Communications in
Commun. math. Phys, 49, 113—129 (1976) Mathematical
Physics

© by Springer-Verlag 1976

The Classical Limit for Quantum Dynamical Semigroups
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Abstract. We describe a class of single-particle quantum-mechanical dynam-
ical semigroups which, in the classical limit, give rise to Markov semigroups
on phase space.

§ 1. Introduction

The close connection between quantum-mechanical dynamical semigroups and
Markov semigroups has been considerably clarified recently. Both are particular
cases of an abstract theory of stochastic processes [1,2] and the latter can also
arise from the former by restricting to a special class of states called quasi-
classical or coherent states [3, 11]. As a new aspect of the connection we show
that one obtains Markov semigroups by taking the classical limit of certain dy-
namical semigroups in a suitable manner. The dynamical semigroups we start
with are of the type which arise in the weak or singular coupling limit of a quan-
tum-mechanical particle interacting with an infinite free reservoir [4, 5, 8, 9, 12,
13, 157, but we do not pursue this here.

We take the evolution of an open system to be described by a strongly con-
tinuous one-parameter “dynamical” semigroup

T(t)=exp{A~2Z+K)t}. (1.1)

on a Banach space V, called the state space. The unbounded operator Z is the
generator of a strongly continuous one-parameter group of isometries ¢ on V
which determines the free evolution. The bounded operator K describes a per-
turbation of a “stochastic” type due to the influence of the external world. For
reasons given in the references above we examine the asymptotic form of the
evolution in the (weak or singular) coupling limit A—0, where A is real. In typical
cases the effect of K integrated over all time is not finite, so the formalism of
scattering theory is not appropriate. Moreover T,(f) is generally a contraction
only for t =0, so we restrict attention to such times ¢t from now on.
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The quantum-mechanical applications arise by choosing V to be the space
T(H) of all self-adjoint trace class operators on a Hilbert space #, with the
trace norm. V is partially ordered and the dynamical semigroups of physical
interest are positivity-preserving and trace-preserving.for all t=>0. For simplicity
of presentation and generality we develop the theory at the abstract Banach space
level, and only return to the quantum-mechanical applications in Section 4.

§ 2. Evolution in the Interaction Picture

It has been shown in [5, 7] that if V is finite dimensional, there exists an operator
K'e #(V), the space of bounded operators on ¥, such that

iin?)e_’l_ZZ'Ti(t)z exp {K't}.
Such a result is also sometimes possible when V' is infinite-dimensional.
Theorem 2.1. Suppose that
lima™' [ e *Ke*ds=K" 2.1
a— o 0
in the strong operator topology. Then

lim e=**#T(t) f = exp {K" 1) f 2.2)

uniformly for t in any compact interval, for all feV.

Proof. This is Theorem 1.4 of [5] except for a slight change in the proof that
H,— in the strong operator topology.

We say that Z has pure point spectrum if there are o,eR and f,eV such that
Zfy=ion fy (2.3)
and the linear span of the f, is dense in V.

Theorem 2.2. If Z has pure point spectrum then the limit of Equation (2.1) does
exist in the strong operator topology.

Proof. We first show that for every aclR, Z has a “spectral projection” P, We
define

s
I);zs—l j' e—erwtxdx
0

so that [PS[ <1 and

lim PS f,= lim s~ ! [ ei=o%qxf,
0

§— 00 §— 00

=0, o) £, .
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Since lin {f,} is dense in ¥, P{ converges strongly as s—oo0 to an operator P,
of norm <1 such that

P, fu=0(o% ) f,.

It is clear that P, is a projection.
If

a
K,=a"' e #Ke*ds
(0]

then K, Il <lKl, so to prove strong convergence of K, as a—co it is sufficient
to prove it on a dense set. This is a consequence of

imK,f,=lima™" e #e™K f,)ds=P, K f,.
a— o a— o 0

In order to state the next result we define K to be Z-local if
lim [|[Ke? fl=0 24
1= oo

for all feV. It is easy to show that if ¥V is a Hilbert space, Z is skew-adjoint with
absolutely continuous spectrum, and K is compact, then K is Z-local.

Theorem 2.3. If K, is Z-local, K, commutes with Z and K=K +K,, then K
exists and equals K ,.

Proof. 1t is an immediate consequence of the definition that K% =0 and K} =K,.

Example 2.4. If 5 is a Hilbert space, V=7,(#), H is a self-adjoint operator on
A and

%t (g) = e~ iHtgeiHt 2.5)
then ¢* is a strongly continuous one-parameter group of isometries on V. If
o€V and

Keo=gotr[e] (2.6)

then K is a bounded operator on V for which K* does not generally exist. The
possibility of this example depends on the fact that 0 is not in the point spectrum
of Z but is in the point spectrum of Z*,

A different type of result concerning the asymptotic form of T;(¢) in the limit
A—0 is now treated. We define

Py=lima™ ! [ e %ds (2.7)

a— oo 0

if this limit exists in the strong operator topology. The existence of the limit if
e~ % is a unitary group on the Hilbert space ¥ may be established by spectral
theory. P, does not exist, however, in Example 2.4.

Lemma 2.5. If P, exists, it is a projection of norm one with range

Vo={feV:Zf =0}.
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Proof. If feV, then P, f=f and f lies in the range of P, Conversely if feV

a a
e lag e Bfds—a "t [ e Efds
0 0

<2ta '-0
as a— o, SO
e_ZtPof=P0f

for all t€R. Therefore fe V.
The following theorem is similar to one in [14].

Theorem 2.6. If P, exists and K, is the restriction of PyK to V, then
lim T(2) f ="' f (2.8)

uniformly for t in any finite interval, and for all feV,.

Proof..Given a>0 we denote by #  the Banach space of continuous V-valued
functions on [0, a] and by #7 the subspace of functions with values in V,. We
first establish that if ge %~ then

e~ 2 B y(s)ds

Oty

converges uniformly as A—0. By density it is sufficient to prove this when g is
continuously differentiable. In this case if

Al@)=a""' [e™#ds
0

then

i e~ A B g(s)ds =t AL~ 2)g(t)

0

t
— [ sA(A™2s)g'(s)ds
0
which converges uniformly as 1—0 to

t
tPog(t)— | sPog'(s)ds
0

= j Pog(s)ds .
0

Given f(0)e V, we define

fit)=exp(—=ZA2) T)(t) f(0)
so that f,e# and as in [5]

LH=fO0+A, f;
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where 5#,: W - is defined by
t
(H,9) ()= [ e #* " Ke** ™ *g(s)ds .
(1]

If ge#, then the above argument shows that #,g converges uniformly as A—-0
to #'g where W —W is defined by

(Hg)(t)= (j) Kog(s)ds .

Thus 4, converges strongly to # on the subspace #7, which is invariant for 5.
It follows by induction that 5} converges strongly to s#" on %, and hence that

fi=fO)+, f(O)+ A7 f(0)+ ...
converges in norm to

f=fO)+Af(0)+A#>f0)+...
as A—0, using the estimate

lopll <a" KW

But fe# is the solution of

f@O)=r0)+ '(f)Kof(S)dS
so f(t)=exp(K,t) f(0). It follows that

/llirr(x) Sup IT(6) £(0) — eXo* £(O) I
— lim sup lle= 2471 Ty(1) f(0) = e~ 7+ Kot £(0)

1-0 O0<f=a

=lim sup le Z* ' Ty(t) £(0)— Xt £(0)l

A»0 0<t=<a

=0.

Example 2.7. If V is the space of n x n matrices, H is a diagonal self-adjoint matrix
with distinct eigenvalues, and

eZt(Q) — e—thQeth
then P, exists and Vj is the space of diagonal matrices.

Example 28. If #=I*(R) and V=9(#) and (Hy)(k)=3k*p(k) for all pet,
then P, does not exist. There is however an operator

Py T(#)— L (R) 2.9
which plays the same role. If ge V has integral kernel g(k, k) then
(Poo)(k)=o(k; k). (2.10)
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Alternatively if

0= 3 hlvw < @11
then "

(o)~ 3 A0 .12)
It may easily be verified that P, is positive and linear and that

1{ (Poo)(k)ydk=tr[¢] (2.13)
for all ge V.

Theorem 2.9. Let P, be a bounded operator from the Banach space V into the
Banach space V,. Let €% be a strongly continuous one-parameter contraction semi-
group on Vy, let €™ be a strongly continuous one-parameter contraction semigroup
onV and let

CP,f=P,Df (2.14)
for all f in some core 9 of D. Then

C1Py f=PyePf (2.15)
fJorall feV and all t 0.

Proof. C and D are closed operators and if fe dom(D) then there is a sequence
f,€2 such that f,— f and Df,—Df. Then P, f,—P,f and C(P, f,)—P,Df by
Equation (2.14). Therefore P, fe dom(C) and

CP, f = P,Df.
If fe dom (D) then e f e dom(D) for all s>0 and
d
% eC(t-—s)PO eDsf
= eC=9(— CPy + P, D)™ f
=0
$0
eCtP0f=Poeth.

The same holds for all feV by density.
The above theorem will be used in Section 4 to relate a quantum dynamical
semigroup to a Markov semigroup on momentum space.

§ 3. Asymptotic Limits between Two Spaces

When one tries to relate a quantum dynamical semigroup to a Markov semigroup
on phase space, difficulties arise immediately because of the non-existence of
a canonical phase space distribution for an arbitrary state. One has therefore to
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allow the projection between the spaces V and ¥, to depend on 4, and to take
the classical limit at the same time as the limit A—0. We write down in this section
only the abstract part of the theory, the applications being in Section 4.
Throughout this section we suppose that T;(f)=e** is a strongly continuous
one-parameter contraction semigroup on the Banach space V for all small enough
A>0. We suppose that P,:V -V, are operators of norm one into the Banach
space V;, for all small enough 1>0. We also suppose that Ty (¢) is a (not necessarily
continuous) one-parameter contraction semigroup on ¥, with infinitesimal
generator Z, which need not be densely defined, but is always closed [6].

Theorem 3.1. Let & be a core of all Z, and let P,2 < dom(Z,) for all 1. Suppose
that if fe 9 then

1ZoP, f—P,Z, fI<K, I fl+L,llZ, £l (3.1)

where K, and L, are independent of f. Suppose also that if fe% then

lim (K, I fl+L,lZ, f1y=0. (3.2)
Then
lim ITy ()P, f —P,Ty(t)fI1=0 (3.3)

for all feV, uniformly for t in any finite interval.

Proof. dom(Z}) is a Banach space for the norm
Il =k, fl+L,1Z, £

and (Z,P,— PZ,) can be extended from 2 to a contraction A;:dom(Z;)— V.
If fedom(Z,) then there exist f,e 2 such that f,— f and Z, f,—~Z, f. Therefore
I f,—f1,—0and
Zo(P, [)=P;,Z; fu+Asfa
-—>P,1Zlf+A,1f.

It follows that P, fe dom Z, and
ZOPlf_P,lZlf=Alf

for all fe dom(Z,). The inequality (3.1) therefore holds for all f'e dom(Z,), which
is invariant under T,(t). For such f

= le#=9(—Z,P,+ P, Z)e** f |
<K,le*»fl+L,1Z,e*fl
<K lfl+L,0z, 1 1.

d

Zo(t—s) Z s
—e P,e
dS A f
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Therefore if feD
le? P, f =P f I <t (K, £l + 1,12, 11}

which converges to zero as A—0. The same holds for all feV by density.

We say that Ty(t) is a dual semigroup if V; is the Banach dual of a space W
and T;(t) is the adjoint of a strongly continuous one-parameter contraction semi-
group on W. :

Theorem 3.2. Suppose that P,:V—V, are contractions for A=0 and that for all
fevV

}in(l) P,f=Pyf (3.4
in the weak* topology of V. If Ty(t) is a dual semigroup on Vi and the conditions
of Theorem 3.1 are satisfied then

lim P, T(0) f = To(©) Po f (3.5

in the weak* topology of V,, for all feV and t 20.

Proof. We combine Theorem 3.1 with the observation that since Ty(t) is weak*
continuous

}Ii_f’% To() P, f =To(O) Py f

in the weak* topology of V; for all feV and t=0.

§ 4. Markov Semigroups on Phase Space

We consider a certain quantum dynamical semigroup on the state space V =.7,(#)
of a single spinless particle in one dimension, so that # = [*(R). The free Hamil-
tonian is given in the momentum space representation by

(Hy) (k)= 3k*p(k)
on the usual domain, and
eZt(Q) =e~ thQeth

defines a strongly continuous one-parameter group of isometries on ¥ whose
infinitesimal generator Z is given formally by

Z(@)=—i[H, o]
or by
(Zo) (. 0= 5 (k2 =)ok, k) @)

in terms of the momentum space kernel of g. The domain £ of all geV whose
integral kernels in momentum space are continuously differentiable and of com-
pact support is dense and invariant under ¢ and therefore is a core for Z.
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The Weyl operators W(k, x) are defined on L*(R) by

{Wi(k, x)p}(h)= exp[ixk/2 —ixh]yph—k) 4.2)
and satisfy the relation
Wk, xyW(k',x)=W(k+k, x+x") exp[i(kx'—k'x)/2] . (4.3)

We define a positive definite measure ¢ on IR* as a complex measure with
a decomposition

o(da, db, dh)= i wda) ,(db)v,(dh)

n=

where y, are complex measures, v, is a positive measure and

Holi= 3 a2 v, < oo

n=1

A larger class of measures ¢ can no doubt be allowed in the following theory.
Theorem 4.1. If ¢ is a positive definite measure on R® define B:V—V by
B(g)= | W(h, by*oW(h, a)o(da, db, dh) (4.4)
R3

and Re L () by
R= | W(h,a)W(h, b)*5(da, db, dh) . 4.5)
mf!

Then the closure of the operator Z, defined on 9 by
Zi(e)=4"*Z(¢)+ Blo) - 3(Rg +¢R) (4.6)

is the infinitesimal generator of a strongly continuous one parameter contraction
semigroup T,(t) on V. Moreover T,(t) is positivity and trace preserving for all t=0.

Proof. 1f B,, is the bounded operator
Bnh= j. W(hv a)iun(da)
R
then

B(Q):‘ Z B;khQBnhvn(dh)
n=1

so B is a bounded and positivity preserving operator on V. The operator R satisfies

tr[Re]=tr[B(0)]

for all pe V. The derivation of the properties of T,(t) may now be found in [1,2].
The dynamical semigroup T;(¢) is of the type which has been obtained in
a weak or singular coupling limit [4, 8, 13, 15] of a particle interacting with an
infinite reservoir. We can relate it to a Markov semigroup on momentum space
with little difficulty. Let P,:7,(#)— L'(R) be the projection of Example 2.8.
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Theorem 4.2. Let T(t) be the norm continuous Markov semigroup on L*(R) with

infinitesimal generator given by
{(Bo—=Ro)f}(k)= 3. [lflk+h/2)] f(k+h)v,(dh)
n=1 R

SN CE RN

where [, is the Fourier transform of w,. Then
T(t)Poo= Py Ty(1)e
forall eV, t=0 and A>0.

4.7)

(4.8)

Proof. By Equation (2.10) it is clear that P,Zo=0 for all g€ 2. The integral kernel

of B(p) is

Bo)k K)='3 [ explibh/2+ibklo(k+h K +h).
n=1 IR3

exp [ —iah/2 —iak'] u,(da) u,(db)v,(dh)
= i [ (K +h/2) ok + h/2)o(k+h, K + h)v,(dh) .

Therefore

(PoBo)(k)="3. [ la(k+h/2)[*(Po0) (k+h)v,(dh)

n=1 R
= (BoPg0) (k).
Similarly
(Ro+9R)(k, k)= Z f exp[i(ha—hb)/2] .
n=1 IR3

{(W(0, a=b)e} (k. k) ,(da) ,(db)v,(dh) + conj.

0

= > [ exp[ila—b)(h/2~k)Jo(k, k) u,(da)u,(db)v,(dh)+ conj.

n=1 R3

= f [ 1, (k—h/2) > o(k, K')v,(dh)+ conj.
n=1 R

Therefore
{Po(Ro+oR)} ()
=2 3 lifk— 2P (Poo)(d

=(2RoPo0)(k) .

The proof is completed by an application of Theorem 2.9.
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We now define the Banach space ¥, to be the space of all finite complex
measures on phase space IR?, with the usual norm. ¥, is the Banach dual space
of the space Cy(IR?) of all continuous functions on IR* which vanish at infinity,
and contains Z'(IR?) as a weak® dense subspace.

We let e“' be the strongly continuous one-parameter contraction semigroup
on Cy(IR?) with infinitesimal generator

PRl

Z, Nl )=k 5

n{ |k —h/2) f (k— h, x)v,(dh)

n

nMg nMg

f |k —1/2)1?v,(dh) f (k, x) . (4.9)
n R

The dual semigroup To(t) on V, is a Markov semigroup; in other words if
W is a probability measure on IR? then so is Ty(t)u for all 1>0. The semigroup
Ty(?) leaves L'(R?) invariant and on this subspace is strongly continuous with
infinitesimal generator Z, given by

(o f)lh 9=~k L
f [ 1, (k+h/2)1% £ (k+h, x)v,(dh)
n=1 IR
-3 (i 1= h/2)P, (08 6 )
—(Cof +Bof —Ro f)(k x) (4.10)

say. Note that
(€ f)(k, x)= f(k, x— kt) (4.11)

describes free classical motion on phase space and that B, and R, are the phase
space versions of the corresponding operators of Theorem 4.2. Therefore Ty(t)
physically describes free motion of a classical particle subject to random impulses.

It is somewhat difficult to associate the Markov semigroup Ty(t) with the
quantum dynamical semigroup T,(z) because a state ge V' does not have a canon-
ical phase space distribution. As A—0 the following maps define a scaling of the
states similar to one used in [10].

Lemma 4.3. If ¢, pei# the formula
1
(szlpg)(k> x)= mﬁ <QW(ks l_Zx)(P7 W(k’ l_zx)(p> (412)

defines a bounded linear map

T )~ L (R
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with

1Pz i< loll Il (4.13)
If o= is a vector of norm one then P; » IS positivity preserving and

f (P} ,0)(k, x)dkdx= tr[o] (4.14)
for all ge V.

Proof. By a scale change we may assume that A=1, and by the spectral decom-
position of ¢ we may assume that it is a pure state g=|&> <{|. It is therefore
enough to prove that

%t “LKW(ks x)p, E>2dkdx=llpl? I£]?

for all ¢, £ 5. But

2m)~ 3 W (k, )¢, &) exp [ —ixk/2]
—(2n)" ge ixh o (h— k) &) dh

Therefore by the Plancherel theorem

1
o ﬂ§2|<W(k,x)<p, ES|2dxdk
=ELI<p(h—k)E(_h)|2dhdk
= [ lo(k)?1&h) > dhdk=llpl2 €112
R2

as required.
In order to apply Theorem 3.2 we need the following result.

Theorem 4.4. Let pe L*(R) be a unit vector in Schwartz space and define the unit
vector @, by

@ik)=A""2p(2"" k) (4.15)

where 1 <f<2. If P,=P: _ for all 2>0 and P,:V—V, is defined by

QA P2

(Poo)(dk, dx)=o(k, k)dko o(dx) (4.16)
then

}11_{1'(1) P,0=Py0 (4.17)

in the weak* topology of V, for all geV.
Proof. By density arguments it is sufficient to prove that

lim | (P,)(k, x)f(k x)dkdx= jg (k, k) f (k, 0)dk

A-0 IR2
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whenever ge2 and f is continuous and of compact support. For such ¢ and f

lim | o(k, k)A*~2|@(2#~2x)|? f (k, x)dkdx = { o(k, k) f (k, 0)dk
R

A-0 IR2

where ¢ is the Fourier transform of ¢. Moreover
, u{ (P,0)(k, x) f (k, x)dkdx
= J ek 0221608 2P £tk x)dkdx |
<lrl, sup|(P;0)(k, x) - o(k, kAP 21p(27 217
Also

|(P,0)(k, x)—o(k, k) 2P~ 2|p(22~ 2 x)|?|
o
YL
— | ok, k)e‘“"z"(”"")go,l(h’)gol(h)dhdh"
|R2

[ ol W)e™ "2 g,( —K)e™™**" g (h—K)dhdl
R2

[ olk+h, k+H)— ok, )} .

- 27'5),2 R2
&g (W) h)dhdl |

1
3§ clhl+IHDlg ()] @ (h) dhdk

21 A R2

=

C
=5 22172 [ (hl+ W Dlg()] lo(h)| dhdh
' R2

which converges to zero as A—0 uniformly with respect to k and x. This completes

the proof.
In the following theorem, the main result of this paper, we take P, and P,
to be defined as in Theorem 4.4.

Theorem 4.5. If geV and t =20 then

y_{% P, Ti(t)o=To(t)Poo (4.18)

in the weak* topology of V.

Proof. By Theorem 3.2 we need only verify that the conditions of Theorem 3.1
are satisfied. We verify the inequality (3.1) for each term of Z, in Equation (4.6)
separately, the core & being the space defined at the beginning of this section.

Lemma 4.6. There is a constant K, such that K;—0 as 1—0 and
ICoP0—P, A" 2Zoll, <K, lloll,, (4.19)
for all pe 2.
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Proof. If pe 2 then

(A= Zg) (ks x)— (CoP;0)(k, %)
1 i

=0 b2

e o T dhdl

(h/z —]12)Q(h, h/)e—il‘2xh'(pl(h/ _ k) .

1 -
+ ’27 j (— kil_zh/ +klﬂ._2h)Q(h, h/)e—d xh QD;{(”II _ k)
A ke
. eil‘thmdhdh/
i
= Guit L (=R = (= helh, )
eI (1 — Ryt (= Ty
i ap-
=5 AP 0k x)—(Ph, . 0)(k, x)}
where
wi(h)=A4"P2h? (A~ " h)
has L*-norm independent of 1. Therefore by Lemma 4.3

IP,A~2Zo— CoP;0ll;
<2¥ 2y, e, I ol
=222yl ol llol, .

The proof is completed by putting
K,=22"2]pl-lol.

Lemma 4.7. There is a constant K ; such that K;,—0 as A—0 and
IBoP,0—P,;Boll, <K, llol,,

for all pe 9.

Proof. We have to compare

(P3Bo)(k, x)= ,;L (oW (h, a)W(k, A~ *X)@;,

1
2 A?
W(h, b)W(k, 2.~ *x)p,>c(da, db, dh)
with

1 0
(BoPs0)(k X)= 53 2 ﬁ[ |k + h/2)]?

oW k+h, A™2x)@, W(k+h, 2~ 2x)@,>v,(dh).

E. B. Davies

(4.20)
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The quantity to estimate is

HL (P, Bo) (k, x) = (Bo P10) (k, x)|dkdx

=

1 0
Y [ KeWh oWk, A~ 2x)¢,, W(h, )W (k, 272 x)¢0 ;>

2nA? n=1 IR5
—oW(k+h, A72x) @, W(k+h, 272x)¢,>
-exp Li(k+h/2)(b—a)] | |u,l(da)|p,|(db)v,(dh)dkdx .

By the dominated convergence theorem it is sufficient to show that for each
a, b, h the integral with respect to k, x converges to zero with A in a suitable manner.

I;= % ﬂLl(QW(h, AWk, x);, W(h, b)W(k, x)¢ ;>
—eW(k+h,x)¢,, W(k+h,x)¢, exp [i(k +h/2)(b—a)]|dkdx
1
= 2— j |<QW(k9 X) W(h» a)(P,u W(ka X) W(h9 b)(p4>
T R2

— oWk, x)W(h, 0)¢,, W(k, x)W(h, 0)p,> exp [ih(b—a)/2]|dkdx

= ”P;&V(h‘akp,x.W(hAb)(p;iQ_Pé"""’/zW(h,0)¢1.e"“b/2W(h.0)¢lQI|1
< {IW(h, a)p,—e™ 2 W(h, 0)p,l
+ W (h, b)p,—e "2 W(h, 0)p,lI} o,

by Lemma 4.3. Therefore
L= Uw©,a)0,— ¢, + W (0, b)p,—o,lI} loll,,

which does indeed converge to zero as 1—0.

Lemma 4.8. There is a constant K; such that K,—0 as A—0 and
IRyP,—%P,(Ro+0oR) I, <K, loll,, (4.21)

for all e 9.

Proof. We have to compare

1
(PreR) (k)= 53 EL (oW (h, )W (h, by* W (k, A~ 2x)@;,

Wik, A~ *x)¢@ ;> a(da, db, dh)
with

1 0
(ROPAQ)(ka X) = 2 Z j <QW(k’ l—zx)(Pl’
27—5}' n=1 R

Wik, A=2x)@:> |k~ h/2)|*v,(dh) .
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The quantity to estimate is
[ 1(P:(@R) (k, x)— (Ro P,0) (k, x)| dkdx
R
S e X, LKW W (b =Wk i3, Wik 472X)02>
— oWk, A~ *x) s, W(k, 27 2X) @3>
- exp [i(k—h/2)(b— a)]| |u,/(da) | m,|(db)v,(dh)dkdx .
By the dominated convergence theorem it is sufficient to prove that for every
a, b, h the following quantity converges to zero with A.
1
Ji= 52 | KeW(h QW (=h =)Wk x)@;, Wk, X))
R2
— Wk, X)@;, W(k, x)¢, exp [i(k — h/2)(b—a)]|dkdx
1
= o= | [KeW(0, a=b)W(k, x)p;, Wk, X))
2n R2
— LWk, x)@;, Wik, x)¢p; exp [ik(b— a)]|dkdx

1

o [ [<eW(k, x)W(0, a—b),, W(k, x)¢ >
[ R2

— oWk, X)@;, Wik, x)@ ;| dkdx

= “Pé"(()-a—b)fl’x(m@_prk‘ﬂxgnl

< W0, a—b)g,— o, Il

which converges to zero as A—0.
- By taking adjoints we similarly find that

HL |(P2(R@)) (k, x)—=(Ro P;0) (k, x)|dkdx

converges to zero with 4 in a suitable manner.

Note Added in Proof. A proof of Theorem 2.1 may also be found in Kato, T.: On a matrix limit theorem.
Linear Multilinear Algebra 3, 67—71 (1975)
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