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Abstract. Araki and Wyss considered in 1964 a map 4—Q(A) of one-particle
trace-class observables on a complex Hilbert-space J# into the fermion
C*-algebra A(#) over . In particular they considered this mapping in a
quasi-free representation.

We extend the map A—Q(A) in a quasi-free representation labelled by
T, 0L TZI, to all AeB(s),, such that tr(TA(1 —T)A)<o» with Q(A) now
affiliated with the algebra. This generalizes some well-known results of Cook
on the Fock-representation T'=0.

1. Introduction

Let A(#) denote the fermion C*-algebra over a complex Hilbert space 57, i.e.
there exists a conjugate linear mapping f+a(f) of # into U(A#), whose range
generates A(#°) asa C*-algebra such that a( f)a(g)* +a(g)*a(f)=<f, g>L, a(f)alg)+
alg)a(f)=0 for all f; ge# and where <-, -> denotes the inner product on .
A gauge-invariant quasi-free state w; of (s#) is uniquely defined by the
n-point  functions  wa(f,)*...a(fi)*a(g,)...a(g,))=96,,det({g;, Tf;») where
TeB(s)and 0< T <I. Denote by 57, nr and Q the Hilbert-space, the representa-
tion, and the cyclic unit-vector associated with w; via the GNS-construction,
i.e. w(X)=(Qp n{X)Qq), xe W(H).
Let A be a self-adjoint (s.a.) finite-rank operator on J#, ie. there exists an
N
orthonormal set {u,}n—, in # and o,eR such that Af= Y ou,u, f> for

n=1

fes. Araki and Wyss [1] considered the following map Q of finite-rank s.a.
N
operators on # into W(H),,, A-~Q(A)= Y o,a(u,)*a(u,), which has the following

properties: n=1
Q(4)+0(B)=0(4+B), (1.1)
[O(A), a(f)*]=a(Af)*, (1.2)

i[Q(A), Q(B)]1=Q([4, B]) . (1.3)
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They showed in particular that the map A—Q(A4) extends to all s.a. trace-class
operators on S and by complexification to all trace-class operators on J# (see
also Araki [2]).

Let us now consider 7 (s#)) and put

Qr(A)=7n1(Q(A) —0(Q(4)), (1.4)

where A is a s.a. finite rank operator, i.e. (2, Q{(A4)Q;)=0. One easily verifies
that w(Q(A4))=tr(TA). For convenience we put n {a(f))=af). Equations
(1.1)~1.3) now imply

01(A)+01(B)=0Q(A+B), (1.5)
[Q1(A4), ar(f)*]=ar(Af)*, (1.6)
i[Q1(A4), Q(B)]=0Q(i[4, B]) —2Im tr(TAB)1 . (L.7)
A simple calculation gives

(Q7, Q(A)Q1(B)Q2r)= tr(TA(1—T)B), (1.8)

which suggests an alternative form of (1.7)
i[Q1(A4), Q1(B)]=Q+(i[4, B]) —2Im tr(TA(L - T)B)1, (1.9)

(observe that tr(TATB) is real). Let us put Wi(4)=e27™@; then Wy(sA), seR,
is a unitary one-parameter group on J#. Equations (1.6) and (1.9) now imply that

a(e f)=WylsA)ay(f)Wrs4)™*, (1.10)
WA AW BYW(A)~ ! = Wy(e4Be ™ 4)eitr(4.) (1.11)
by(tA, By= —2Im [, tr(TA(I — T)e'*Be ™ “4)ds . (1.12)

Here we have used the fact that 7 (2((#))” is a factor (see Powers and Stermer
[3]) to conclude that b4(A, B) is a real number. The one-parameter group property
of Wy(tA) implies that b{((t; +1t,)A, B)=b(t; A, B)+by(t,, e"*“Be~"'4), which is
the cocycle equation. Equation (1.11) gives Wi{tA)QB)W(tA) '=
Qr(e™Be™ ")+ b(tA, B)ie.(1.9) implies (d/dt)b(tA, B)= —2Im tr(T A(I — T)B)+
b4(tA, i[A, B]) with the initial condition b,(0, B)=0. The solution is given by
(L.12).

In this paper we show that the mapping A — W;{(sA) can be extended to O (#)=
{AeB(A#),,; tr(TA(1— T)A)< 0} and such that Wi(sA) is a strongly continuous
unitary one-parameter group on #; fulfilling (1.10) and (1.11). Stones theorem
then ensures the existence of a s.a. operator Q{A4) such that W{(sA4)= "7,

We furthermore construct a domain &, in #7 such that Q{A)2 CZ, for
all Ae O () and the restriction of Q{4) to P is essentially s.a. Formulas (1.5),
(1.6), and (1.9) hold on 9 and (1.8) hold for all A, Be O ().

We shall also briefly discuss the *-algebras generated by the complexified
operators Q (A).

In a second paper we apply these results to quantum field theory. In particular
we show how the Luttinger, Thirring and Schwinger models fit into this frame-
work.
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2. Quasi-free Representations in Terms of the Fock-Representation

For later convenience we review some well-known properties of quasi-free states
and representations (see for example [2]).

Let y, denote the gauge-automorphism group of A(#’) whose action on a(f)
is given by y/(a(f))=a(e"f). The quasi-free state w, (TeB(#),, 0<TLI) is
gauge-invariant, i.e. invariant under the transposed action of y,.

Definition 2.1. Let U {t) denote the unitary group on . implementing the gauge-
automorphism 7y, of 7 (WA(#’)) and leaving Q, invariant, i.e.

(3 ()= U0 () U ()1, Un()Q;=Q;. 2.1)

In the case when T is a projection T=P, then wp is a pure state and 7p is
irreducible. A state w of () can always be expressed as a restriction of a pure
state wp,. of W(H @) with Py given by

T T-Ty
= (T%(I— TV I-T ) (2.2
and
oal(f,)*...alg,) = wp.(a(f,®0)*...a(g,,D0)) . (2.3)

Remark 2.2. One can identify #, n(A(A)) and Q; with a subspace of #5,,
np (W ®O0)) and Qp, respectively. The commutant 7{(2(#)) is then identified
with a part of Up_(m)np (A(0ODH))".

Definition 2.3. Let % (o) denote the anti-symmetric Fock-space over J, i.e.

F(H)= @ K with Hg=C, #{=, and H# is the antisymmetric part of

®"#. The Fock-vacuum Q= E}—) Q, is given by Qu=1, Q,=0 for n=1. Let

furthermore ay(f) denote the Fock -representation in & () of a(f)eW(H) i.
al(f)R=0,Yfex.

The quasi-free state w, is usually called the Fock-state and one can identify
Ho, Tola(f)) and Q, with F(H#), ao(f) and Q respectively.

Definition 2.4. Let P be an orthogonal projection operator on # and J a conjuga-
tion commuting with P, i.e. J?=1, <Jf,Jg>=<g, f> for f.ges# and [J, P]=0.
Let us then define

ap(f)=ao(I=P)f)+ao(JPS)*, [feA . 24

It is easy verified that ap(f) gives a representation of a(f)e () in Fock-
space Z(#’) and one can identify 5, np(a(f)) and Qp with F (), ap(f) and Q
respectively.

3. On Innerness of One-Particle *-Automorphisms in 7 {(A(#))"

In the introduction we considered the map A— Wy{(sA) of s.a. finite-rank operators
on J into strongly continuous one parameter groups in 7w (A(s#)) fulfilling (1.10)
and (1.11).
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Definition 3.1. Let TeB()),, such that 0T <I and put O (#)={AeB(¥),,;
tr(TA(1—T)A)< o} OHs#) is a real linear vector space. We shall call O (#)
the vector space of one-particle observables.

Remark 3.2. If A, Be O(#) then i[ A4, Ble O ((#) and e“*Be™ 4 O ().

Theorem 1. There exists a map A—Wy(s4) of O{H) into n (W)Y such that
Wi(sA) is a strongly continuous unitary one-parameter group, fulfilling (we put

ag(f)=mna(f))

ag(€* f)=Wy(sA)ar(f)Wi(sA)™', Vfex . (3.1)
QreD((d/ds)Wi(sA)s= o), and Wi(sA) are uniquely determined if we require that

(Qr, (d/ds)Wi(sA)s=oQ27)=0. (32
For A, Be O () the following identity holds

WH AW BYW(A)~! = Wi(e'Be™ 4)elbr4-B) (3.3)

br(tA, By= —21Im f, tr(TA(I — T)e*Be ™ “4)ds . (3.4

The proof of this theorem will be divided into several lemmas. We will first
prove it when T is a projection P and then reduce the general case to this by a
method indicated in the previous section.

Let P denote an orthogonal projection on 5# and decompose AeOp(#) as
follows

A=A4y+A,, Ag=(1—-P)A1—P)+PAP, A;=PA(1—-P)+(1-P)AP,
ie. [P, Aq]=0and 4, is Hilbert-Schmidt (H.S.).

Lemma 3.3. Let U(s)=e " 4¢"4 The following representation of U(s) holds:
Us)= ). R,(5), (3.5)
n=0

with Ro(s)=1, R(8)=i [§ A1(s)R,-1(s)ds’, n=1,2,..., A\(s)=e 44 e and the
convergence is with respect to H.S. norm and is uniform in s for compact subsets
of R.

Proof. Differentiation and integration of U(s) gives
U(s)=1+1i [y A,(sU(s)ds' . (3.6)
Iteration of (3.6) in N steps gives Uy(s)= i R,(s). The H.S. convergence in the
limit follows from the following estimates e
IRy(5)l2 = [ 4y llalsls 1R2(8) 12 = 144l f3 IRy ()]l 2ds" < ][4, ]13/2!
Isl? IR () S (1AL 5 /nlsl", (3.7
where || ||, denotes the H.S. norm [

Remark 3.4. Tt follows that Pe4(1—P) is H.S. VseRR, ie. Pe4(1—P)=e'4o
PU(s)(1 — P) which obviously is H.S.
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As mentioned in the previous section one can identify #p, mp(a(f)) and Qp
with (), ap(f) and Q respectively. We shall do this in the following. Equation
(3.1) then takes the form

ap(e™ f)=W(sA)ap(f)Wp(sA) " . (3.8)
The defining equation for ap(f), (2.4) implies that (3.8) is equivalent to
ao(L(s) f)+ao(M(s) f* = Wa(s Aao( /) We(sA) !, (3.9

where L(s) is complex linear, M(s) is complex anti-linear and they are explicitly
given by L(s)=L,(s)+ L,(s), M(s)=M,(s)+ M,(s) with

Li(s)=(1—P)e4(1—P), L,(s)=PJe**JP, (3.10)
M (s)=JPe*4(1—P), M,(s)=(1— P)e"4JP (3.11)

We note if there exists a unitary operator Wy(s4) in & (5#) such that (3.9)
holds then

[ao(L(s)f) +ao(M(s) f)*IWp(sA)2=0 (3.12)

forall fe.

Theorem 1 will be proved by actually first constructing y,= Wp(sA)Q explicitly.
This method of proof goes back to Friedrichs [4] (see also Shale and Stinespring [5]
and Araki [2]).

Lemma 3.5. There is an y,e F(#') such that for small s
Lao(L(s) /) + ao(M(s) [)*1xs=0, VSfeA . (3.13)

Proof. We first construct a vector y, such that (3.13) holds for all fe(1 — P)#, and
then we show that this vector solves (3.13) for all fes#. For fe(1—P)# (3.13)
takes the form

Lao(L1(5)f) +ao(M () f)*1x%=0, Vfe(l-P)# . (3.14)

The operator L,(s):(1 — P)s# —(1 — P)s# is easily seen to have a bounded inverse
(at least for small s). This means that (3.14) is equivalent to

[ao(@)+ao(My(9)Ly(s)"'9/*1x,=0, Vge(l—P)# . (3.15)

M (s) is H.S. by Remark 3.4; hence K(s)=M (s)L,(s)" ! also is H.S. and therefore
has a spectral representation

K= ¥ 406K, 400, 616

where Y A(s)’<oo and {v,(9)}%y. {u(s)}, are orthonormal sets in P#,

n=1

(1—P)o# respectively. Let us define Y e Z(#) by

N
X;v — n e~ An(s)ao(un(s)y*ao(vn(s)* () (3_17)
n=1
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One easily verifies that (3.15) holds with y,=yY for all gespan{u(s)}’-,. A
simple calculation gives

Ny N2
I =21 =TT 1+ 2,07~ [T L+ 257, (3.18)
n=1 n=1

which shows that s;lim 1Y exists in F (). Let us then define

A= (s) l—[ e~ An(s)ao(un(s)*ao(va(s)* ) , (3'19)
n=1
c(s)=e [T 1+4())7%, o€R, (3.20)
n=1

then y, is a normalized vector fulfilling (3.15) for all gespan {u,(s)}2 ;. If (1 — P)#>
gL span {u,(s)}- it easily follows that (3.15) holds and (3.14) also holds. If one
makes an analogous construction for '€ P# one just has to make the replacement
Li(s)>Ly(s), My(s)>M,(s). A formula similar to (3.19) is then obtained. To
compare the two formulas we anti-commute the creation operators in one of the
formulas. The two vectors are now seen to coincide (up to a phase) because

M ()L y(s)™ " = —(M(s)Ly(s)~1)*,
which follows from (3.10) and (3.11).

Lemma 3.6. There exists a strongly continuous unitary one-parameter group V(s),
unique up to a phase €', pelR such that ap(e“*f)=V(s)ap(f)V(s)™', VfeH.

Proof. Let a; denote the one-parameter *-automorphism group of A(#) whose
action on a(f) is given by ay(s(f))=a(e**f) and let us define an operator V(s) on
(WA ))Q by

V(mp(x)Q=mp(0(X))ys,  xeWH). (3.21)

It is easily verified that V(s) defines an isometry by using that ap(e®f)y,=0,
YV fe(l—P)# and ap(e®g)*y,=0, Yge P#, which follows from Lemma 3.5.
The irreducibility of the representation implies that the range of V(s) is dense in
F(A), i.e. V(s) extends to a unitary operator on F (). Equation (3.21) implies
that ap(e™1f)=V(s(ap(f)V(s)~’. The irreducibility implies that V(s) is unique up
to a phase, which is just the phase in formula (3.20). It follows from a theorem by
Kadison [6] that this phase can be chosen such that V(s) becomes a strongly
continuous one-parameter group of unitaries and we are then left with a phase
e'’s, pelR.

We shall from now on assume that ¢'“s in (3.20) is chosen such that Lemma 3.6
holds.

Lemma 3.7. The phase ¢, is analytic in a neighbourhood of zero and Qe 2((d/
ds)V(s)s=o) and provided ¢,=0 (3.2) holds with Wp(sA)=V(s).

Proof. We first note that ¢(s) in (3.20) can be extended to an analytic function in a
neighbourhood of zero, i.e. consider

(W, V(s)Q)=c(s) (% n o~ In(s)ao(un(s))*ao(vn(s))* Q) , (322)

n=1

where y is an analytic vector of the generator of V(s).
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But

o0
Z e~ ln(S)ao(un(S))*ao(vn(S))*Q
n=1

= ¢~ Fn(S)aoun(s) ao(vn($)* () = o~ H () () — 2(— f(s))kQ/k!

and A (s)*Qe #?*CF(H) is just the appropriately antisymmetrized tensor
product of k copies of K(s).

The fact that K(s) has an analytical extension in a neighbourhood of zero
then shows that ¢(s) is analytic, which implies the first statement in the lemma.
Let us now compute (d/ds)V(s)Q2|,=, explicitly and verify that it is a vector in
F (). We have

(d/ds)K(s)|;=o=K=JPiA(1—P), (3.23)
which is H.S. and therefore has a spectral representation
Kg= Y Avlgty, 24,=0 (3.24)

n=1
with A2 < oo and {v,}2- 1, {u, }:> ; are orthogonal sets in P#, (1 — P)# respective-
ly. Equation (3.19) then gives
(d/ds)V()Qs=0=106Q~ Y. Auao(tt,)*ao(v,)*Q, (3.25)
n=1
which clearly is a vector in #(#) and by choosing ¢, =0 we find that (Q, (d/
ds)V(s)Q)s==0.

Lemma 3.8. Let us define a mapping A—Qp(A) of Op(H#) into s.a. operators on
F(H) by Wp(sA)=e"2" D Then for A, AyeO0p(H) we have Qp(A,)Qe D(Qp(A,))
and

(Q, 0p(A)Qp(A,)Q)=1tr(TA,(1-T)A4,). (3.26)
Proof. We note that (3.25) implies that

10p(A,)Q= —Z5,ap(3,)*ap(J2,)Q2 . (3.27)
If we apply Wp(sA4,) to (3.27) we get

iWp(sA)Qp(A2)Q= — Z2y,ap(e uy,)*ap(e™ Jv,,) WilsA4,)Q . (3.28)

The s-derivative at s=0 is easily seen to exist in Z(#). In fact we get
—Qp(A4)Qp(A2)Q= — X 5,ap(iA uz,)*ao(v2,)* Q2 — Z5,a0(tt2,)*
ap(iA1J02) Q2+ Z 271y Ao 1) AoV m)*ao(Us,) *ao(v2,)* 2 . (3.29)
Equation (3.30) finally gives
(2, Qp(A)Qp(A) Q)= 225, {Jid sy, V3,) =1 m

=tr(PA,(1-P)A4,). (3.30)
Lemma 3.9. If A, BeOp() then
Wit A)Wp(sB)Wp(tA) ™1 = Wp(e"sBe ™ 4)e(!4:5B) (3.31)

where bp(tA, sB)= —21Im [, tr(TA(I — T)e'*"sBe™*")dr .
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Proof. Equation (3.31) follows directly from (3.1) and the irreducibility of mp. By
taking the vacuum expectation value of (3.31) and differentiating with respect to
t and s at t=5=0 we get

(d/d)bp(tA, B),— =i(Q, [Op(A), 0p(B)]Q)= —2Im tr(TA(I - T)B). (3.32)

The cocycle equation can now be solved as in the introduction.

We have thus completed the proof of Theorem 1 when T is an orthogonal
projection. In order to prove the general caseof a T:0< T'<I we recall Remark 2.2
which says that one can identify s with a subspace of Z (# @ H#), n (W) with
Tp (A(A D O0)) and n(A(H#)) with a part of Up, (m)7p, (A(ODH))".

Let us now identify Ae0(#) with AQOeO0p (# D). One easily verifies
that

tr(PHA®O)Y1 — P B®O))= tr(TA(L—T)B). (3.33)

Let o, denote the one-parameter *-automorphism group of W(H D)
whose action on a(f@g) is given by afa(f Dg))=a(e™*f Dg), ie. WODH) is
left invariant. We have thus reduced the general case to the case of a projection
and now we identify Wi(A) with W, (A@O). Finally Wi{(A) belongs to  (W(H))"
because the automorphism « leaves n(2()) invariant in our identifications.
The uniqueness follows from the factor nature which was proved by Powers and
Stermer [3] and which also is obvious in the explicit representation in Fock-
space given above. This completes the proof of Theorem 1.

4. Some Properties of the Quantization Map A —>Q(A)

Let AcO4(#) and consider the map A— W;(sA4) described in Theorem 1. The
generator of the strongly continuous unitary one-parameter group {Wy(s4)}sr
is denoted by Q(A); ie., Wy(sA)=e"2rA,

By o (#) we denote the *-algebra generated by a(f), fe#, and put 29=
i (Wo(A)Q2q. Tt is clear that D% = A,

Lemma 4.1. 29.C2(Q{A)) for all Ae O (). Furthermore Q (A, _,)...0(A,)P%C
D(QHA,) for all Ay,...,A,c0H{H), n=2,3,....

Proof. Lemma 3.7 and Lemma 3.8 proves that Qe 2(Q,(A4)) and that Q{(4,)Qr€
2(Q(A4,)) if we make the identification of Wi(sA) with W, (sA®0). A direct
generalization of this shows that Q (A, _,)...Q{A4,)2;C2(Q(4,)). The extension
of this to the whole of 22 follows easily by remembering equation (3.1) and the
boundedness of A4,...,4,.

Definition 4.2. Let 9 denote the domain in ;. obtained by acting with monomials

[T 0+4).4,....,4,€0(H#) on D9 n=1,2,..., 1. Q{A)D 1 C D for all AcO{H).
i=1
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Theorem 2. The map A—Q(A) of O () into self-adjoint operators affiliated with
n(U(H))" has the following properties: The restriction of Q{(A) to D is essentially
self-adjoint, and

Qr{A)+Qr(B)=0Q(4+B), (4.1)
[Q4(A), ar(f)*]=ar(Af)*, “.2)
i[Q+(A4), Q+(B)]=Q1(i[4, B]) - 2Im tr(TA(1 - T)B)1 . (4.3)

The last term in (4.3) will be referred to as the Schwinger term. These relations
are generalizations of (1.5), (1.6) and (1.9).

Proof. Let pesty, wePr and consider (@, Wi(sA)y). By doing computations
similar to the ones in the proof of Lemma 3.8 one can verify that (¢, Wi(sA4)w)
has an analytical extension around s=0. Thus v is an analytical vector for Q(A),
i.e. Z1is a dense set of analytic vectors and the restriction of Q (A4) to & is ess. s.a.
by Nelson’s theorem. The verification of (4.1) is done by first verifying it on Q,
which is a consequence of (3.27), (3.24) and (3.23). In order to verify it on an
arbitrary vector in &, we first note that (4.2) follows from (3.1) by differentiation
at t=0. That (4.1) holds on 9, then follows from (4.2). Finally (4.3) follows by
letting A—tA, B—sA in (3.3) and differentiate with respect to ¢ and s on 2, at
t=5=0.

Definition 4.3. Let us for A, Be O ((#)+i0 (), define

(A, B)r=1tr(TA*(1-T)B), (4.4)

V(A By=<A, Byr—<A, By, _r. (4.5)

For A, Be0.(s) we easily verify that

—2Im tr(TA(1 — T)B)=iy (4, B) (4.6)

i.e. if we complexify the map A—Q(A) by defining

0/{(A)=04ReA)+iQ(ImA) on D, 4.7
we find that (4.3) generalizes to

[Q+(A)*, Q1(B)]=Q[A* B])+7.(4, B)-1, (4.8)
on 2 for all A, BeO (#)+i0 (), and we furthermore have

Q(A)*>Q(4%). (4.9)

We note that y (4%, B¥)= —y4(B, A).

Remark 4.4. Consider complex subspace ¥~ of O ((#)+i0 () with the property
that all operators in 7~ are commuting and ¥~ is invariant under adjoint operation,
then (4.8) gives on 9

[Q:1(4)*, Q1(B)]=7+(4, B)1, (4.10)

for all A, Be#". These are just the commutation relations of the self-dual CCR
algebra considered by Araki and Shiraishi [7], and Araki [8].

Remark 4.5. Araki [9] has discussed factorizable representations of commutation
relations similar to (4.3).
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Conclusions

We have considered the fermion C*-algebra () over # together with certain
one-parameter groups of *-automorphisms of A(#’). Let 4 be a self-adjoint (s.a.)
operator on J#. There exists a unique strongly continuous one-parameter *-auto-
morphism group o, of () with the property that aya(f))=a(e**f) fe#.

Let oy be the gauge-invariant quasi-free state of () associated with T,
0<TZI and let #4, ny, and Q be the Hilbert-space the representation and the
cyclic vector associated with the GNS construction.

Let furthermore O(5#) denote the real vectorspace consisting of bounded
s.a. operators A on # with tr(TA(1 —T)A) < co.

For AeO4(#) the automorphism o of A(H#) extends to an inner auto-
morphism of n(W(H#))". Let Wy(sA) denote the implementing strongly continuous
group. Wy(sA) is unique up to a phase e'¥=. Let Q(4) denote the s.a. generator i.c.
Wi(sA)=e"27 Tt is shown that Qe 2(Q(A4)) and the phase is then chosen
such that (Qr, Q(A4)Q;)=0.

For A, BeO(#) one gets W A)WyB)WHA)™ ' =Wy(e“Be )e4:B and
there exists a dense domain 9 ;C#; such that Q(4)2;C D for all AcO(H)
and the restriction of Q(A) to 9 is essentially s.a.

The *-algebras generated by the map A— W;(A) are called observable algebras.
Applications to quantum field theory will be considered in a second paper.
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