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Abstract. The phenomena of Bose-Einstein condensation is discussed for par-
ticles in a box with attractive walls. Variation of the elasticity has the following
effects, a) the critical temperature, fugacity, etc. vary, b) separation of phases
occurs, c) condensation in one and two dimensions is possible.

1. Introduction

Theoretical understanding of phase transitions has been greatly enhanced by the
study of simple soluble models such as the Ising model or the ideal Bose gas.
The spontaneous magnetization exhibited by the former model has been ex-
amined by variation of boundary conditions (for a review see [1]). In two dimen-
sions this model appears to have the simple feature that its basic thermodynamic
structure is not affected by such variation. The boundary conditions only affect
the relative proportions of the phases. This simplification is probably not shared
by the three-dimensional model and is certainly not valid for the ideal Bose gas.

Condensation of the Bose gas has been exhaustively studied with periodic
boundary conditions or Neumann conditions, δφ = 0 (see, for example, [2-4]).
We consider a family of conditions, δψ = σψ, which correspond to varying the
elasticity of the walls containing the system and examine the influence of these
conditions on the condensation phenomena1. The effects are threefold if the walls
are attractive;

1. The thermodynamic region, the critical temperature, etc. vary with the
elasticity and, in particular, condensation occurs at values of the fugacity, z,
strictly less than one.

2. Phase separation occurs.
3. Condensation occurs in one and two dimensions.
Each of these effects is illustrated by examination of the density of the system.

* Postal address
1 In [4] the conditions dφ = aψ are considered for a system of dimension L but with a^L~v and
hence for macroscopic systems this is effectively dψ = 0
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2. Elastic Boundary Conditions

Consider a system of particles confined to a cubic box whose edges are of length L.
The various directional degrees of freedom of each particle are independent and
hence the multiparticle, multi-dimension, eigenvalues and eigenfunctions of the
system are obtained by combination of the corresponding quantities evaluated
for one particle in one dimension. Initially it suffices to consider the eigenvalue
equation

-d2ψλ(x)/dx2 = λψλ(x) (1)

for ψλeC2(0, L) where we have chosen units such that h2/2m = l. The elastic
boundary conditions form a one-parameter family of restraints

[dφ λ{x)/dx - σψλ(x)~\x = 0 = 0 = ίdψλ(x)/dx + σψλ{x)~]x=L. (2)

The choice

ψλ(x) = Cos γlx + σ Sin ]/λ x/]/λ (3)

solves (1) and (2) gives the eigenvalue equation

Tan ]/λL/]/λ = 2σ/(λ - σ2). (4)

Real, or imaginary, values are allowed for j/X, i.e. positive, or negative, values of λ.
Equation (4) can be solved by graphical techniques (for details see, for example,

[5]). The eigenvalues {λn(σ, L)}n^0 are monotonically increasing functions of σ
for fixed L with the following properties. If σ < — 2/L there are two negative
eigenvalues and

λo<-σ2<λί<0, (π/L)2<λ2<(2π/L)2<λ3<....

If — 2/L<σ<0 then there is one negative eigenvalue

λo<-σ2, 0<λί<(π/L)2<λ2<(2π/L)2<....

If σ> 0 then there are no negative eigenvalues and

0 < λ 0 <(π/L)2 <λx<(2π/L)2 <λ2 .

There are two simple cases, σ = 0, or Neumann conditions, for which

λn(0,L) = (nπ/L)2, n = 0 , l ,2 , . . .

and the limiting case σ-> + oo, or Dirichlet boundary conditions for which

The behaviour of the eigenvalues as a function of L with σ fixed is also relevant.
All positive eigenvalues decrease monotonically to zero. If, however, σ^O then

lim λo(σ, L) = — σ2 = lim λ^σγ L)
L-> oo L-»oo

where the first limit is monotonic upwards and the second monotonic downwards
and in fact one has
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The corresponding unnormalized eigenfunctions are approximately given by

ψo(x) = Chσ(x-L/2), ψ1(x) = Shσ(x-L/2). (5)

For example ψ0 satisfies the eigenvalue Equation (1) and for (2) one finds

The negative eigenvalues correspond physically to states in which the particle is
bound to the walls. The eigenfunctions (5), when normalized, assign an insignifi-
cant probability that the particle is at a distance greater than 2/\σ\ from either
endpoit of the interval [0, L]. Thus σ < 0 conditions correspond to attractive walls.

The Neumann boundary conditions, σ = 0, correspond to perfectly elastic
walls; the ground state probability distribution is constant throughout the in-
terval. The σ > 0 conditions correspond to repulsive boundaries; the ground
state wavefunctions assign small probability to finding the particle near the
endpoints x = 0, or x = L.

The corresponding eigenvalues of a particle in a v-dimensional cubic box A
with eigenfunctions satisfying

dψ(x)/dn = σψ(x), xedΛ

where d/δn denotes the inward normal derivative are given by

λn(σ,L) = tλnι(σ,L) (6)
ί = l

and the components nb of the vector w, take the values wf = 0,1, 2, . . . .

3. Bose-Einstein Condensation

Our discussion of Bose-Einstein condensation is limited for brevity to an analysis
of the particle density in the grand canonical ensemble. Recall that the grand
canonical density in v-dimensions, ρ{l\ is defined as a function of the inverse
temperature, β, and the fugacity, z, by

where λn are given by (6) and this expression is valid for 0 ^ z < exp{ — βvλ0}.
We analyze this function for various values of σ and various dimensions v. The
variation of dimension is because the properties of ργ\ ργ;\ are of use in the
analysis of ρ^3).

a) Dίrichlet Boundary Conditions, σ = + oo

The Dirichlet density ρ^ is defined for 0:gz< exp{ — βv(π/L)2}. In particular the
interval O ^ z ^ l is allowed for all L< +oo. On this interval

f dvxze-aχ2/{l-ze-aχ2)^ze-an2/(l-ze-an2)
i ^ - l

^ j dvxze-aχ2/(l-ze~aχ2), α>0.
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Thus with λ = π]/β summation and a simple change of variable yields

^λ~v J dvxze~χ2/(l-ze-χ2).
xτ ^ λ/L

Introducing the notation

Iv(z)=μ^xze-χ2/(l-ze-χ2), I0(z) = z/(l-z)

one easily estimates that

0^/v(z)-«(/U)^vJv(z,L) (8)

where
λ/L

Uz,L)= ϊdylv-.&e-'1). (9)
0

Note that ze[0, l]i->/v(z)elR is positive, increasing, concave. Further / v(l)< + GO
for v ^ 3 but J x and I2 diverge at z = l. The Jv have similar properties. Upper
bounds for the Iv and J v can be calculated by elementary means and for example
one has for 0 ̂  z ̂  1

I3{z) S /3(1) < 3, J3(z, L) ̂  2[ - (λ/L) \og(λ/L) + {λ/L) + (1/6) (A/L)3]

I2(z)^ log 1/(1 - z ) , J2(z, L)^2(l/L)z/(1 - z ) 1 / 2 (10)

Combination of (8) and (9) with the estimates (10) establish that

lim ρ(£\β,z) = λ-vIv(z), v ^

More precisely one has

> log(λ/L))

for v = 3 and O ^ z ^ l , or for v = l , 2 , and 0 ^ z < l .
Thus 0^/ί3ρif)(jS, z)^/ 3 ( l) and there is an innate restriction on the simulta-

neous values of ρ^3) and β. No such restrictions exist if v = l, 2, because of the
divergence of Ix and I2 at z = l . Referring to the standard interpretation [2, 3]
we conclude that Dirichlet conditions lead to the uncondensed phase for v = 3
and the conventional Bose-Einstein condensation is incompatible with such
conditions.

(Note that the parameter λ can be essentially identified with the thermal
wavelength v=]/2πβh2/m. With our choice of units v = 2λ/]/π « 1. lλ. This iden-
tification shows that the accuracy of approximation of ρ^ by its infinite volume
limit is remarkable. Even at unfavourably low temperatures of 1°~2°K, with
L= 1 cm, and for light atoms, the approximation is valid to about one part in 105.)

b) Neumann Conditions, σ = 0

For Neumann conditions the density (7) is defined for all 0 ^ z < l but the value
z = l is not allowed. The eigenvalues given by these boundary conditions differ
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from the Dirichlet conditions insofar that extra zero energy modes occur. This
allows the decomposition of the Neumann density as a sum of Dirichlet densities
and then the estimates of the previous subsection can be applied. Let τ£° denote
the Neumann density then one has

τ£\β, z) = £ L-m [Λ Qΐ~m\β, z) + L-*z/(l -z)
w = 0 \ /

which gives

0 S Vύl\β, z) - (λ/LYz/(ί -z)- λ-<QΪ\β, z)

= VΣ (λ/L)m(V) λ*- »ρrm)(β, z)Z Σ 1 {λ/LT IV ) I^m(β, z).

If z < l then

0Sλvτΐ\β, z)-Γρ£\β, z) = O(λ/L)

and the difference between the Dirichlet and Neumann densities is negligible. In
particular /l3τ^3)(jβ, z) is bounded. Nevertheless the density can be increased above
the previous maximum by choosing z sufficiently close to unity where sufficiently
close means that the value of z must be chosen as a function of the size of the
system. For ρo>0 choose z = zL=l — l/ρ0L

3 and then

Using the relations

0 ^ / v ( l ) - / v ( 2 ) ^

and the estimates for Ix and I2 one has

This establishes the precise estimate

for the condensation phenomena, i.e. the non-zero contribution to the density
arising from the zero energy mode.

If v= 1,2 the situation is different. The divergence of Ix and I2 at z= 1 implies
that the contribution of the zero energy mode obtained by the above mechanism
is negligible. Thus Bose-Einstein condensation is absent for v = l , 2, [6], when
Neumann boundary conditions are used.

c) Attractive Walls, σ < 0

When σ < 0 and 2<\σ\L there are two negative energy modes λo = λo(σ,L),
λι=λ1(σ, L\ which contribute and the density is defined in the range of fugacity
0 ^ z < Qxp{vβλ0}. We now follow the method of the previous subsection and
decompose the density into a sum of terms chosen according to the relative con-
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Fig. 1 Fig. 2

tribution of λo,λlt Introduce the notation

where ip is 0 or 1. Let η{l] denote the v-dimensional density with σ<0 then

, z) = Σ L- 3 zijk/(ί - zίJk) +
i,j = O

β, Z ; ,)

ί = 0

where ρ^ is defined by (7) but the components nt are summed only over the values
n^l. As the eigenvalues λn = λn(σ,L) satisfy ((n- l)π/L)2^λn^(nπ/L)2 for π ^ 2
the ρ^v) can be bounded in the same manner that we bounded the Dirichlet
densities. One has

Next we emulate the method used to exhibit condensation in the previous section.
For v = 3 choose z = zL = (l — S/ρ0L

3) exp {3/5/lo(σ, L)} then by calculations of an
identical nature to those used above one finds

where the crucial point is that λo(σ, L)-+ — σ2 and A1(σ, L)-> — σ2 as L->oo. Thus
the picture of condensation is changed For σ < 0 Bose-Einstein condensation
occurs for z = zσ= exp{ — 3βσ2} in three dimensions. The same effect also occurs
in higher or lower dimensions with the critical fugacity zσ= exp{ — βvσ2} in
v-dimensions.

To illustrate our conclusions we plot λ3ρ(£)(β, z) as a function z, for the various
cases we have considered, in Figures 1 and 2. Figure 1 exhibits the behaviour
typical of three or more dimensions and Figure 2 illustrates the behaviour for
v = l, or 2.

We conclude by remarking that the condensate in the σ < 0 case consists of
particles in the eigenstates which correspond to binding with the walls. Thus
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there is a separation of the phases with the condensed phase effectively concen-
trated within a distance 2/\σ\ from the walls of the system. The condensate, which
is composed of approximately ρoϋ particles, occupies a volume approximately
equal to 2v+ίLv~1/\σ\. Hence the density of the pure condensate is of the order
\σ\ρ0L, i.e. the condensate has essentially infinite density and occupies essentially
zero volume.
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