. Then the map t->(φ(t), φ!(f)) is a
CQ map from R into ^ the Lie algebra of G^ Let

aάφ{t) _

and let

) = exp! f B(ψ(t), ψ(t))dt. (3.2)
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Then K is an infinitely divisible positive definite functional on C™(R, G) which
extends to Cl(R, G), the group of all C1 maps from JR into G with compact support.
This positive definite functional defines a factorisable representation of Cl(R, G)
which cannot be extended to all bounded borel maps from R into G with compact
support.

Since the factorisable representation corresponding to (3.2) is in a sense a
continuous tensor product of copies of the irreducible adjoint representation of G
one is tempted to conjecture that (3.2) yields an irreducible factorisable representa-
tion of Cl(R, G).

Remark 3.5. The theory outlined above extends in a natural manner when R is
replaced by Rm and one considers current groups Q°(Km, G). To describe this
extension we adopt the following conventions. Let, for any positive integer N,
FN denote the set of all ordered πι-tuplesj=(jί,j2> --JJ of non-negative integers
such that j1+j2 + ...+jm<N. For any jeFN, let j\=jί \j2\.. j m \ , where 0! = l.
A general point of Rm will be denoted by x = (x1, x2,..., xm) Let J/| =j1 +j2 + . . . +jm.
For any C00 map / from Rm into the Lie algebra ^, let

We now define the N-ίh Leibnitz extension $N of ̂  as the set of all maps X from
FN into ^ with Lie bracket [X, Y] defined by

[X, F]ί/) = Σί/!/r\{j-r)\[X(r)9 Y(j-f)]

where the summation is over all O^r^j. H e r e j ^ j means that r^ji for all i =
1,2, ...,m. Then $N is a Lie algebra. As before 0 may be embedded in ̂  by
mapping any I e ^ to the element X with X(0) = X, X(ι) = 0 forj + O. Let us say that
i <j ifj Φj butj ^ j . As before all elements X such that X(0) = 0 constitute a nilpotent
Lie subalgebra i{N) of &N. %N is a semidirect sum of ̂  and 4{N). For Xeά(N\ we
define the matrix A(X) whose (ij) t h element is X(i+j) i f j>j and 0 otherwise. The
order of the matrix is ck x ck where c is the cardinality of FN and /c is the order of
the matrices which constitute the Lie algebra ^ . Lemma 2.3 now holds with the
convention

\J\
ΛJ= Σ Prl Σ mir

1X{m1)...mpr
1X(mp).

p = l mi + . . .+m p =j

Lemma 2.4 holds with the condition

\j\

t) = Σ Σ
p = l mi + ...+mp=j

f Λ giiadX(O)

0 < ί i < ί 2 <ίj, < ί ί = 1

-(mιr
1X(mi))dt1...dtp.
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Then Theorem 3.2 holds with the condition that in defining the map /->Expπ/
we change (3.1) to

lil

4 - Σ Σ ί
p=l mι + ...+mp=j 0<tί<t2... <tp<l

f l etiΆdf{x\mi!"
ιf{m\x))dt1 ...dtp.

ί = l
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