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Abstract. We define a canonical system as a canonical manifold M plus a
canonical vectorfield on M. For such systems a unique kinematical inter-
pretation is deduced from a set of Kinematical Axioms satisfied by the
algebra of differentiable functions on M. This algebra is required to contain
a subalgebra which is maximal commutative under the Poisson bracket.
M is shown to be diffeomorphic to the cotangent bundle over its quotient
manifold, which is defined by the given subalgebra. Canonical systems satisfying
these axioms are then classified. If the "phase space interpretation" is adopted
they are shown to describe the motion of masspoints in some configuration
space under the influence of and interacting by arbitrary vector and scalar
potentials.

1. Introduction

In this paper we study the space-time interpretation of classical canonical systems.
At a first glance this would seem to pose no problem. After all classical physics
is concerned with phenomena occuring in space and time such as the motion
of material bodies and their relation to the classical fields. Thus the basic theoretical
quantities and dynamical principles are formulated in terms of space-time concepts,
and no additional interpretation is required.

However a different situation is met if we wish to consider a classical theory
as the limiting case of some corresponding quantum theory. In this case the
space-time interpretation of the classical theory should itself be obtainable from
some elements of structure which are already present in the quantum theory.
Let us consider the algebraic formulation of quantum theory [1]. In this
formulation operations corresponding to measurements are represented by
elements in some non-commutative *-algebra over the complex numbers. The
possible states of the physical systems under consideration are represented by
positive linear functionals on the given algebra, which assign real numbers as
"expectation values" to those elements which represent measurements. The
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traditional formulation of quantum mechanics is a special case where measurements
are represented by self adjoint operators on some given Hubert space.

A general framework like this does not contain any reference to spacetime
concepts. In fact one may say that the main differences among the various known
approaches to the formulation of relativistic quantum theories lie precisely in
the way in which such concepts are incorporated. The most important and
common feature in all quantum theories known to us, relativistic or non-relativistic,
is the existence of some distinguished finite dimensional symmetry group, operating
as a group of transformations on the classical space-time. This group (the Poincare
group in the special relativistic case) is postulated to operate as a group of auto-
morphisms on the quantum theoretical structure in such a way that each auto-
morphism corresponds in a unique way to the change in the observational situation
as described by the appropriate transformation on the classical space-time [2].

This approach is well founded for non-relativistic and special relativistic
theories. It may however meet with difficulties in the general relativistic situation,
where no exact symmetry group can be expected to exist (see our discussion of
symmetries in [11]). Of course the construction of such general quantum theories
is still an unsolved problem. However similar problems may be expected to
occur on the purely classical level, if we avoid any direct reference to the classical
space-time manifold in our basic concepts. We shall therefore reanalyze the
space-time interpretation of classical theories within a mathematical framework
showing closer structural similarities to existing quantum theories.

One of the important features we wish to take over from the algebraic approach
is the clear distinction between the two basic concepts of observables and states.
The former represent operations of measurement, and we shall take the structure
of the set of observables as the starting point of our analysis. The notion of states
appropriate for the different classes of physical systems will then be introduced
as a second step.

There is a well known formulation of classical particle mechanics incor-
porating this feature, namely the canonical one. In this formulation the observables
are represented by continuous functions on the classical phase space Γ while
states correspond to measures on Γ. Expectation values are obtained by integrating
the observables by the corresponding measures over all of Γ. If we restrict our
attention to real valued differentiable functions which we shall call variables
henceforth, the resulting set is a commutative algebra under pointwise multi-
plication, and a Lie-algebra under the Poisson-bracket [3]. This formulation
is the starting point for any "canonical quantization" procedure of constructing
quantum theories. On the other hand it is the formulation arrived at in the classical
limit of non relativistic quantum theories.

The canonical approach is sometimes believed to meet with difficulties in
the context of general relativity. Leaving aside the problem of a canonical for-
mulation for the classical fields, these difficulties are traced to the non-existence
of a unique time parameter.

In particular this makes it necessary to extend the phase space by the in-
troduction of time-like variables. We shall however find that a straightforward
axiomatic approach to the question of position and time-like observables proves
most successful within our framework. The resulting theory applies equally
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well to non-relativistic, special relativistic and general relativistic situations.
In addition it will make transparent important algebraic features of general
relativity, which show up less clearly in the usual space-time tensorfield calculus.
These may provide valuable hints to the structure of a possible general relativistic
quantum theory. For relativistic canonical systems in particular see [11].

The basic object we shall study is the classical algebra of variables 21, consisting
of all real-valued differentiable functions on some fixed and given canonical
manifold M (for basic definitions and theorems see the Appendix). We wish to
emphasize two points here. The manifold plays an auxiliary role only in carrying
the algebra 21 *. Apart from this no assumption is made about M, and no physical
interpretation is given to it. In particular we do not assume or imply that M be
the phase space of some classical system.

The second point concerns our notion of observables, which is an extremely
geometrical one. From our point of view any classical observation may be
completely reduced to the observation of events in space-time and the observation
of relations between infinitesimally close pairs of events (elements of direction).
The precise statement of this will be a set of axioms concerning the structure of 21.

Any such set of axioms must necessarily involve some aspects of the dynamics
of the system like those related to the free fall of material points and the propagation
of light rays2. These kinematical aspects are indispensable for any classical
analysis of observations. For example, a time-like element of direction is nothing
but an element which may occur on the path of some material point, and this
condition is a dynamical one.

There are other aspects of the dynamics, such as the disintegration of particles
or thermodynamic properties of bodies, which one may call internal. Such aspects
refer to the properties of possible states on the classical algebra 21, which will
only be briefly treated in this paper.

In Chapter 2 we define a canonical system as an ordered triplet (M, Ώ, 7),
where M is a manifold, Ω is a nowhere degenerate closed 2-form on M, and Y is
a vectorfϊeld leaving Ω invariant3. In accordance with the remarks above Y is
meant to represent the kinematical aspects of the dynamics only. The algebra 21

1 By considering all complex valued continuous functions vanishing at infinity on M we obtain a
commutative C*-algebra, containing 21 as a dense subset. On the other hand any commutative C*-
algebra is isomorphic to the algebra of continuous functions on the locally compact Hausdorfif space
M* of its maximal ideals ([7], see the generalization mentioned in § 16.3). One may hope to even
introduce a differentiable structure on M* by considering a suitable dense subalgebra, and hence
arrive at a complete algebraic characterization of the underlying manifold. This would render the
the introduction of M superfluous. Although this aspect is not central for our present investigation,
we would like to encourage any attempts in this direction
2 A careful analysis of these aspects has recently been given by Ehlers and others [4]. Using ele-
mentary operations with freely falling bodies and light rays as a starting point they were able to show
that the differentiable, affine and Riemannian structure of space-time may be completely recovered
from such operations. In accordance with these results we find that in our framework the dynamics
of the physical system is to a large extent determined by those axioms which are necessary for con-
structing a space-time interpretation
3 Our definition of canonical systems differs from that given in [5], where the dynamics is introduced
by means of a constraint submanifold. In the relativistic case this would exclude the possibility to
treat states containing different masses, which is easily done in our framework (see [11])
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of variables on M is required to satisfy a set of Kinematical Axioms. These Axioms
postulate the existence of essentially two disjoint classes of variables, generating
all other variables. The first class is a subalgebra ί̂0 which is maximal commutative
with respect to the Poisson bracket; the second class is the linear subspace y(2l0)

The canonical vectorfields defined by functions in 9I0 determine a set of
maximal integral submanifolds. This set is shown to admit a unique differentiable
structure by 9I0; the resulting manifold is called the quotient of M. The functions
in y(2l0)

 are shown to generate vectorfields on the quotient and may then be
considered as the corresponding momenta. The main result is the Isomorphism
Theorem 2.2 which states that there is a unique diffeomorphism of the original
manifold M to the cotangent bundle L* over its quotient N.

In Chapter 3 we give a complete classification of canonical systems in terms
of their canonical forms and kinematical vectorfields. If we introduce states
on 21 as linear functional defined by measures on M and assume that the dynamics
are completely specified by the vectorfield Y, a broad class of physical systems is
obtained. This class describes the motion of masspoints in some configuration
space of arbitrary pseudo Riemannian or Riemannian structure under the influence
of arbitrary scalar and vector potentials.

A detailled treatment of relativistic canonical systems will be given in a
subsequent paper [11]. They will be singled out by an additional set of Relativistic
Axioms and shown to admit a unique space-time interpretation.

2. Canonical Systems and Their Quotients

For the sake of simplicity we shall only consider manifolds of class C00. Some of
the proofs in this chapter and the main theorems required for them may be found
in the Appendix.

Definition 2.1. A canonical system is an ordered set (M, Ω, Y) where
i) M is a manifold;

ii) Ω is a closed, nowhere degenerate differential 2-form on M;
iii) y is a vectorfield on M leaving Ω invariant4.

The pair (M, Ω) is called a canonical manifold [3]. The canonical form Ω
defines a bijective map from the space <£ of vectorfields on M to the dual space
of differential 1-forms. From the inverse map ξ we obtain an anti-symmetric
tensorfield Λ, which defines the Poisson bracket for differentiable functions.
Vectorfields leaving Ω invariant are called canonical. They are exactly those for
which the corresponding 1-form is closed, and satisfy the commutation relations
below:

.

ϋ) lξω>ξω3 = ξdΛ(ω,ω1)
 f°r dω = dω1=0.

ii) {Fl9{F29F3}} + cycl = Q. (2.2)

iii) Y({F9G}) = {Y(F)9G}+{F9Y(G)}.

4 The Lie derivative of by 7 shall vanish. We employ this terminology in correspondence with the
terminology used for one parameter groups
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The last equation holds for any canonical vectorfield X. The vanishing of
the cyclic sum in (2.2, ii) is equivalent to Ω being closed. The algebra of differentiable
functions on M will be denoted by 91. Any subset S of 91 which is sufficient to
define the differentiable structure on M will be called a sufficient set. These sets
are the global analogue of a covering by local charts, and play an important role
in our discussions. In particular we note that a canonical form may be defined
on any suitable manifold by specifying a bracket with (2.2, i) and (2.2, ii) on any
sufficient set, provided the resulting tensorfield Λ is nowhere degenerate. The
canonical systems we shall study here are required to satisfy the following set of
Kinematical Axioms.

Kinematical Axioms: For the canonical system (M, Ω, Y) there exists a subset
9I0 in the algebra 91 of differentiable functions such that:

K.i) F is in 9ί0 iff {F,A} = Q for all A in 910,

K.ϋ) 9ί0ny(9I0H(0),

K.iii) 9I0u 7(9I0) is a sufficient set,

K.iv) {G,A} is in 9I0 for A in 9I0 and G=Y(B) in Y(910),

K.v) for any A in 9I0 the canonical vectorfield ξdA generates a group.

By K.iii) we may choose charts (17, A\ Y(Br)) at any point in M, where A1;
i = l 5 . . . ,n and Brι r=l, ...,m — n are functions from 9I0. Furthermore we may
assume without loss of generality that Br = br(A1

9 . . . 9 A " ) in U. Since the functions
Y(Br) are coordinates in U we conclude that m — n^n, and hence m = 2n, since the
differentials dA^ span at any point q in U an isotropic subspace of the bilinear
form defined by A in the corresponding cotangent space. The Jacobian matrix
of the system of functions (br) is nonsingular, and we conclude from the implicit
function theorem that there exist always special charts of the form (U,BS, Y(Br))
at any point in M. The functions {Bs, Y(Br)} resp. {A\ Y(Br)} are in 9I0 and form a
nonsingular matrix in U. The latter matrix may always be chosen to equal unity
at some given point in U. These facts will frequently be used.

The set 9I0 is a subalgebra of 91 which is maximal commutative under the
Poisson bracket. This algebra is not uniquely determined by the kinematical
axioms.

In fact for any canonical transformation φ leaving 7 invariant the subalgebra
φ(9I0) will again satisfay all axioms if 9ί0 does5. The functions in 9I0 generate
by (2.1, ii) a commutative Lie algebra =£?0 of canonical vectorfields. Hence we
obtain a differentiable, involutive distribution K, assigning to every point p a
subspace Kp of the tangentspace at p.

K=(XP\X in JSP0). (2.3)

5 A simple example is provided by the manifold M = R2 with global coordinates Q, P. Choosing
Q = dQ/\dP and Y=ξdH with H = P2 + Q2 a canonical system is obtained. For the subalgebra 5I0 of
functions depending on Q only the kinematical axioms are satisfied. The same holds true if we consider
functions of P only, since both coordinates may be permuted by a canonical transformation leaving H
invariant
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Any function invariant under J^0 is called an integral function G of K:X(G) = Q
for any X in Jδf0. By K.i) this is true if and only if G is in 2I0. Collecting these results
we obtain:

Proposition 2.1. The distribution K defined by 2I0

 zs differentiable and ίnvolutive.
Every subspace Kp is maximal isotropic with respect to the bilinear form induced
by Ω: dimKp = n, where dimM = 2n. The algebra of integral functions is equal
to 2I0.

By the global version of the Frobenius integrability theorem the distribution K
defines at any point p in M a unique maximal integral submanifold p* passing
through p (see Appendix). Concerning the differentiable structure on any such
submanifold we have:

Proposition 2.2. Let (U, A\ Y(Ak)) be a chart at p on p* with A1 in 2Ϊ0. The functions
Ύ(Ak\ k=l,...,n are coordinates everywhere on p*. They separate the points
on p*, and range each over the whole real line on p*. Hence p* is dijfeomorphic to
the vectorspace Rn.

The proof of Proposition 2.2 makes substantial use of axiom K.v) and may
be found in the Appendix. The set of all maximal integral manifolds will be denoted
by M*. We shall now introduce a topology on M* which is derived from the
topology on M. For the proof of the following proposition see again the Appendix.

Proposition 2.3. Let 2$ be a countable basis of neighbourhoods on M. For any V in 33
denote by V* the corresponding subset in M* F* = (q*\q in V). Then 23* — (V*\ V in 23)
satisfies all axioms for a basis for neighbourhoods on M*. The resulting topological
space is a connected Hausdorjf space with a countable basis. Any function A in 2ί0

defines a unique continuous function A* on this space.

It is an immediate consequence of Proposition 2.3 that any point in M* has
a neighbourhood which is homeomorphic to an open subset subset of Rn

9

dimM = 2n. Furthermore the algebra 21*, of continuous functions on M* defined
by corresponding functions in 2Ϊ0 defines a differentiable structure on M*. In
fact by considering the non-singular matrix ({7(^4'), Ak}) in any arbitrary chart
(U, A\ Y(Ak)) one may show that any function A in 2ί0 is a function of the co-
ordinates A1 alone in U.

Using this result it is not difficult to show that the algebra 21*, satisfies the
requirements (2, i)-{2, iii) in the Definition 1. of a manifold given in the Appendix.
We have thereby obtained:

Theorem 2.1. Let (M, Ω, Y} be a canonical system with subalgebra 2I0. Denote
by 21*, the corresponding algebra of continuous functions on the space M* of integral
submanifolds. Then (M*, 91*) is a manifold, called the quotient of M by 2I0. The
projection π M^M* is a differentiable map.

We mention that a similar though weaker result may be obtained if axiom K.v)
is given up. In this case Proposition 2.2 does not hold, and the topological space
defined in Proposition 2.3 will not in general be a Hausdorff space. Apart from
this, however, the pair (M*, 21*,) will still enjoy all other properties which define
a manifold. The existence of such more general structures within our framework
may be demonstrated by simple examples. For details we refer the reader to [6].
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We shall now consider functions like Ύ(A\ A in 9I0. By K.iv) the corresponding
canonical vectorfields define derivations on the subalgebra 9I0, and hence on
2ΪJ as well.

DY(A):B*-+{Y(A\B}*, B in 9I0 . (2.4)

The map D is a map from the set y(9I0) °f functions on M to the space <£ (M*)
of vectorfields on the quotient M*. This map may be extended to the submodule
21 ! of functions which are locally linear combinations from 7(2I0)

 w^trl coefficients
in 210. By easy computations in local charts the reader may convince himself that
all Kinematical Axioms remain valid if we replace the set Y(210) by 21 x everywhere.
We put DB.Y(A) = B* DY(A) and note that this definition is consistent with (2.4).

Proposition 2.4. The map D defined by DG(A*)={G, A}* for G in 2^ is one-to-one
and onto the space of vectorfields on M*.

Proof. D is one-to-one by K.ii). Considering charts (U, A\ Y(BkJ) with matrix
({Y(Bk\ A1}) nonsingular in U we conclude that D induces a mapping onto the
space of vectorfields on the open submanifold U* = π(U) of M*. Covering M
with such charts and considering a corresponding decomposition of unity on
M* we obtain the result ([8], 1.1, Theorem 1.3).

By Proposition 2.4 there exists an inverse map for D, assigning to any vectorfield
X on M* a unique function Px on M. We shall call this function the momentum
associated to X. A corresponding function may be defined on the cotangent
bundle L* over M*. The elements of L* will be denoted by (q, ωq), where q is
some point in M* and ωq is some differential at q. For A* in 2I(M*) and any
vectorfield X on M* consider the following functions on L*:

ii)

Theorem 2.2. Let (M, Ω, Y) be a canonical system with quotient M*. There exists
a unique diffeomorphism φ of M with the cotangent bundle L* over its quotient
such that :

i) A = A°°φ, A in 2ί0;

ii) Px = P°x°φ, X in

Proof. Consider the bijective correspondence φ*:A-*A°, Px^Pχ between the
set S = (H0u

<Ά1 and the set S° of all functions as in (2.5). The set S separates the
points in M by Proposition 2.2, and the same is true for S°. By the same proposition
any two corresponding functions range over the same set of values, hence we
obtain a unique correspondence φ between points in M and in L* such that
φ*(F)°φ=F for F in S. Since both sets are sufficient φ is a diffeomorphism.

The Isomorphism Theorem 2.2 gives a negative answer to a question raised
by R. Jost [3] some time ago, which concerned the role played by compact canonical
manifolds in mechanics. For a system satisfying the Kinematical Axioms K.i)-K.v)
the underlying manifold can never be compact. As a consequence of this theorem
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we may henceforth restrict our attention to canonical systems of the form
(L*(N), Ω, Y) where N is some manifold (satisfying conditions to be discussed
below). We shall classify these systems in the next chapter.

3. Classification of Canonical Systems

We begin by a classification of the canonical structures. The notation for functions
in 2I0 and (Ά1 will be the same as in Theorem 2.2.

Theorem 3.1. Let (L*(N)9 Ω, Y) be a canonical system. The canonical structure
on L*(7V) is determined by the following set of relations:

i) μ,β} = 0 for A*,B* in

ii) (PX9A}* = X(A*) for X in &(N) , A in

iii) {Px,PXl} = P[X,Xl] + F(X,Xί).

F(X, X)) is in 9I0, and defines a closed 2-form ωF on N by:

iv)

Conversely let ω be a closed 2-form on N. For any two X, X1 in &(N) define
F(X, X)) by iv). Then i), ii), iii) define a unique canonical structure on L*(N).

Proof. For X,Xλ in &(N) define F(X9X1) by iii). By (2.2, ii) we have {F,A} = 0
for any A in 3I0, hence F is in 2I0. From ii) it follows, that the map

is 9I(JV)-linear and antisymmetric, hence a 2-form. Now for any three vectorfields
Xl9 X2, XT. one may calculate the following cyclic sum which vanishes by (2.2, ii):

As a result we obtain :

[*2, ̂ 3]) + cycl. - 0 .

Since the left hand side is equal to dωF(Xΐ, X29 X3) the form ωF is closed.
On the other hand it is not difficult to check that for any closed ωF the bracket

defined by i)-iv) is a derivation as far as the product of variables is defined. The
resulting antisymmetric tensorfield A is nowhere degenerate and defines a Poisson
bracket with Equations (2.2, i) and (2.2, ii) for all variables on L*(N). QED.

For the kinematical vectorfield Y we obtain the following result:

Theorem 3.2. Let (L*(N), Ω, Y) be a canonical system. The vectorfield Y defines
a nowhere degenerate symmetric tensorfield g on N by:

i) g(dA*,dB*)={Y(A),B}*; A9B in 9I0 .

Denote by 2T the function on L*(N) corresponding to g:

ii)
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Then :

iii) Y=ξiT+Y°,
where

iv) Y°(A) = 0 for any A in 2ί0 .

Proof. Consider an arbitrary chart (U\(Q1)*) on N and the associated chart
(V;Q\Pk) on L*(N): F = π~1(C7), ({Pfe β

f}) equal to the unit matrix on 7. Then
Gίk= {7(βO, Qk} is in 9Ϊ0, and we have T= i£ GίfePΛ in K

ί/C

Defining 7° by iii) we deduce that {Y°(A\B} = 0 in 7 for any A, Bin. 2X0?

since in V these are functions of the coordinates Ql only. Since V was arbitrary,
we have Y°(A) in 8I0. However Y(A) and < Γ̂(,4) are both in 2ll9 and hence 7 V) - 0.

QED.

Let us illustrate the results obtained in Theorem 3.1 and 3.2 by writing down
the corresponding equations in an arbitrary associated chart (V\Q\ Pk). We may
assume that 7° is Hamiltonian in V\ Y0 = ξdw. Since Y°(A)={W,A} = 0 for any A
in 9I0, the function Wis a function of the coordinates Ql alone:

Y=ξdH; H=^G'\Q)PίPk+W(Q). (3.1)
ik

For the canonical structure we obtain in V:

i) {βί,βk} = 0,

ii) (Pί5 <2fc} = δf = 1 for i = k and vanishes otherwise , (3.2)

iii) {P,Pk} = Fik(Q),

where

Before we can give a physical interpretation to these equations we have to
specify the set of states and the dynamical law. Consider the C*-algebra of contin-
uous functions on L* vanishing at infinity. Positive bounded linear functionals
on this algebra correspond to measures on L* ([7], IV, §20.4); let us admit all
such functionals as states. If we assume for simplicity that Y generates a group,
we define the dynamical law as the corresponding family of maps: f— »σr from
the real line to the set of states:

i)F->F f, dFt/dt=Y(Ft), F in 21 (3.3)

ii) ί->σt, σt(F) = σ0(Ft).

The dynamical law is then additive with respect to the addition of states,
which we may hence interpret as describing ensembles of physical systems. From
the pure states, which correspond to the points in L* we obtain just the integral-
curves of 7. Their equations in the given chart are:

i) q\t) = (β')t(p) , pk(t) = (Pk\(p) , p in L*

ii) dqί/dt={H,Qί}(p)= £ Gίk(q\...,qn)pk

k=l

iii) dpjdt = {H, Pk}(p) = - i Σ dG W PiPj ~ SW/dqk + Σ G' Viy (3.4)
U ij
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The theory thus obtained includes in particular the case of non-relativistic
particle mechanics, where M is the phase space of some finite number of masspoints.
These move in the configuration space N of arbitrary Riemannian structure;
external fields and interactions are represented by the potentials W and Fkj. We
may call this the "phase space interpretation" of canonical systems.

However there is a different interpretation which we shall aim at in a following
paper. Consider some system of r particles, where the configuration manifold
is the r-fold product of some fixed single particle position space N.

Now consider the subset 9Γ of variables which are just sums of identical single
particle components. We may introduce component-wise multiplication as a
composition law within 9Γ, and consider the resulting algebra as our classical
algebra of variables. Both the Poisson bracket and Y will map the subset 91' to
itself if and only if these decompose into identical components as well:

Ω= Σ Ωa, Y=ΣYa. (3.5)a,
β=l

In this case the vectorfield Y will only describe the motion of particles in
external fields. These are coupled in the same way to any single particle, as is
apparent from (3.4). However this is just the situation met in relativistic particle
physics. As far as the gravitational field is concerned, this fact is expressed by the
"principle of equivalence", whereas for the electromagnetic field it is known as
the "principle of minimal coupling". The quotient manifold N should then be
interpreted as the space-time of general relativity. From this point of view the
principles mentioned above do not have to be postulated separately, but result
as a necessary consequence if we insist upon a unique space-time interpretation
of canonical systems.

In this interpretation states will not describe ensembles but actual distributions
of matter. If we wish to describe interactions as mediated by the classical fields,
both the canonical structure and the vectorfield Y will themselves have to depend
upon the particular state considered. Thus the dynamical law will no longer be
additive with respect to the addition of states, the additional terms representing
the effects of the interaction. In a subsequent paper [11] we shall develop the
theory along these line, concentrating mainly on the structure of 91. The notion
of states appropriate to the interpretation sketched here will then be introduced,
and a certain simple class of states is shown to describe the motion of relativistic
matter in an arbitrary external gravitational and electromagnetic field.

Appendix

For the definitions and theorems cited here the first chapter of [8] and [9] may
serve as a general reference. By differentiable we mean infinitely often differentiable.

Definition 1. A manifold is an ordered pair (M, 91) where
1. M is a connected Hausdorff space having a countable basis of open neigh-

bourhoods.
2. 91 is a set of continuous real-valued functions on M such that
i) for any point q in M there exists a set (Q1; i = 1, ..., m) of functions from 91

defining a homeomorphism of a suitable neighbourhood U of q with an open
subset of Rm:
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ii) on the neighbourhood U any function F in 91 may be written as
F = f(Q\ . . ., Qm\ where / is differentiable;

iii) a given function G on M is in 91 if and only if at any point in M it may be
expressed as a differentiable function of finitely many elements from 91.

The functions Ql of (2.1) are called coordinates at q; the ordered set (17, Ql)
is called a chart at q. The number m of coordinates is independent of q and called
the dimension of M. Let M be a space satisfying 1. A set of functions on M satisfying
(2, i) and (2, ii) is called a sufficient set. Given some sufficient set S, there exists
a unique maximal sufficient set 9ί containing S, and (M, 91) is a manifold ([8],
Chapter 1, 1). Most of the notions in differential geometry like differentiable maps,
submanifolds, vectorfields may be defined in terms of the algebra 91 or any sufficient
set. For a distribution K defined by some Lie algebra of vectorfields on M as in
Chapter 2 we call TV an integral submanifold, if

1. dφq:Lq(N)^Kφ(q)CLφ(q}(M) for any q in N,

where dφq is the differential of the injection φ:N-^M, mapping the tangent
space Lq(N) into the tangent space Lφ(q](M).

Integrability Theorem (local version) : Let M be a manifold of dimension m, and K
be a distribution of dimension m-n defined by some Lie algebra of vectorfields.
At any point in M there exists a chart (U, F1, ..., Fm) such that:

i) the functions F\ i= !...«, are integral functions in U, and any integral function
G in U may be uniquely expressed as G — g(F^, ...,F"), where g is differentiable;

ii) through any point in U there passes a unique maximal integral submanifold
in U defined by an equation a = (al, ..., an) = (F1

9 . .., Fn) for a in some open subset
V(U)ofRn;

iii) on any such submanifold I the functions Fn + i, ...,F" define by restriction
achart(UπI;Fn+\...,Fm).

Integrability Theorem (global version). Let M be a manifold, and K a distribution
on M defined as above. Through any point in M there passes a unique maximal
integral submanifold I. Any differentiable map to M which takes its values in I
defines a differentiable map to I.

For both versions we refer in particular to ([10], Chapter III, §VΠ, VIII, IX).
It is not difficult to see that some function in 91 is an integral function if and only
if it is constant on any maximal integral submanifold.

Proof of Proposition 2.2. Let ([/, A\ Y(Ak)) be a chart at p. By the local version of
the integrability theorem the functions Y(Ak) are coordinates at p on p*. It is
not difficult to see that the set of functions (A1, Y(Ak)) is independent if and only if
the matrix ({A\ Y(Ak)})ik is non-singular. However this matrix has elements
constant on p*, thus the functions Y(Ak) are coordinates everywhere. Choosing
functions B\ i = 1, . . ., m from 9ί0 such that at p:

equals the unit matrix (δik) we obtain for the corresponding groups φk generated
by the fields ξdBk

φ^(Y(Ai))=Y(At) + t ^lί on p*, t in R.
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Finally let q, p be points on p* such that Y(Ak) (p) = Y(Ak) (q) for all k. Joining
q and p by a curve γ, we may deforme this curve by means of the groups φ\ such
that Ύ(Ak) = Y(Ak) (p) everywhere on y. Hence all tangentvectors defined by y
vanish, and p = q. QED.

Proof of Proposition 2.3. Let F* and W* contain p*. We have to show that F*n W*
contains some neighbourhood F0* of p*. This is obvious if V and W are contained
in some common open submanifold UF of M, where the local version of the
integrability theorem holds (Frobenius chart). If they are not, join any two points
p in V,q in Wby a curve on p. Covering this curve with a finite number of Frobenius
charts UF, we obtain a finite sequence of open sets Vr\ r=l, ...,s; where Vί = V,
Vs= PFand any two Vr,Vr+ΐ are contained in some common UF. The result follows
by finite induction. The projection p->p* of M to M* is continuous, hence M*
is connected Any function A in 2I0 is constant on p*, hence defines a function A*
on M*, which is easily seen to be continuous. To show that M* is Hausdorff,
assume that J^*nPF* = 0 for any two neighbourhoods of (f and p*. It follows
that A*(q*) = A*(p*) for any A in 2I0. Let (t/,^, Y(Ak)) be a Frobenius chart in
Vq at g. The functions Ύ(Ak) are coordinates on p*, and there exists a unique
point p on p* such that Ύ(Ak) (q) = Y(Ak) (p) for all fe. Choosing an arbitrary
Frobenius chart (W,A\ Y(A)} at p, we can find an integral manifold pf passing
through both U and W. This manifold contains a unique point P! such that
Y(A*)(pί)= Y(Ak)(q), which is hence contained in both U and W. Since M is
Hausdorff, we have q = p, and hence q* = p*. QED.
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