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Taylor's Theorem for Analytic Functions of Operators
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Abstract. We discuss analytic functions on a Banach algebra into itself. In
particular expressions for derivatives are given as well as convergent Taylor
expansions.

Introduction

The problem of expansion of functions of non-commuting operators occurs in
many branches of theoretical physics. Many formal schemes [1—5] have been
used, but in very few cases [5] has convergence been established. We discuss
a case for which convergence is established. Our approach follows in spirit the
work [5] of Araki.

I. Analytic Functions of Operators and Derivatives

Let F:C->(C be an analytic function in G={z\ |z |<ρ}. In the domain G, F has
a convergent power series expansion

F(z)= | C f I z » . (1)

The nih derivative DnF of F also has a convergent power series having the same
domain of convergence as F.

Let 3d be a Banach algebra and denote by i f = JSf1(J>) the Banach algebra of
bounded linear maps L of J into itself. The norm of <£ι(β) is defined by

||LII = sup {ι A]] . We then define the Banach algebras £gniβS) iteratively by
Ae@

Definition 1. Let 3d be a Banach algebra and A, Be3%. For O^A^l let Λλ be the
linear map from 3$ into ^ defined by

AλB = AB-λdAB, (2)
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with

dAB = lA,B~] = AB-BA. (3)

Lemma 1. Let Aλ be defined as above. Then \\Aλ\\

Proof

„ „ IUλBll W(l-λ)AB + λBA\\
\\Λλ\\ = sup -j-*- = sup ra

Lemma 2. For Ae& and n a positive integer, the following relations hold in

1) An-(A-dΛf = n } dλAT HA, (4)
0

2) (A - dA)
n = j dλA\ - n f dλλA\- ιdA , (5)

0 0

1 1

0 0

Proof First note that AdA = dAA as maps in 5£{β). Then

2) By partial integration we have

1 1 1

0 0 0

= {A-dAγ + n]dλλAn

λ-HA.

3) Combine 1) and 2).

Lemma 3. An-(A- dA)
n - dAn, (7)

or, equίvalently

{A-dA)"B=BA". (8)

Proof. The lemma is true for n— 1. By induction we then find that
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An analytic function F with radius of cenvergence ρ gives rise to a map

by means of

F(A)=ficnA". (9)
H = 0

This map is defined for all AeSS for which 11̂4II <ρ.

Lemma 4. For F analytic and \\A\\<Q we have

F(A)-F(A-dΛ) = dFiA), (10)

or, equivalently for Beέ%,

F(A-dΛ)B = BF(A). (11)

Proof This follows from Lemma 3 and the fact that 11,4 — dA\\ ^ \\AII <ρ.

It may be noted that for F= exp we recover the well-known result

exp(-dA)-B=exp(-A)Bexp(A). (12)

Let A{t)e^ be a differentiable path in Si for telcR and for which IU(ί)ll < ρ

and — A{t)e08, Vie/. Then F(A(ή) is a ^-valued function of ί.

Theorem 1. 77ze function F(A(t)) is differentiable and its derivative is given by

(13)

Proof It suffices to prove the statement for powers of A(t\ i.e. to show that

The statement is clearly valid for n = 1, and by induction
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With the help of Equation (4) and Equation (5), the above expression becomes

±A"" = {A-d
dt v A

For an analytic function F we obtain Equation (13), since for llA(ί)ll<ρ and
0^/1^1 we have IUλ(f)II^IU(f)H<& and hence absolute convergence of the
respective power series.

Corollary 1. For the function F(A(ή) of Theorem i with A(t) twice differentiable

and 2 e 88, we have

d2F i Id2 A
=μλDF(Aλ)Λ2V"V""' }

0"""^'^'\dt2,

In A. ήA\
(14)

dA
where it is implied that D2F(Aλl λ2) acts on —^ and the result of the λ2-integration

dA
acts then on —-.

dt

Proof We have only to note that IUλ l > λ 2ll <ρ and J dλ2D
2F(Aλuλ2)e£?2(^). This

dA
map is applied to —-^ and yields a result in S£γ(β\ which after λί-integration

dt
dA

acts on -—.
dt

We now obtain a relation between the commutator of an analytic function
F(A) with an element of 3# and the commutator of A with the same element.

Lemma 5. 1

dF(Λ)=μλDF(Aλ)dΛ- (15)
o

Proof The extension of Lemma 2 to analytic functions yields

dFiΛ) = f (Λ)~ ^ - d j = μλDF{Aλ)dA .
o
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It may be noted that if we define the map

then the expression for the derivative [Eq. (13)] takes on the appearance of the
chain-rule of elementary calculus, i.e.

dF(A) = dF(A) dA

dt dA dt

Corollary 2. For the special case that the tangent to the path A(t) admits the fol-
lowing representation

A A

-^=dAH, He®. (16)

at

We obtain the Heisenberg equation

d

— F(A(ή) = [F(A(t)\ H~\. (17)

Proof

^F(A(t))=\dλDF(Aλ)dAH

ut o

= dF{ΛyH=lF(A(t)),H]

by Lemma 5.
II. Taylor's Theorem for Analytic Functions
We now apply our results to find the Taylor expansion oϊF(A + λB) in powers of A.

Theorem 2.

F(A + λB)= Σ -, ]dλ1...]dλHlTF{Aλιλ2.mmλι)
n = 0 n ' 0 0

with non-zero radius of convergence for \\A + λB\\<ρ.

Proof Let X(λ) = A + λB then for \\A + λB\\<ρ, and because of Theorem 1 and

dnX(λ)
the fact that n =0, n^2, the required higher derivatives can be obtained.

dλ
Convergence is guaranteed from the facts that IUA l AJI^IUII, Il5λ l λJl^ll5ll,
and that 3R>0 such that F(z1+λz2) converges absolutely for \z1+λz2\<Q and

Formula 18 when applied to the function exp{ — it(H + λV)} yields the
Feynman-Dyson series.
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