

© by Springer-Verlag 1976

Taylor's Theorem for Analytic Functions of Operators

Wesley E. Brittin and Walter Wyss

Department of Physics and Astrophysics, University of Colorado, Boulder, Colorado 80309, USA

Abstract. We discuss analytic functions on a Banach algebra into itself. In particular expressions for derivatives are given as well as convergent Taylor expansions.

Introduction

The problem of expansion of functions of non-commuting operators occurs in many branches of theoretical physics. Many formal schemes [1–5] have been used, but in very few cases [5] has convergence been established. We discuss a case for which convergence is established. Our approach follows in spirit the work [5] of Araki.

I. Analytic Functions of Operators and Derivatives

Let $F: \mathbb{C} \to \mathbb{C}$ be an analytic function in $G = \{z \mid |z| < \varrho\}$. In the domain G, F has a convergent power series expansion

$$F(z) = \sum_{n=0}^{\infty} c_n z^n . \tag{1}$$

The n^{th} derivative $D^n F$ of F also has a convergent power series having the same domain of convergence as F.

Let \mathscr{B} be a Banach algebra and denote by $\mathscr{L}=\mathscr{L}^1(\mathscr{B})$ the Banach algebra of bounded linear maps L of \mathscr{B} into itself. The norm of $\mathscr{L}^1(\mathscr{B})$ is defined by $\|L\|=\sup_{A\in\mathscr{B}}\frac{\|LA\|}{\|A\|}$. We then define the Banach algebras $\mathscr{L}^n(\mathscr{B})$ iteratively by $\mathscr{L}^1(\mathscr{L}^{n-1}(\mathscr{B}))$.

Definition 1. Let \mathscr{B} be a Banach algebra and $A, B \in \mathscr{B}$. For $0 \le \lambda \le 1$ let A_{λ} be the linear map from \mathscr{B} into \mathscr{B} defined by

$$A_{\lambda}B = AB - \lambda d_{A}B, \qquad (2)$$

with

$$d_A B = [A, B] = AB - BA. \tag{3}$$

Lemma 1. Let A_{λ} be defined as above. Then $||A_{\lambda}|| \leq ||A||$.

Proof.

$$||A_{\lambda}|| = \sup_{B \in \mathcal{B}} \frac{||A_{\lambda}B||}{||B||} = \sup_{B \in \mathcal{B}} \frac{||(1-\lambda)AB + \lambda BA||}{||B||}$$

$$\leq (1-\lambda)||A|| + \lambda||A|| = ||A||.$$

Lemma 2. For $A \in \mathcal{B}$ and n a positive integer, the following relations hold in $\mathcal{L}(\mathcal{B})$

1)
$$A^{n} - (A - d_{A})^{n} = n \int_{0}^{1} d\lambda A_{\lambda}^{n-1} d_{A}$$
, (4)

2)
$$(A - d_A)^n = \int_0^1 d\lambda A_\lambda^n - n \int_0^1 d\lambda \lambda A_\lambda^{n-1} d_A,$$
 (5)

3)
$$A^{n} = \int_{0}^{1} d\lambda A_{\lambda}^{n} + n \int_{0}^{1} d\lambda (1 - \lambda) A_{\lambda}^{n-1} d_{A}.$$
 (6)

Proof. First note that $Ad_A = d_A A$ as maps in $\mathcal{L}(\mathcal{B})$. Then

1)
$$n \int_{0}^{1} d\lambda A_{\lambda}^{n-1} d_{A} = -\int_{0}^{1} d\lambda \frac{d}{d\lambda} A_{\lambda}^{n} = A_{0}^{n} - A_{1}^{n} = A^{n} - (A - d_{A})^{n}$$
.

2) By partial integration we have

$$\begin{split} &\int\limits_0^1 d\lambda A_\lambda^n = \lambda A_\lambda^n \bigg|_0^1 + \int\limits_0^1 d\lambda \lambda n A_\lambda^{n-1} d_A \\ &= (A - d_A)^n + n \int\limits_0^1 d\lambda \lambda A_\lambda^{n-1} d_A \;. \end{split}$$

3) Combine 1) and 2).

Lemma 3.
$$A^n - (A - d_A)^n = d_{A^n}$$
, (7)

or, equivalently

$$(A - d_A)^n B = BA^n . (8)$$

Proof. The lemma is true for n = 1. By induction we then find that

$$A^{n+1}B - (A - d_A)^{n+1}B$$

$$= A^{n+1}B - (A - d_A)BA^n$$

$$= A^{n+1}B - ABA^n + [A, BA^n]$$

$$= A^{n+1}B - BA^{n+1} = d_{A^{n+1}}B.$$

An analytic function F with radius of cenvergence ϱ gives rise to a map $F: \mathcal{B} \to \mathcal{B}$

by means of

$$F(A) = \sum_{n=0}^{\infty} c_n A^n \,. \tag{9}$$

This map is defined for all $A \in \mathcal{B}$ for which $||A|| < \varrho$.

Lemma 4. For F analytic and $||A|| < \varrho$ we have

$$F(A) - F(A - d_A) = d_{F(A)},$$
 (10)

or, equivalently for $B \in \mathcal{B}$,

$$F(A - d_A)B = BF(A). \tag{11}$$

Proof. This follows from Lemma 3 and the fact that $||A - d_A|| \le ||A|| < \varrho$.

It may be noted that for $F = \exp$ we recover the well-known result

$$\exp(-d_A) \cdot B = \exp(-A)B \exp(A). \tag{12}$$

Let $A(t) \in \mathcal{B}$ be a differentiable path in \mathcal{B} for $t \in I \subset R$ and for which $||A(t)|| < \varrho$ and $\frac{d}{dt} A(t) \in \mathcal{B}$, $\forall t \in I$. Then F(A(t)) is a \mathcal{B} -valued function of t.

Theorem 1. The function F(A(t)) is differentiable and its derivative is given by

$$\frac{d}{dt}F(A(t)) = \int_{0}^{1} d\lambda DF(A_{\lambda}) \left(\frac{dA}{dt}\right). \tag{13}$$

Proof. It suffices to prove the statement for powers of A(t), i.e. to show that

$$\frac{d}{dt}A(t)^n = \int_0^1 d\lambda n A_{\lambda}^{n-1} \left(\frac{dA}{dt}\right).$$

The statement is clearly valid for n=1, and by induction

$$\begin{split} \frac{d}{dt}A^{n+1} &= A^n \frac{dA}{dt} + \frac{dA^n}{dt}A \\ &= A^n \frac{dA}{dt} + \left\{ n \int_0^1 d\lambda A_\lambda^{n-1} \left(\frac{dA}{dt} \right) \right\} A \\ &= A^n \frac{dA}{dt} + n \int_0^1 d\lambda A_\lambda^{n-1} \left(\frac{dA}{dt} A \right) \\ &= A^n \frac{dA}{dt} + n \int_0^1 d\lambda A_\lambda^{n-1} (A - d_A) \left(\frac{dA}{dt} \right). \end{split}$$

With the help of Equation (4) and Equation (5), the above expression becomes

$$\begin{split} \frac{d}{dt}A^{n+1} &= (A-d_A)^n \left(\frac{dA}{dt}\right) + n\int\limits_0^1 d\lambda A_\lambda^{n-1} A\left(\frac{dA}{dt}\right) \\ &= \int\limits_0^1 d\lambda A_\lambda^n \left(\frac{dA}{dt}\right) - n\int\limits_0^1 d\lambda \lambda A_\lambda^{n-1} d_A\left(\frac{dA}{dt}\right) \\ &+ n\int\limits_0^1 d\lambda A_\lambda^{n-1} A\left(\frac{dA}{dt}\right) \\ &= \int\limits_0^1 d\lambda \left\{A_\lambda^n + nA_\lambda^{n-1} (A-\lambda d_A)\right\} \left(\frac{dA}{dt}\right) \\ &= (n+1)\int\limits_0^1 d\lambda A_\lambda^n \left(\frac{dA}{dt}\right). \end{split}$$

For an analytic function F we obtain Equation (13), since for $||A(t)|| < \varrho$ and $0 \le \lambda \le 1$ we have $||A_{\lambda}(t)|| \le ||A(t)|| < \varrho$, and hence absolute convergence of the respective power series.

Corollary 1. For the function F(A(t)) of Theorem 1 with A(t) twice differentiable and $\frac{d^2A(t)}{dt^2} \in \mathcal{B}$, we have

$$\frac{d^2F}{dt^2}(A(t)) = \int_0^1 d\lambda DF(A_\lambda) \left(\frac{d^2A}{dt^2}\right) + \int_0^1 d\lambda_1 \int_0^1 d\lambda_2 D^2F(A_{\lambda_1,\lambda_2}) \left(\frac{dA_{\lambda_1}}{dt}, \frac{dA}{dt}\right) \tag{14}$$

where it is implied that $D^2F(A_{\lambda_1,\lambda_2})$ acts on $\frac{dA_{\lambda_1}}{dt}$ and the result of the λ_2 -integration acts then on $\frac{dA}{dt}$.

Proof. We have only to note that $\|A_{\lambda_1,\lambda_2}\| < \varrho$ and $\int_0^1 d\lambda_2 D^2 F(A_{\lambda_1,\lambda_2}) \in \mathcal{L}^2(\mathcal{B})$. This map is applied to $\frac{dA_{\lambda_1}}{dt}$ and yields a result in $\mathcal{L}^1(\mathcal{B})$, which after λ_1 -integration acts on $\frac{dA}{dt}$.

We now obtain a relation between the commutator of an analytic function F(A) with an element of \mathcal{B} and the commutator of A with the same element.

Lemma 5. 1
$$d_{F(A)} = \int_{0}^{1} d\lambda DF(A_{\lambda}) d_{A}. \tag{15}$$

Proof. The extension of Lemma 2 to analytic functions yields

$$d_{F(A)} = F(A) - F(A - d_A) = \int_{0}^{1} d\lambda DF(A_{\lambda}) d_A$$
.

It may be noted that if we define the map

$$\frac{d_{F(A)}}{d_A} = \int_0^1 d\lambda DF(A_\lambda) ,$$

then the expression for the derivative [Eq. (13)] takes on the appearance of the chain-rule of elementary calculus, i.e.

$$\frac{dF(A)}{dt} = \frac{d_{F(A)}}{d_A} \; \frac{dA}{dt} \, .$$

Corollary 2. For the special case that the tangent to the path A(t) admits the following representation

$$\frac{dA}{dt} = d_A H, \quad H \in \mathcal{B}. \tag{16}$$

We obtain the Heisenberg equation

$$\frac{d}{dt}F(A(t)) = [F(A(t)), H]. \tag{17}$$

Proof.

$$\frac{d}{dt}F(A(t)) = \int_{0}^{1} d\lambda DF(A_{\lambda}) d_{A}H$$
$$= d_{F(A)}H = [F(A(t)), H]$$

by Lemma 5.

II. Taylor's Theorem for Analytic Functions

We now apply our results to find the Taylor expansion of $F(A + \lambda B)$ in powers of λ .

Theorem 2.

$$F(A+\lambda B) = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \int_0^1 d\lambda_1 \dots \int_0^1 d\lambda_n D^n F(A_{\lambda_1 \lambda_2 \dots \lambda_n}) \cdot (B_{\lambda_1 \dots \lambda_{n-1}}, B_{\lambda_1 \dots \lambda_{n-2}}, \dots, B_{\lambda_1}, B)$$

$$(18)$$

with non-zero radius of convergence for $||A + \lambda B|| < \varrho$.

Proof. Let $X(\lambda) = A + \lambda B$ then for $||A + \lambda B|| < \varrho$, and because of Theorem 1 and the fact that $\frac{d^n X(\lambda)}{d\lambda^n} = 0$, $n \ge 2$, the required higher derivatives can be obtained.

Convergence is guaranteed from the facts that $\|A_{\lambda_1...\lambda_n}\| \le \|A\|$, $\|B_{\lambda_1...\lambda_n}\| \le \|B\|$, and that $\exists R > 0$ such that $F(z_1 + \lambda z_2)$ converges absolutely for $|z_1 + \lambda z_2| < \varrho$ and $|\lambda| < R$.

Formula 18 when applied to the function $\exp\{-it(H+\lambda V)\}$ yields the Feynman-Dyson series.

References

- 1. Magnus, W.: Comm. Pure Appl. Math. 7, 649 (1954)
- 2. Wilcox, R. M.: J. Math. Phys. 8, 962 (1967)
- 3. Guenin, M.: Helv. Phys. Acta 41, 439 (1968)
- 4. Bialyniki-Birula, I., Mielnick, B., Plebanski, J.: Ann. Phys. 51, 187 (1969)
- 5. Araki, H.: Ann. Scient. Ec. Norm. Sup. 6, 67 (1973)

Communicated by H. Araki

Received February 23, 1976