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Abstract. We define a canonical system as a canonical manifold M plus a
canonical vectorfield on M. For such systems a unique kinematical inter-
pretation is deduced from a set of Kinematical Axioms satisfied by the
algebra of differentiable functions on M. This algebra is required to contain
a subalgebra which is maximal commutative under the Poisson bracket.
M is shown to be diffeomorphic to the cotangent bundle over its quotient
manifold, which is defined by the given subalgebra. Canonical systems satisfying
these axioms are then classified. If the “phase space interpretation” is adopted
they are shown to describe the motion of masspoints in some configuration
space under the influence of and interacting by arbitrary vector and scalar
potentials.

1. Introduction

In this paper we study the space-time interpretation of classical canonical systems.
At a first glance this would seem to pose no problem. After all classical physics
is concerned with phenomena occuring in space and time such as the motion
of material bodies and their relation to the classical fields. Thus the basic theoretical
quantities and dynamical principles are formulated in terms of space-time concepts,
and no additional interpretation is required.

However a different situation is met if we wish to consider a classical theory
as the limiting case of some corresponding quantum theory. In this case the
space-time interpretation of the classical theory should itself be obtainable from
some elements of structure which are already present in the quantum theory.
Let us consider the algebraic formulation of quantum theory [1]. In this
formulation operations corresponding to measurements are represented by
elements in some non-commutative #-algebra over the complex numbers. The
possible states of the physical systems under consideration are represented by
positive linear functionals on the given algebra, which assign real numbers as
“expectation values” to those elements which represent measurements. The
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traditional formulation of quantum mechanics is a special case where measurements
are represented by self adjoint operators on some given Hilbert space.

A general framework like this does not contain any reference to spacetime
concepts. In fact one may say that the main differences among the various known
approaches to the formulation of relativistic quantum theories lie precisely in
the way in which such concepts are incorporated. The most important and
common feature in all quantum theories known to us, relativistic or non-relativistic,
is the existence of some distinguished finite dimensional symmetry group, operating
as a group of transformations on the classical space-time. This group (the Poincaré
group in the special relativistic case) is postulated to operate as a group of auto-
morphisms on the quantum theoretical structure in such a way that each auto-
morphism corresponds in a unique way to the change in the observational situation
as described by the appropriate transformation on the classical space-time [2].

This approach is well founded for non-relativistic and special relativistic
theories. It may however meet with difficulties in the general relativistic situation,
where no exact symmetry group can be expected to exist (see our discussion of
symmetries in [11]). Of course the construction of such general quantum theories
is still an unsolved problem. However similar problems may be expected to
occur on the purely classical level, if we avoid any direct reference to the classical
space-time manifold in our basic concepts. We shall therefore reanalyze the
space-time interpretation of classical theories within a mathematical framework
showing closer structural similarities to existing quantum theories.

One of the important features we wish to take over from the algebraic approach
is the clear distinction between the two basic concepts of observables and states.
The former represent operations of measurement, and we shall take the structure
of the set of observables as the starting point of our analysis. The notion of states
appropriate for the different classes of physical systems will then be introduced
as a second step.

There is a well known formulation of classical particle mechanics incor-
porating this feature, namely the canonical one. In this formulation the observables
are represented by continuous functions on the classical phase space I while
states correspond to measures on . Expectation values are obtained by integrating
the observables by the corresponding measures over all of I'. If we restrict our
attention to real valued differentiable functions which we shall call variables
henceforth, the resulting set is a commutative algebra under pointwise multi-
plication, and a Lie-algebra under the Poisson-bracket [3]. This formulation
is the starting point for any “canonical quantization” procedure of constructing
quantum theories. On the other hand it is the formulation arrived at in the classical
limit of non relativistic quantum theories.

The canonical approach is sometimes believed to meet with difficulties in
the context of general relativity. Leaving aside the problem of a canonical for-
mulation for the classical fields, these difficulties are traced to the non-existence
of a unique time parameter.

In particular this makes it necessary to extend the phase space by the in-
troduction of time-like variables. We shall however find that a straightforward
axiomatic approach to the question of position and time-like observables proves
most successful within our framework. The resulting theory applies equally
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well to non-relativistic, special relativistic and general relativistic situations.
In addition it will make transparent important algebraic features of general
relativity, which show up less clearly in the usual space-time tensorfield calculus.
These may provide valuable hints to the structure of a possible general relativistic
quantum theory. For relativistic canonical systems in particular see [11].

The basic object we shall study is the classical algebra of variables 2, consisting
of all real-valued differentiable functions on some fixed and given canonical
manifold M (for basic definitions and theorems see the Appendix). We wish to
emphasize two points here. The manifold plays an auxiliary role only in carrying
the algebra 2. Apart from this no assumption is made about M, and no physical
interpretation is given to it. In particular we do not assume or imply that M be
the phase space of some classical system.

The second point concerns our notion of observables, which is an extremely
geometrical one. From our point of view any classical observation may be
completely reduced to the observation of events in space-time and the observation
of relations between infinitesimally close pairs of events (elements of direction).
The precise statement of this will be a set of axioms concerning the structure of .

Any such set of axioms must necessarily involve some aspects of the dynamics
of the system like those related to the free fall of material points and the propagation
of light rays® These kinematical aspects are indispensable for any classical
analysis of observations. For example, a time-like element of direction is nothing
but an element which may occur on the path of some material point, and this
condition is a dynamical one.

There are other aspects of the dynamics, such as the disintegration of particles
or thermodynamic properties of bodies, which one may call internal. Such aspects
refer to the properties of possible states on the classical algebra 2, which will
only be briefly treated in this paper.

In Chapter 2 we define a canonical system as an ordered triplet (M, 2, Y),
where M is a manifold, Q is a nowhere degenerate closed 2-form on M, and Y is
a vectorfield leaving Q invariant?®. In accordance with the remarks above Y is
meant to represent the kinematical aspects of the dynamics only. The algebra A

! By considering all complex valued continuous functions vanishing at infinity on M we obtain a

commutative C*-algebra, containing U as a dense subset. On the other hand any commutative C*-
algebra is isomorphic to the algebra of continuous functions on the locally compact Hausdorff space
M* of its maximal ideals ([7], see the generalization mentioned in §16.3). One may hope to even
introduce a differentiable structure on M* by considering a suitable dense subalgebra, and hence
arrive at a complete algebraic characterization of the underlying manifold. This would render the
the introduction of M superfluous. Although this aspect is not central for our present investigation,
we would like to encourage any attempts in this direction

2 A careful analysis of these aspects has recently been given by Ehlers and others [4]. Using ele-
mentary operations with freely falling bodies and light rays as a starting point they were able to show
that the differentiable, affine and Riemannian structure of space-time may be completely recovered
from such operations. In accordance with these results we find that in our framework the dynamics
of the physical system is to a large extent determined by those axioms which are necessary for con-
structing a space-time interpretation

> Our definition of canonical systems differs from that given in [5], where the dynamics is introduced
by means of a constraint submanifold. In the relativistic case this would exclude the possibility to
treat states containing different masses, which is easily done in our framework (see [11])
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of variables on M is required to satisfy a set of Kinematical Axioms. These Axioms
postulate the existence of essentially two disjoint classes of variables, generating
all other variables. The first class is a subalgebra 2, which is maximal commutative
with respect to the Poisson bracket; the second class is the linear subspace Y(2().

The canonical vectorfields defined by functions in 2, determine a set of
maximal integral submanifolds. This set is shown to admit a unique differentiable
structure by ,; the resulting manifold is called the quotient of M. The functions
in Y(A,) are shown to generate vectorfields on the quotient and may then be
considered as the corresponding momenta. The main result is the Isomorphism
Theorem 2.2 which states that there is a unique diffeomorphism of the original
manifold M to the cotangent bundle L* over its quotient N.

In Chapter 3 we give a complete classification of canonical systems in terms
of their canonical forms and kinematical vectorfields. If we introduce states
on A as linear functionals defined by measures on M and assume that the dynamics
are completely specified by the vectorfield Y, a broad class of physical systems is
obtained. This class describes the motion of masspoints in some configuration
space of arbitrary pseudo Riemannian or Riemannian structure under the influence
of arbitrary scalar and vector potentials.

A detailled treatment of relativistic canonical systems will be given in a
subsequent paper [11]. They will be singled out by an additional set of Relativistic
Axioms and shown to admit a unique space-time interpretation.

2. Canonical Systems and Their Quotients

For the sake of simplicity we shall only consider manifolds of class C*®. Some of
the proofs in this chapter and the main theorems required for them may be found
in the Appendix.

Definition 2.1. A canonical system is an ordered set (M, Q, Y) where
i) M is a manifold;
ii) Q is a closed, nowhere degenerate differential 2-form on M;
iii) Y is a vectorfield on M leaving Q invariant®,

The pair (M, Q) is called a canonical manifold [3]. The canonical form
defines a bijective map from the space .# of vectorfields on M to the dual space
of differential 1-forms. From the inverse map & we obtain an anti-symmetric
tensorfield A, which defines the Poisson bracket for differentiable functions.
Vectorfields leaving 2 invariant are called canonical. They are exactly those for
which the corresponding 1-form is closed, and satisfy the commutation relations
below:

) QX X)=o(X)=w(,,)=A0,o,).

i) [E0r E0]=Citwony for do=dw,=0.
i) {F,G}=—{G, F}=A(dF, dG).

ii) {F,, {Fy F3}}+cycl.=0. 2.2)

iii) Y({F,G})={Y(F), G}+{F, Y(G)} .

2.1)

4 The Lie derivative of by Y shall vanish. We employ this terminology in correspondence with the
terminology used for one parameter groups
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The last equation holds for any canonical vectorfield X. The vanishing of
the cyclic sum in (2.2, ii) is equivalent to Q being closed. The algebra of differentiable
functions on M will be denoted by 2. Any subset S of U which is sufficient to
define the differentiable structure on M will be called a sufficient set. These sets
are the global analogue of a covering by local charts, and play an important role
in our discussions. In particular we note that a canonical form may be defined
on any suitable manifold by specifying a bracket with (2.2, 1) and (2.2,ii) on any
sufficient set, provided the resulting tensorfield A is nowhere degenerate. The
canonical systems we shall study here are required to satisfy the following set of
Kinematical Axioms.

Kinematical Axioms: For the canonical system (M, 2, Y) there exists a subset
A, in the algebra U of differentiable functions such that:

Ki) F isin U, iff {F,A4}=0 forall 4 in A,

Kii) AnY(A)=(0),
K.ii) A,uY(A,) is a sufficient set,
Kiv) {G,4} isin A, for A in AU, and G=Y(B) in YA,

K.v) forany A in A, the canonical vectorfield &,, generates a group.

By K.iii) we may choose charts (U, A', Y(B")) at any point in M, where A%
i=1,...,n and B"; r=1,...,m—n are functions from A, Furthermore we may
assume without loss of generality that B"=b"(4!, ..., 4" in U. Since the functions
Y(B'") are coordinates in U we conclude that m—n<n, and hence m=2n, since the
differentials dA,"] span at any point ¢ in U an isotropic subspace of the bilinear
form defined by A in the corresponding cotangent space. The Jacobian matrix
of the system of functions (b") is nonsingular, and we conclude from the implicit
function theorem that there exist always special charts of the form (U, B%, Y(B"))
at any point in M. The functions {B?, Y(B")} resp. {4, Y(B")} are in 2, and form a
nonsingular matrix in U. The latter matrix may always be chosen to equal unity
at some given point in U. These facts will frequently be used.

The set 2, is a subalgebra of U which is maximal commutative under the
Poisson bracket. This algebra is not uniquely determined by the kinematical
axioms.

In fact for any canonical transformation ¢ leaving Y invariant the subalgebra
@(A,) will again satisfay all axioms if A, does®. The functions in 2, generate
by (2.1, ii) a commutative Lie algebra %, of canonical vectorficlds. Hence we
obtain a differentiable, involutive distribution K, assigning to every point p a
subspace K, of the tangentspace at p.

K,=(X,|X in 2,). (2.3)

5 A simple example is provided by the manifold M =R? with global coordinates Q, P. Choosing
Q=dQ AdP and Y=¢&,,; with H=P?+Q? a canonical system is obtained. For the subalgebra 2, of
functions depending on Q only the kinematical axioms are satisfied. The same holds true if we consider
functions of P only, since both coordinates may be permuted by a canonical transformation leaving H
invariant
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Any function invariant under %, is called an integral function G of K: X(G)=0
for any X in .#,. By K.i) this is true if and only if G is in 2. Collecting these results
we obtain:

Proposition 2.1. The distribution K defined by N, is differentiable and involutive.
Every subspace K, is maximal isotropic with respect to the bilinear form induced
by Q: dimK,=n, where dim M =2n. The algebra of integral functions is equal
to AU,.

By the global version of the Frobenius integrability theorem the distribution K
defines at any point p in M a unique maximal integral submanifold p* passing
through p (see Appendix). Concerning the differentiable structure on any such
submanifold we have:

Proposition 2.2. Let (U, A, Y(A") be a chart at p on p* with A" in U,. The functions
Y(A", k=1,...,n are coordinates everywhere on p*. They separate the points
on p*, and range each over the whole real line on p*. Hence p* is diffeomorphic to
the vectorspace R".

The proof of Proposition 2.2 makes substantial use of axiom K.v) and may
be found in the Appendix. The set of all maximal integral manifolds will be denoted
by M*. We shall now introduce a topology on M* which is derived from the
topology on M. For the proof of the following proposition see again the Appendix.

Proposition 2.3. Let B be a countable basis of neighbourhoods on M. For any Vin 8
denote by V* the corresponding subset in M*; V*=(q*|qin V). Then B* =(V*|V in B)
satisfies all axioms for a basis for neighbourhoods on M*. The resulting topological
space is a connected Hausdorff space with a countable basis. Any function A in U,
defines a unique continuous function A* on this space.

It is an immediate consequence of Proposition 2.3 that any point in M* has
a neighbourhood which is homeomorphic to an open subset subset of R",
dim M = 2n. Furthermore the algebra ¥ of continuous functions on M* defined
by corresponding functions in U, defines a differentiable structure on M*. In
fact by considering the non-singular matrix ({Y(A4'), A*}) in any arbitrary chart
(U, A', Y(A") one may show that any function 4 in 2, is a function of the co-
ordinates A* alone in U.

Using this result it is not difficult to show that the algebra 2 satisfies the
requirements (2, 1)—(2, iii) in the Definition 1. of a manifold given in the Appendix.
We have thereby obtained:

Theorem 2.1. Let (M, Q,Y) be a canonical system with subalgebra ,. Denote
by ¥ the corresponding algebra of continuous functions on the space M* of integral
submanifolds. Then (M*, W) is a manifold, called the quotient of M by WU,. The
projection m: M— M* is a differentiable map.

We mention that a similar though weaker result may be obtained if axiom K.v)
is given up. In this case Proposition 2.2 does not hold, and the topological space
defined in Proposition 2.3 will not in general be a Hausdorff space. Apart from
this, however, the pair (M*, A¢) will still enjoy all other properties which define
a manifold. The existence of such more general structures within our framework
may be demonstrated by simple examples. For details we refer the reader to [6].






