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Abstract. We propose a constructive approach to φ\. It is based on formu-
lating the φl theory as an implicit function problem using multiplicative
renormahzation. For the corresponding lattice formulation we reduce the
problem to verifying three conjectures. One conjecture is a regularity con-
dition. The remaining two concern properties of the classical Ising ferro-
magnet, one of which we discuss in the frame work of critical point analysis.

I. The Approach (Formal Considerations)

In recent years constructive field theory has made tremendous progress by using
euclidean methods (see e.g. [12,13, 22], and the literature quoted there). However,
so far only superrenormalizeable theories have been successfully treated, since
the techniques involved mostly rely on additive renormahzation. In this article
we propose the use of multiplicative renormalization. We have the philosophy
respectively the rigourous result in mind that in perturbation theory additive
renormalization, multiplicative renormalization and the BPHZ formulation are
equivalent (see e.g. [14,23]). Now in the φ\ theory there are three renormalization
constants entering the multiplicative renormalization procedure

(i) the mass counterterm δm2

(ii) the amplitude renormalization constant Z 3 ^ 0 ;
(iii) the vertex function renormalization constant Z 4 ^ 0 .

On the other hand, there are three normalization conditions for the theory.
Two involve the point function and one the four point function. Our central idea
is simply to try to determine the renormalization constants for given normaliza-
tion constants. Now usually the relativistic two point function is normalized by
requiring a pole with residue 1 at (relativistic) p2 = m2>0. Since we are interested
in formulating and solving the theory in the euclidean framework, we will instead
work with the intermediate renormalization [2] or more precisely a generalization
of it. There the two point function is normalized at p2 = 0. We note that in per-
turbation theory, it is irrelevant, where the normalization is done (see e.g. [14]).
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Formally our theory will thus be given as follows. Let φ be the euclidean field,
i.e. for each /e^ ' (IR 4 ) , φ(f) is the linear function

on ^'(IR4). Here <,> denotes the canonical pairing on ^'(IR4) x ^(IR4). We
write φ(f)= J φ(x)f(x)dx. The φ% theory is then given in terms of its euclidean
Green's functions which are the moments of a euclidean invariant measure μ on
^'(1R4). dμ is given by normalizing

- λZ4 r.Φ4\ (x)dx + ~^S\Φ2: (x)dx

dμ°Z3,m). (1.1)

Here dμ°{Z^m) is the Gaussian measure on ^'(1R4) with covariance (Z3( -Δ + m2))~ι

where A is the Laplacian on 1R4 and m2>0. \ \ denotes normal ordering w.r.t. μ,
thus

and

φ\x)\ = Urn {φ(xί)φ(x2)φ(x3)φ(x4)
Xj ~>X

- (φ(x1)φ(x2)φ(x3)φ(x4)}}

and we have written

If we write

φ(p) = (2π)~2 J φ(x)eιpxdx (pelR4; p x euclidean scalar product)

the normalization conditions are

Δ{p)-1 = {2π)~2(φ{ϋ)φ{p)y1πp2 + m2 (Intermediate renormalization) (1.2)

(p2 small)

and

^ f ); φ(0); φ(0)}Δ(0)-* = λ (1.3)

(λ= renormalized coupling constant).

Here (Aί;A2',...',Any denotes the n-fold truncated expectations (w.r.t. μ) of the
random variables A1,...iAn. We note that m2 in (1.1) is then not necessarily the
physical mass. Also Z 3 is then not necessarily smaller than 1. Now define

y3 = -(2π)6<#)); φ(0); φ(0); φ(0))

= - <#)); f φ(x)dχ-9 f φ(x)dx; j φ(x)dx) . (1.4)
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Our aim is to construct a theory for certain prescribed y = (j; l5 3̂ 25̂ 3) 0 ;i>0)
in particular for y3 =4\λA(0)4. To understand the ansatz of the next chapter, the
following remarks are useful.

1) When y varies, (Z 3 , Z 4 , δm2) also vary. Hence we may equivalently consider
the measures μ parametrized' by (λ0, Z3f ε) (Aφ Z3 >0, ε reaJ) with

dμ= (Normalization) -ie-*o!Φ(χ)4dx+e!<nX)2dxdμoz^ ^ 5 )

i.e. we may drop the normal ordering. Thus μ runs through a set which looks
Hke(IR+) 2xR

2) y^y^ a n d ^3 have the dimensions (cm)2, (cm)4, and (cm) 4 + J respectively
m and λ have the dimensions (cm)" 1 and (cm)d~4 respectively. Here d denotes the
euclidean space dimensions (in our case d = 4).

3) };3>0 guarantees that μ is not Gaussian, i.e. the theory is non-trivial (for
a lattice proof see [17]).

4) The above set of measures satisfies the Griffiths and Lebowitz inequalities
(and many more) (see e.g. [1, 22]).

in particular

(φ(x)φ{x')}^0 for all χ,χ'

and thus due to translation invariance

\^y1 sup|/(χ)| \\g{x')\dx'

(1.6)
with

11/11 = max (sup|/(x)|J|/(x)|dx

being an ^(IR4)~norm. Hence the two-point function is a tempered distribution
and by an extension of the Lebowίtz inequalities due to Glίmm and Jaffe [8], the
higher moments of μ satisfy axiom (EO') of [18].

5) (Z 3, Z^δm2) may be expressed in terms of appropriate moments of μ(see
e.g. [20], and the authors contribution in [12]).

Now these considerations are highly formal, so what we intend to do is to
look at the corresponding formulation in a lattice theory. We will take a lattice
on a torus in d dimensions. This guarantees translation invariance. Thus for fixed,
y in a certain set ^ the problem will be to solve the relations corresponding to
(1.4) on the lattice for all sufficiently small lattice spacings a and all sufficiently
large tori.

Due to estimate (1.6) and the remark following it, this will for each n give a
uniformly bounded family of euclidean Green's functions of order n in ^'(!Rd").
Considering a convergent subsequence we obtain (as in [8]) a limiting family of
distributions satisfying (EO') [18] and which by Minlos' theorem (see e.g. [11])
are the moments of a unique measure μ on &"(Rd). It remains to verify the other
euclidean axioms and to prove the nontriviality of the theory thus obtained. The
last property would follow, if relations (1.4) on the tori would in the limit lead
to relations (1.4) for the limiting theory. This has been shown in a second
paper [21].
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We have at the moment no idea how to prove the uniqueness
of (1.4) for the lattice case. Such a result would be very welcome,
show that the normalization uniquely fixes the theory and hence

of the solutic~
since it wou+

coincides wit
the theory discussed in perturbation theory (as e.g. in [24]). Finally we note tha
we expect only two physically relevent parameters, the mass and the coupling
constant. This, however, is consistent with the above picture: We say that two
measures are physically equivalent, if there is a constant ρ > 0 such th^t the cor-
responding euclidean Green's functions of order n differ by the factor ^". This is
a renormalization group relation of the simplest form.

A slightly different approach was suggested by the author at the 1975 Marseille
conference on Mathematical Methods in Quantum Field Theojry [12]. We sug-
gested to solve φ\ by a combination of an implicit function theorem and a fixed
point problem. However, we consider the present approach more amenable.

Implicit function arguments have also been emplyoed by Baker in the similar
context of determining δm2 for given physical mass ([1], see also [19]).

We note that our present approach is suited for the single phase region.
However, this discussion may also be extended to cover the (expected) two-
phase region. Without going into details, we outline the idea:

Add a term h j φ(x)dx to the exponent entering μ and let y4 be given ^s the
magnetization <φ(x)>. Also yx and y2 are now defined using the truncated two-
point function. Then the problem is to construct a theory for given yi(ί=l ..A)
0>i>0, i= 1, 2; y3i^0). Spontaneous magnetization and hence the existence of (at
least) two phases would manifest itself in the fact that for certain given yi(i=ί... 3),
y4 cannot take values in an interval symmetric around y4 = 0, except for y4 = 0.

II. The Lattice Theory

In this chapter we go the first steps in solving φ\ on the lattice. We assume the
reader to be familiar with the euclidean formulation of φ\ on the lattice (see e.g.
[13,22,23]).

Let OΓ be a unit lattice on a torus in d dimensions, i.e.

where Έn denotes the set of integers modulo n. (For technical reasons we will
d

assume all ne to be odd.) \3Γ\ = Y[ ne is the number of points on 3Γ. These points
e = l

we denote by Uj... and we also will call them modes adhering to the physical
picture.

d

For i = (h...id);j=(ji -'jd)ε3r we let (i-j)2= £ (ίe-je)
2 be the translation

e=l

invariant distance square on &~, with (ie —je)
2 = Min(|ίe — j e \ 2 , (\ie —je\ — ne)

2)
(0^ίeJe^ne— 1). Two points i and j on 3Γ are called nearest neighbors (N.N.), if
(ί— j)2 = 1. In d dimensions, obviously each point has Id next neighbors whenever
np > 2 for all e.
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Now for each 2Γ and each α = (α1? α2, α3)e!R+ x IR+ x IRwe define a probability
measure μ on R | i Γ |

dμ{{xj}jer)= ^ Π ^* '* 'Πe~ β l * ί + α 3 * ? <fci ί2-1)

Here and in what follows N will always denote a normalizing factor which
makes the measure in question a probability measure. The measure (2.1) is a
discrete version of [1.5] (see e.g. [13, 22]).

Again < > will denote expectations w.r.t. μ. Now to each (5\, α) (α>0, the
lattice spacing) we define a C^-map T = T(^9 a) from R + x 1R+ x 1R into (1R+)3

y3=yja)=-a* + d—- ( Txil Σ*h Σ Xk> Σ * i ) (2 2)

The relations y1 ^ 0 ; ^ 2 ^ 0 are a consequence of Griffiths first inequality; y3 ^ 0
follows from the Lebowitz inequality (see e.g. [22]).

The following quantities will play a role in our discussion

(23)

~, a) is the volume and D(&~, a) the mean square distance. If £Γ goes to infinity
in a regular sense (say ne = n->αo) then with

7(5", α) ^ , w /
-d > oo also 2 > °°

and (2.4)

— -> oo (d ̂  3) uniformly

for all 0 < α ^ α o . Here a0 is arbitrary but fixed and plays the role of a unit length.
Our main result is the

Main Theorem. Suppose the 3 conjectures listed below are true.
Then there is an open manifold 0> in (1R+)3 with the following two properties
(i) The set {y\yί ^ 0 , y2 ^0, y3 = 0} is contained in the boundary d& of 0>.

(ii) Any yoe0> is in the image of T(&~9 a) for all large V(&~, a).

To start the proof, we analyze the image of the boundary of 1R+ x 1R+ x 1R
under T=T (5~,a) as well as the image at infinity. We set

Mγ = {y = T(a)\a2 = 0; αx >0, α3 real}.
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This situation corresponds to a theory of uncoupled modes.

j?2={y=T(oc)\ocί=O; - α 3

This situation corresponds to the so called Gaussian measures of ferro-
magnetic type [13]. That M2 is well defined will follow from the discussion below.

Proposition 2. Jίγ is the set of all yelR3 with

yi>0; y2=0; 0 ^ 3 <2ad(yi)
2 (2.5)

and T defines a diffeomorphism of

{α |α 2 =0; α 1 > 0 ? α 3 real}

onto Jίγ.

Proposition 3. Ji2 is the set of all y with

yt>0; 0Sy2<D(^a)yί; y3=0 (2.6)

and T defines a diffeomorphism of

{α|α 1 =0, — α 3 > d α 2 ^ 0 } onto M2

We prove Proposition 2 first: For uncoupled modes we have

^3 = ̂ 3(^1.0. «3)= - a 4 + \ x ; x; x; x)'

= - f l

4 + d « x 4 y - 3 « x 2 y ) 2 ) (2.7)

where < >' denotes the expectation w.r.t. the probability measure on IR given by

dρ(x) = N~ί exp( —α 1x 4+α 3x 2)rfx .

We claim that the map 1R+ xlR->(lR+)2 given by (oίuoί3)h^(y1,y3) in (2.7) is
a diffeomorphism of ΪR+ x IR onto the image of this map. In fact, let

dw dw
Then —- ^ 0 ; — L ^ 0 by Griffiths second inequality and

da1 coί3

by Schwarz inequality. The inequality is even strict, since equality would imply
x 4 + τx2 = const a.e. for some τ which is impossible. Thus the map (α l 5 α 3 )Kw 1 } w 3 )
is a diffeomorphism of 1R+ x IR onto the image due to the following lemma, a
proof of which we present in the appendix.
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Lemma 4. Let S be a C^-map from 1R+ x 1R into lR2:x = (x1, x2)^y = (yi>y2) suc^
that

| ^ > 0 for all ί,j.
dxj ~
Then S is injective and hence a diffeomorphism of 1R+ x IR onto the image if

and only if S is everywhere locally injective, i.e. of maximal rank 2 everywhere.

Next the map w = (w1,w3)\->y = (y1, y3) defined by

yi = w1

y3= — w3 + 3adw\

is a diffeomorphism of IR2 onto IR2. This proves that the map (α l5 a3)*-*(yι,y3) is
a diffeomorphism of R + x R onto the image. To determine the image, we note
that by Schwarz inequality and j ; 3 ^ 0 w e have

and Proposition 2 will be proved, if we can show that w3 runs through the whole
range given by (2.8) wι stays fixed. Now we have

w 3 (α 1 ,α 3 )-(α' 1 rw 3 (

and thus

By Schwarz inequality

and

lim w1(l,α/

3) = 0; lim w1(l,α/

3) = oo .
α 3 -> — o o α'3 ->• 0 0

Hence α3h>w1(α/

3) = vv1(l,α3) is a diffeomorphism of IR onto IR+ and hence we
may take a\ and wί as new variables. But then we may also take w1=a\wi and
wx as new variables. We write w3(l, α/

3) = w3(w1). Thus by combining (2.8) and
(2.9) we have to show that w3(w1)w^2 runs through the interval (ad, 3ad). By going
back to (2.9) again it is sufficient to show that w3(α l 5 α3)w1(α1, α 3 ) " 2 runs through
the interval (ad, 3ad) when <xι and α3 vary. Now the upper limit is attained when
αx = 0 (since then y3 =0). Also the lower limit is attained when £-• + 00 with a1 = t,
a3=2tτ (τ>0 arbitrary). This concludes the proof of Proposition 2.

We turn to a proof of Proposition 3. Let ZΓ1 be the lattice dual to ^~, i.e.

2π
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We define

\ J I i,je$~

such that

<XiXj>= Σ

Now

e= 1

This follows from the fact that

d

e= 1

are the eigenvalues of the matrix

with

N N ίl / and j next neighbours
1>J" \ 0 otherwise

and standard calculations on Gaussian measures. Inserting (2.10) gives

a2

— ;oc'=-a3-da2

a2 a2

(2.11)
a4

 y (i-j)2 cosq{i-j)
2

Now for given 3;x and hence a' we have y2{&\ oc2 = 0) = 0 and

Hence for fixed y1 we see from (2.11) that y2 covers at least the interval

To see that exactly these values are taken we show that y2 is monotone in α 2 for
fixed α'. Indeed, after some elementary computation using the definition of (i— j)2

we obtain

Σoy2

da2

(Note that the rce are assumed to be odd.)

α'fixed e=l p=, , „, , .. I { _ Q Q S
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This expression is positive since

pπ
cos —

α' + α,
)\

is monotone decreasing in p in the relevant range. This concludes the proof of
Proposition 3, since by the last arguments we have also shown that

everywhere.
<3(α2,α3)

We now turn to an analysis of the image at infinity.
For this purpose we introduce two new sets Ji3{t) and JiA{i) depending on

the parameter ί > 0 :

and we are interested in the limiting sets when £-• + oo. To determine these sets
we introduce new variables

α, =

α 2 = t (/J^O /^real) (2.13)

and

^2 = 72 (7 2>0;7 3real) (2.14)

and by abuse of notation we rewrite the measure μ = μ(a) in (2.1) as μ(t, βl9 β3)
and μ(t, y2, y3) respectively. It is easily seen that for ί-> + oo we obtain limiting
measures μ3(βu β3) and μ4(y2, y3)(y3 >0) respectively such that

This corresponds to the situation where all modes are coupled infinitely
strongly to each other: The system has essentially only one mode of freedom.

Also

dμ4(y2,y3) = N~1 Y\ eγ2Xi

iJN N. ie3>
X

This is nothing but an Ising ferromagnet on 2Γ with σ{ = —ϊ= = ± 1 as spin
1/7

variables and J — y2y3>0 as interaction strength. Thus we have the following two
lemmas.
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Lemma 5. Jί3 = lim Jί3{i) consists of the points yelR3 of the form

)(x2y' (2.17)

where <( >" denotes the expectation w.r.t. the measure κ=κ(βί, β3) on 1R given by

dκ(x) = N~ι exp(-jS 1x 4 + j53x
2)dx; βx>0, β3real. (2.18)

dy dy

Note that — - ^ 0 and —r1 ̂ 0 (ί = 1, 2) by Griffiths second inequality.

Lemma 6. Γ/zβ set JίA= lim ̂ #4(ί) consists of all j/eIR3 o/ ίftβ /orm

y 2 = M y 3 ! J ) = α 4 ^ ( Σ ( i - / ) 2 ^ ^ (2.19)

G; , / (J; I / (Tt , /

J

where <( ) j denotes the expectation w.r.t. the Ising model on ^Γ with coupling
strength J.

From the proof of Proposition 3 we have the

Proposition 7. ^ # 3 consists of all points yelR3 o/ ίfê  form

(2.20)

We turn to a discussion of

First we note that — >0(i=l, 2, 3) due to Griffiths first inequality and the
da

Lebowitz inequality. Also ^ ^ 0 0=1,2) due to Griffiths second inequality.

Setting J = 0 in (2.19), we have

y1(y3,J = 0) = a2γ3

y2(γ3,J=0) = 0 (2.21)

^ 3 ( r 3 ) J = 0) = 2);|α4 + 'i

which are points in .Ji^. For J-> oo we obtain the following points in Jϊ^.

) (2.22)
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Collecting these informations on Ji{ (i— 1,2, 3,4) we obtain

Jli c\J(2 = {y \y t > 0, y2 = y3 = 0} (2.23a)

Jϊ2r\Jί3 = {ylyi^Q;y2 = D(^, a)y1 y3 =0} (2.23b)

)j;?} (2.23c)

= 0; y3=2ady\}. (2.23d)

The last relation follows from the fact that y1(y3,J)>0 and y2{y^ J)>0 for
y 3 > 0 and J > 0 due to Griffiths inequalities and the analyticity in J. We would
like ^# 4 , which is connected, to have properties similar to those of Jt{ (i = 1,2, 3).
More precisely let π:IR3-»IR3 be given by n(yuy2,y3) = (y1,y2,0).

Conjecture 1. π restricted to M^ defines a diffeomorphism of Jί4 onto J(2. Thus
Jt4 is a manifold (with boundary) of dimension two and relation (2.23c)
is an equality.

Conjecture 1 says in particular that the tangent vectors - — y and —y to JiA

dy3 dJ
are everywhere linearly independent and the C°°-map defined by (2.19) is a dif-
feomorphism. With this conjecture the set Mγ vjJi2yjJί3uJί^ forms the boundary
dK of an open (nonempty) set K = K(^~, α)C(lR+)3. Due to the construction of dK
wê  exp£ct that K is in the image of T Or speaking in geometrical terms we expect
Jί^Jί^ to be the complete image of infinity. Indeed, we may prove this under
the additional conjecture:

Conjecture 2. For all (iΓ, a) the map T= T{?Γ, a) is everywhere locally injective, i.e.
has maximal rank 3 everywhere.

Theorem 8. // conjectures 1 and 2 hold, then K = K(^ a) is in the image of
R + x R + x 1R under T = T{&~9 a) for every T = T{^9 a).

The proof will be given in the next chapter. Actually we expect K to be the
entire image of % but for our purpose the statement of Theorem 8 is sufficient.

Now 'ύJί^ZΓ, a) does not move too much towards J(2(βΓ, a) when V(βΓ, α)-»oo,
K(β~, a) will stay sufficiently large and we may prove the main theorem. More
precisely we make the

Conjecture 3. There is a two-dimensional C™-manifold Jί5 (independent of (3Γ, a))
with a boundary consisting of {y\y1 ^ 0 ; y2=y3 = 0} and a smooth curve on
{y|y1 = 0, y 2 ^ 0 , y 3 ^0} , having the following properties

(i) y^O ( f=l,2, 3) for all yeJί5 and ^2>0 implies y 3 > 0 . π defines a dif-
feomorphism of Ji5 onto {yly^O, y 2 ^ 0 ; j ; 3 = 0 } .

(ii) The relations y = (yl9 y2, y3)ε^s and y'={y^yi^y'^J(^{^ a) imply y3 < / 3

for all large V{&~9 a).

Note that Conjecture 3 is a statement about the Ising model. Geometrically
speaking it says that

J X 7 d e f J

lies between Ji2(β~, a) and JίA{?Γ, a) for all large V(2Γ9 a).
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We note that Conjecture 3 is the physically most interesting conjecture. It
says that in the thermodynamic limit the Ising model does not fall into the
Gaussian theory. Thus it relates φ\ and the corresponding Ising model directly.
To check Conjecture 3 it would of course be sufficient to know the form of

Jϊ? = lim JtάF, a)
V(3r,a)-+oo

(if it exists). Now in the thermodynamic limit, the behaviour of the Ising model
near its critical point should determine the shape of Ji™. In the Appendix B we
present such an analysis of Ji% based on standard assumptions for the correlation
functions near the critical point (as given e.g. in [7]). This discussion relates our
approach to and supports recent efforts by Glimm and Jaffe on φ4 [10], see also
the discussion in [15].

In particular we obtain the result that for Conjecture 3 to be valid, the
Buckingham-Gunton inequality ([4, 6]) has actually to be an equality.

This again would be a consequence of the scaling hypothesis (see e.g. [5] for
a discussion of this point in the Ising model).

With our result and conjectures at hand, we may now prove the main theorem.
We define 0> to be the open set in (R + ) 3 having J(5, {y\yγ^0, y2 ^ 0 , y3 =0} and
the appropriate part of δ(IR+)3 as boundary. Let also K!(β~, a) be the set having
Jt2{,&', ά)κjJί5(βί, a) and the appropriate part of Jiz{?Γ, a) as boundary. By Con-
jecture 3

Now any yoe0> is in K'(3Γ, a) for all sufficiently large V(&~, a). This follows from
Conjectures 2 and 3 and the established properties of Ji2{^, a). But then y° is
also in K(έF, a) so the main theorem is now an immediate consequence of
Theorem 8.

We conclude this section with a remark. We expect the map T=T(&~,a)
always to be one-to-one. For this to be true, it is of course necessary that Con-
jecture 2 be valid. Conversely, it would have been convenient to have the analogue
of Lemma 4 for higher dimensions. This would have enabled us to deduce injec-
tivity from local injectivity, which is Conjecture 2 (see the proof of Proposition 2).
Unfortunately, however, such an analogue is not valid in higher dimensions [3].

III. Proof of Theorem 8

For given y°eKwQ will construct a 2-dimensional C°-manifold 5clR+ x 1R+ x 1R
without boundary such that T(S) "encloses" y°. y° will then be in the image of T
using arguments from singular homology theory, in particular a three dimensional
version of the winding number. (The author would like to thank R. Bott for a
discussion on this point.) The strategy for constructing S will be as follows: Let

/ = dist(y°, dK)>0 y = imin(/,j;?). (3.1)
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S will then be the union of C^-manifolds (with boundaries) «yfj(i = 1... 6) such that

(1) T(jrύCJti{i = U2) (3.2)

(2) dist(n^),.^)^(i = 3,4) (3.3)

(3) y^yl for all yeT(^5) (3.4)

y0

1<yi for all yeT(jr6). (3.5)

> ; and Γ(yΓ4) will have "corners" α(fc) and y{k) = T(α(fc)) respectively (fc=1...4).
Λ^ and T(yΓ2) will have "corners" a(k) and y(/c) - T(α(fc)) respectively (fc = 5... 8). Also

Furthermore for the curves IUik) = JΓjnJfk we will have:
The boundary cU^ of J ^ is (J / ( J k) (Hence S will have no boundary). With

j

the exception of / (i, 6 ), (̂2,6)» a n <^ ̂ o,6)' e a c n ĵ,/c) i s either empty or a closed
interval of a straight line in 1R3.

From these properties of course the desired structures of S and T(S) follows.
We note (without mentioning it further) that Conjecture 2 will be used to ensure
that the Jf{ are twodimensional manifolds.

We start by constructing J^9 I{4J) (/= 1, 3, 5, 6) and y{k) (k=ί ...4). For this
we need some preparation.

Let first

α(s, t,u) = (ccί = t, α2 = s, α3 = 2ta(u) — ds)

a(u) = (l—u)a1+ua2

y{s9t9u)=T(φ,t,u))

(3.6)

where aί>0 and α 2 > 0 will be fixed in a moment. Rewriting the probability
measure (2.1) in terms of (s, t, u) we have

- - Y (x.-xΫ-t y (xf-a{u))2

dμaxjhr^N^e 2 .£«• •- dxt. (3.7)

Next write

y'(t,u)=y(βi = t\^\,β2=2t\^\a(u)) (3.8)

[see (2.17)]. Then y is obtained from the measure [see (2.17) and 2.18)]

dκ(x) = N~1 Qxp(-t\3T\x4 + 2\3T\ta(u)x2)dx

= N-iexp(-t\3r\(x2-a(u))2)dx. (3.9)

Also let [see (2.19)]

y'(s, u) = y(γ3=a(u\ J = a(u)s). (3.10)

Comparing (3.7)—(3.10) the following lemma follows easily
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Lemma 9. With the notation as above and fixed α1? a2 >0

limy(s,t,u) = y'(s,u) (3.11)

lira y(s, t, u) = y'(t, u) (3.12)
s—• oo

uniformly m0^s<oo, O^w^ 1, and 0^ί<oo, Orgw^l respectively.

Now we fix ax and α2 by [see (3.1)]

7
α 2 = - ^ . (3.13)

Then we have

yϊ
y\(s,O)<y< —4

for all 0^5<oo by Griffiths' second inequality [see (2.21) and (2.22)]. Let now
s0, ί0 be so large that

\y(s9t9u)-y'(s,u)\<^ t^t0; 0 ^

(3.15a)

. (3.15b)

Now we define

\y(s,t9u)-y'(t,u)\<^; s^so;0^

(3.16)

Due to (3.15a), relation (3.3) is valid for i=4, and from (3.14) we have

s) ( 3 1 7 )
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To construct Jί3, consider the points jp'(t0,0) and f{t0,1) in Jί3. By (3.15b) we
have

|j}'(ίo,0)-y(so,to,0)|<|

\y'(t0, l ) - y ( s o , ί o , l ) | < | .

Combining this with (3.17) and (3.18) we have

Thus, by continuity, there is tί <t0 such that

(3.20)

(3.21)

Now choose a3 <0 such that

yϊ ( 3 2 2 )

for O^t^tι and set α4 = (t0 —ί1)"1α3. Then by Griffiths second inequality the
combination of (3.20) and (3.22) gives

M I - n ^ o l . T K + t i o - f K ^ i y ? for all 0 ^ ί ^ ί o . (3.23)

Next with the help of the proof of Proposition 2 it is easy to construct a
C°°-curve t^β3(t) (05Ξί5Ξίo) with the properties

Now set

+ uβ3(t) (3.25)

and let

nt,u)=y(β1 = t\^\,β3 = β3(t,u)).

Also define

α"(s,ί,w)= ία1 = f,α2=s,ot3= j ' " -dsj

y"{s,t,u)=T{a!'{s,t,u))
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and let sί be so large that

\y"(s9t9u)-y"(t9u)\<^ forall s^sί9 O^t^t0, O^w^l. (3.27)

Now let s2 = Max(s0, sx). Due to (3.15b) we have

ϊ (3.28)
09u)y(tΌ,u)\^

for all s^s 0 , O^w^l . By construction

y{sθ9tθ9u) = y"(sθ9tθ9u).

Hence by continuity and compactness arguments there is t2 < t0 such that

\y"(s9t,u)-y'(t,u)\^h (3.29)

for all s0 ̂  s 5Ξ s2, all t2 S t ύ to and all 0 rg w ̂  1.
Now define

α"(ί, u) = a" is = s0 + — (s2 - sΌ)919 u

y"(t,u)=T(a"(t,u)).

We set

α ( 5 ) = α//(O,O);3;(5) = /(O,

( ) (3.30)

Also / ( 3 4 ) may be rewritten as J ( 3 4 ) = {α = α"(ί0? w) |0^u^l } . By (3.27-(3.29)
we have dist (T(^Γ3), ^ # 3 ) ^ | y proving'(3.3) for z = 3. Combining (3.23), (3.24) with
(3.28) and (3.29) gives

5) ( 3 3 1 )

6)-

We turn to a construction of Jί5, α ( 7 ),y ( 7 ), / ( 1 5 ) and I{2,5y F i r s t w e define

where α5 < 0 will be fixed in a moment. Let Jί5 be the manifold connecting 7(1 5 )

and 7(3,5), i e define

"{U 0)}
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Setting y(t,v)=T(ά(t,v)), we have T(J^5)={y(t,v)\0^t^to;0<.v^l} and we let

α ( 7 )=ά(0,0); y(7) = Γ(α(7))=jί(0,0)

=(0,0, α5)

and we may rewrite /(i^), ^3,5)5 and I ̂ 5) as

By Griffiths second inequality and by analyticity, y^t, v) is strictly increasing
function of a5 for any fixed t<t0 and υ<ί. Also by (3.17) and (3.31) there is t3<t0

and v1<l such that

andal lO^t ^ l
Ό

1 for ι ; x ^ι;^l

if we choose α5 = — 1 say. Hence by standard compactness arguments, there is
a5 !§ — 1 sufficiently negative such that

y?) for all O ^ ί ^

O ^ ϋ ^ l . (3.34)

With this choice of α5 we have therefore proved (3.4).
Next let ίπ>α3(ί) ( 0 ^ ί ^ ί o ) be a C00-curve such that
(i) α 3 (0)<0;α 3 (ί 0 ) = 2ί 0 α 2 ,

(ii) y(t)=ΆS(ή),
where α(ί) = (ί, 0, α3(ί), satisfies

¥y? f o r a 1 1 O^^ίo (3 3 5)

[compare (3.18)] and let s^a3(s) (0^5^α^ 6 )) be a C°°-curve such that

(i) α3(0) = α3(0),53(46 )) = α3

6)

?

(ii) j?(s)
with α(s) = (05 5, α3(s)), satisfies

(3.36)

[compare (3.3O)-(3.31)].
Using the proofs of Proposition 2 and 3 it is easily checked that such α3( )

and α3( ) may indeed be found.
We set
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Note that a5 <α3(0) due to (3.34), (3.35) and Griffiths inequality.

We define Jίλ to be the area contained in the hyperplane α2 = 0 enclosed by 7 ( l j 2 ),
7(1 >5)5 /(i>4), and 7 ( l j 6 ) such that T(Jf^)Q_Jiv Let Λ^ be the area enclosed by

J(i 2)? (̂25)5 (̂2 3)) a n d ^(26) contained in the hyperplane α x = 0 such that
T ( > 2 ) C > 2 .

Thus we are left with a construction of yFg satisfying (3.5) and having prescribed
boundary Γ = / ( 1 6 ) u / ( 4 6 ) u / ( 3 6 ) u/ ( 2 > 6 ) . The construction will be geometrical. The
delicate part comes from 7 ( 2 ? 6 ) since T(α) for ocί =0 is defined only when — α3 >dα 2 .
However, by continuity there is a "tubular" neighborhood [70 of 7(2 6 ) in
R + x R + x 1R such that j ^ > f j J for ye T(U0). Looking at the geometry of Γ we
see there is a smooth curve Γ in Uo with endpoints α ( 9 ) and α ( 1 0 ) on 7(3 6 ) and
7(1 6 ) respectively having the following properties

(i) i n f α ^ O ;

(ii) Γ n Γ = {α ( 9 ),α ( 1 0 )};
(iii) If /' ( 3 j 6 ) and Γ{1 6 ) denote the "intervals" on 7(3 6 ) and 7(1 6 ) with endpoints

α(6), α (9), and'α ( 8 ), α ( 1 0 \ respectively, then7/

(3 j6),7/

(1>6)C E/o;
(iv) If α, αr are in Γ u Γ such that the relations αf = α (Ϊ = 1, 2) hold, then α = α7.

Set

A =^(2,6)^3,6)^^1,6)^^

A =^(4,6)^(^(3,6)V'o.β^^d.^Uα.β))

We then may find a smooth 2-dimensional manifold JίηCU0 having Γγ as
boundary. Therefore it will be sufficient to find a 2-dimensional C°-manifold Jf%
with boundary Γ2 such that

\\ . (3.38)

For then we may obtain a smooth 2-dimensional manifold Jί6 by smoothing
out Jf's = Jfη\jJf% while keeping the boundary Γ fixed and such that

for

is valid. Now to find J^8, let

2ί 4= infα^O
αeΓ2

t 5 = 2 sup αj <oo

s5 — 2 s u p α 2 > 0
asΓ2

Using Griffiths second inequality, continuity and standard compactness argu-
ments again, there is a6 > 0 such that y = T(α) satisfies y1 > ^y°x for all αe Q x (0, α6) C
(1R+)3. In particular for Γ3 = Γ2 +(0,0, α6) we may easily construct a 2-dimensional
manifold Jί9 CQ x (0, 2α6) having Γ 3 as boundary.
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Also we may assume, by possibly enlarging a6, that

jr9nΓ2=0. (3.39)

Next let

Since yi>iy*l for yeT(Γ2)9 by Griffiths second inequality again, we have

yx>hi f o r yeT(J^10).

Now by (3.37 iv) and (3.39)

is a C°-manifold with boundary Γ2 and satisfying (3.38). By the preceeding dis-
cussion, this concludes the proof of Theorem 8.

Appendix A

The proof of Lemma 4, which we present here is due to Th. Brδcker and
K. Janich [3]:

As a preparation we define a partial ordering on IR by setting x<xf if Xι<x'i

(i=l,2).

Lemma Al.Let S be a C™-mapping of an open convex subset B of IR2 into IR2 such
that with y = y(χ) = S(x) the relations

1 ^ 0 (i,j = 1,2); xeB (Al)

and

| l + | ! L > 0 ( , =l ,2) ; xeB (A2)
OX OXOXγ OX 2

are valid.

Then S preserves the ordering <.

Proof Assume x<x' and let

x(t) = x + t(x'-x) 0 = t = l.

Then

#)-^)= Σ ](χ'-χ
j=ι o

q.e.d.
Remark. Assume S has maximal rank 2 everywhere, i.e.

f ^ Φ O xeB. (A3)
d(xί,x2)

Then (A2) is a consequence of (Al) and (A3).
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To prove Lemma 4, assume there is x1 + x2 with ( ^ ( x 1 ) ^ ^ 2 ) ) . Then x1 and
x2 are not comparable with respect to <. In particular we may find x3 and x 4

with

x3 <xx < x 4 ; x3 <x2 < x 4

such that the x* (ί = 1... 4) form a parallelogram P. Now

L={yeR2\(y-S(x1))2=-{y-S(x%}

is a straight line passing through S(xx). Thus S " 1 ^ ) is a 1-dimensional closed
manifold, because S has maximal rank 2 everywhere. Write S~1(L)=[j yt where

the γt are disjoint curves without boundary. Choose i0 such that x1eγio. We claim
x2eyio. Indeed, since yio is without boundary, yio which has to cross dP at x1 due
to Lemma Al and the form of L, also has to leave P again. It cannot leave on
on 3P\{xx, x2}, again due to Lemma Al and the form of L. It cannot leave at x1

since then yio would intersect itself, which is easily seen to contradict local in-
jectivity. As a consequence S\yι is not injective on yio. On the other hand, an
immersion of a curve into a straight line is injective and we have arrived at a
contradiction. This proves Lemma 4.

Appendix B

In this appendix we present a heuristic discussion of Conjecture 3 on the basis
of the behaviour of the Ising model near its critical point J = JC. We make
assumptions similar to those given in [7]. Let ε = (Jc — J)J~1 (ε>0). Then asymp-
totically

. ^ - 2 ^ L ( £ r M ^ Ί (Bl)

Here

L(e) = Zoε-*(l+0(e)) (ε>0) (B3)

for some ZθJ w>0.
A(i,j, k, I) = length of the shortest graph which connects all the points z, j , k, I
χ4 is assumed to be non zero and homogeneous

^ A ^Uσω<χ4((U^,^) (B4)
ϋ σ σ)

ω 4 may then be calculated [7] to be

{3δ-ί){2-η)
( B 5 )

in the standard notation of critical exponents (see e.g. [5]). Then we obtain with
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l
Ί Θ^Uε)-1. L(Llarge):

ψ-' (B6)

- Σ <σι;σJ;σk;σιy^L'u-'0* J dξ1dξ2dξ3e-θΛ^^ ^)U(0,ξ1ξ2ξ3).

We insert this into (2.19), the parametric description of Ji^, and take yγ and Θ
(instead of γ3 and J) as new variables:

(B7)

({dζe'^ξ1-"]
\o /

with

(B8)

Relations (B7) give a parametric form of Ji^ with J ^ Jc. The relations (B7)
already lead us to expect that Conjecture 3 can only be true i f/^0. Now the
Buckingham-Gunton inequality ([4,6]) states that / ^ 0 . Hence / = 0, which is
a scaling hypothesis, is the best we can hope for. (For d = 2, this seems well
established. For d = 3, however, see the discussion in [5].) Indeed if / < 0 , that
part of Jί4 we just have described should move into Jt2 which is a Gaussian theory.
This conforms with the result in [7]. To see all this more clearly, we consider
that part oϊ Jί4 corresponding to J^O. Then Θ is large and we obtain

(B9)

(Θ large).
Eliminating Θ gives

(f + d) f+d

y3~(yi)2~ 2 (h) 2 a-'. (Bio)

Hence, if / < 0 , the short distance behaviour (i.e. the behaviour for α->0)
would be responsible for J(4 moving into Jt2-

For / = 0, (BIO) reduces to

h~(yi) 2(y2)
2 (BID
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and the (βΓ, a)-dependence has dropped out in first approximation. We note that
(B11) is in agreement with the result that given normalization of the two-point
function, the renormalized coupling constant is bounded in absolute value [9].

From (Bll) we also see that M4 moves closer to Jί2 with increasing d. Note
also the singular yγ dependence of y3 for d>4, indicating that then this approach
should fail. It would be interesting to know whether this is related to the non-
renormalizeability of φ\{d> 4).

We summarize our discussion as follows: Any nontrivial φ\ theory with not
too singular (euclidean) short distance behaviour should be obtainable by lattice
approximations. (Take e.g. the lattice field to be the euclidean field averaged out
over cubes.) Conversely a euclidean construction of a nontrivial φ\ theory through
lattice approximations can only succeed if Jί4 asymptotically does not fall com-
pletely into Ji2. For this to be the case it is necessary that the Buckingham-
Gunton inequality is actually an equality.

For d = 4, one should be rather optimistic. According to standard folklore (see
e.g. [23]), the critical exponents of the Ising model should already for d = 4 take the
values of mean field theory: δ = 3, η = 0.

Thus it will be necessary to check the influence of logarithmic corrections to
scaling.

An alternative discussion of Conjecture 3 has been given in [20]: The limiting
Ising model surface (i.e. the case 3~->Έd, α->0) takes the precise form

d.

Here

. ξd(T)χ2(T)

with

x(τ)= Σ
ield

χ(T)ξ2(T)= £ |/|2<σoσ,.>
ieXd

u4(T)= Σ (σo'>σύσj'>σk> ( T = Temperature).
j,k,leΈd

Hence the relation C(d)>0 is equivalent to Conjecture 3. It would be inter-
esting to try to determine the number C(d) numerically, say by high temperature
expansions.

The renormalization group techniques give a partial answer to what this
number is: Assume there is a fixed point g* in the coupling of the renormalization
group transformation which describes the critical behaviour of the Ising model.
Then C(d) is of the form g* +o(g*). Not surprisingly therefore C(d) is zero if this
fixed point is the Gaussian fixed point g*=0 [16].
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