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Abstract. A previous result is generalized. An existence and uniqueness
theorem is proved for the Hartree-Fock time-dependent problem in the
case of a finite Fermi system interacting via a two body potential, which
is supposed dominated by the kinetic energy part of the one-particle
hamiltonian.

1. Introduction

In this paper we consider the existence problem for the Hartree-Fock time-
dependent equations of a finite system of fermions. This problem was first solved
using fixed point theorems for local contractions in Banach spaces in Ref. [1],
for the case of a bounded two body potential, and in Ref. [2] 1 for the case of the
repulsive Coulomb potential.

In the present paper we extend those results to a general potential, bounded
from below and "essentially" dominated by the one-particle hamiltonian (for
instance the laplacian operator). Our main result is Proposition 5.5., which
proves the existence and uniqueness of a global solution, both in the case of the
classical and of the mild solution, according to the smoothness of the initial
data2.

2. Notations and Hypotheses

W e d e n o t e b y :
E a Hilber-t s p a c e w i t h i n n e r p r o d u c t <•,•>;

1 The paper [1] considers the case of arbitrary N and not only the case iV = 2 like erroneously
stated in Ref. [2].
2 While this work was in preparation, we received a preprint by Chadam and Glassey [3], where
formal proofs have been obtained for the case of the Coulomb potential. Furthermore Definition 2.1.
of [3] must be revised since the expression \\K\\lΛ=Ίr{A\K\Λ) does not satisfy the triangle inequality.
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if(£) the set of all bounded linear operators in E, equipped with the norm
topology || ||

the set of trace-class operators, equipped with the usual norm

H(E)={T;

H1(E)={Γ, Te&άE), T=T*}.

Let A : 2(A) (CE)^>E be a self-adjoint operator such that

A^kl for a fixed keR .

Let

M = {A-k+lf

and V TeΪ£X(E\ φτ : 2ι{M) x 0(M)-> C be defined by

φτ(x, y) = ( TMx, My}, x, y e 9{M).

Let γ be the linear mapping defined by

(@(y)={T; TeS£x{E\ φτ is continuous in E x E]

\(y(T)x,y)=φτ(x,y)

where φ τ denotes the (unique) extension of φτ to E x £.
It is easy to show that Te9(y\ xe@{M)=>γ{T)x = MTMx (see Ref. [4]).
We denote by

ifj1(£)={T; Γ6J2Ί(£) such that MTMe&x{E)}

Ht(E)={T; TeH^E) such that MTMeH^E)}

we introduce a norm in H^(E) by putting

It is easy to see that this is indeed a norm which makes iff(£) a Banach space;
moreover the following inequality holds

1 2

Let B: H^(E)^H(E) be a continuous linear map such that
i) B^M-^xe^M), VxeE;

ii) C{ )e^{Hi(E\H{E))> where

\ TeHi(E);

iii) \/T,SeHi(E) the following equality holds:

iv) 3/qeiί such that B(T)T^kl9 MTeHi{E\ O^T^I.
Moreover we put

(where \_A, B\_=AB- BA).
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We consider the following abstract Hartree-Fock problem: find a function
T(-)eC(R+ i/f(£)) such that

(21)

I ΆO)=T0.
 { ' }

We give now some general definitions.
Definition 2.1. Let X be a Banach space, feC{X) a continuous function on X
and —A the infinitesimal generator of a strongly continuous semigroup G(t)
such that ||G(0ll^eωί, VίeR+, ωeR. A function u:[0, T[->X continuous on
[0, T[ is called a mild solution of the problem

u' = du/dt9 t;eC([0, Γ[,X)

if the following equality holds:

ιι(ί)=G(ί)Mo- } G(t-s)(f(u(s))-υ(s))ds. (2.3)
o

Definition2.2. u:[0,T]-±X is called a classical solution of problem (2.2) if
ue C\[0, T];I)nC([0, T]; 0μ)) and (2.2) is satisfied. ^([0, T];X) is the set of
continuously differentiate functions [0, T] -+X and C([0, T] @{A)) is the J3-space
of the continuous functions [0, T]-*iF(/l)? 2){A) being endowed with the graph-
norm.

3. General Results

The following lemma is well-known:

Lemma 3.1. u is a mild solution of problem (2.2) if and only if

3(un)neN in CH[0,T];X)nC([0,T];^4))

such that

Γ' Λ in C([0?T];X) (3.1)

We say also that u is a mild solution of problem (2.2) if and only if u is a strong
solution in the sense of Friedrichs.

Proposition 3.2 (Segal [5]). Suppose f is locally Lίpschίtz. Then there exists
τeR+ such that in [0, τ[ there exists a unique mild solution of problem (2.2). Moreover
if uoe@(A) then this solution is a classical solution.

We put

Γ0 = sup{Γ>0; Γsuch that in [0, T] there exists a mild solution
of problem (2.2)}.

Proposition 3.2. then implies that a unique mild solution u for the problem (2.2)
is defined in [0, To[; we call such solution a maximal solution of problem (2.2).
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For completeness we will prove the following

Proposition 3.3. Let u : [0, To\_-+X be the maximal (mild) solution of problem (2.2).
Let us suppose that

i) 3 M > 0 such that \\u(t)\\^M, Vίe[0, Γo[;
ii) BcX is a bounded set =>/(£) is bounded in X; then To= + GO.

then TQ= +oo.

Proof. It is enough to prove that 3 lim u(t). Indeed we shall prove that
t-*To —

lim u(t) = G(T0)u0- ]°G(T0-s)(f(u(s))-v(s))ds.
t-*T0- 0

We note that the integral on the R.H.S. must be understood in the Bochner's
sense; obviously it exists because of hypothesis ii) and of the continuity of the
functions involved.

Then we obtain

\\u(ή-G(T0)u0+ f G(T0-s)(f(u(s))-v(s))ds\\
0

^ \\G(t)uo-G(To)uo\\ + J e^τ°-* \\f(u(s))-v(s)\\ds
t

+ } ||G(T0 - s) (f(u(s))- υ(s))- G(t-s) (f(u(s))- v(s))\\ ds .
0

The first two terms are easily seen to converge to zero because of the strong
continuity property of G( ) and of hypotheses i) and ii). The third term converges
to zero because of the dominated convergence theorem. This completes the proof
of the Proposition.

4. Preliminary Results

Definition 4.1. \/TeHi(E) let ψτ : Q){AM) x 9{AM)^C be defined by3

ψτ(x9 y)=- f< TMx, AMy) + ϊ< TAMx, My) . (4.1)

If \pτ is continuous we denote by ψτ its unique extension to ExE.
Definition 4.2. Let a : Hi{E)-+Hi{E) be defined by

={T; TeHi(E), ψτ is continuous on ExE}

y) = -ί<Tx,Ay> + KAx,Ty), x,yeE. ^ '

It is easy to see that Te3f{a\ xe@(A)=>Txe@(A) and a(T)x = [A, Γ]_x.

Proposition 4.3. VteR+ u{0} we put

Gt(T) = e~itATeitA, TeHA(E) (4.3)

then t\-*Gt(-) is a strongly continuous contraction semigroup on HA(E). Moreover
its infinitesimal generator is the linear map a of Definition 4.2.

3 We suppose Q){AM) to be dense in E.
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Proof. We have

MGt(T)M = Gt(MTM) \/TeHi(E), (4.4)

so that

Tv(MGt(T)M) = Ύΐ{MTM). (4.5)

It follows that

Tv(\MGt(T)M\)=\\e-ίtAMTMeitA\\1STΐ(\MTM\)

= \\T\\UA

which proves that Gt( ) operates on HΛ(E) and it is a contraction semigroup. Now

MGt(T)M-MTM= Gt(MTM)-MTM

so that

\\Gt(T)-T\\UA=\\Gt(MTM)-MTM\\i

and the strong continuity follows from Proposition 3.4. of [1]. The last part of
the proposition follows from the analogue of Lemma 3.3. of [1] and from [4].

Proposition 4.4. Let Te9(a\ then Tr(M[Λ T]_M) = 0.

Proof. If Te@(a) the Hille-Yosida theorem implies that

a(T)= lim h-\Gh{T)-T)

where the limit is understood in the U\(E)-norm. Then we have

Ύΐ(Ma(T)M)= lim h"1{Ίv{MGh{T)M)-Ύr{MTM)) = O

which completes the proof.
For what concerns the non-linear part we have the following

Proposition 4.5. feC1(Hi(E)) (i.e. f is continuously Frechet differentiable in
Hj(E)) and the following equality holds:

f\T) (S) = [B(S), T] _ + [B(T\ S~] _, T, SeHi(E).

Proof TeHi(E)=>f(T)eHi(E). Indeed we have

\T\\UA

where C{ denotes some positive constant. For the differentiability of/we have:

f(T + S)- f(T) = IB(T), S~] _ + [B(S), T] _ + IB(S), S] _

and
Γ D / C \ C~l / | | Oi l H^E) r\

lB(b), b]-/\\b\\UA ^ HHE)^ Q > ϋ

by an argument similar to that given above.
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5. A priori Inequalities and Existence Theorems

The results of the preceding section and Proposition 3.2. imply the following

Proposition 5.1. There exists a unique local mild solution for the problem (2.1).
Moreover if Toe^(a) then the solution is a classical solution.

Lemma 5.2. Let Mn = nM(n + M)~1, neN, be the n-th Yosίda approximant for M,
so that, as is well-known, \\Mnx\\ ^ ||Mx||, lim Mnx = Mx, Mxe^(M). Then if

n-> oo

TeHi(E) we have

Tr(MTM) = lim Ύr(MnTMn). (5.1)
n —• o o

Proof Without loss of generality we can suppose T^O. Otherwise, noting that
T= T+ - T~, T + , T~ Ξ>0, we can reason separately on each of them. Let4

Tx= f; λk(x,e^ek, λkeR+u{0}\/keN .

Then

Tr(MTM)= f; λk\\Mek\\2

fc=l

Ίr(MnTMn)= £ λk\\Mnek\\2.
k= 1

Now VβGjR+ we can choose mεeN such that

oo

Σ λk\\Mek\\2<εβ
k = mε+ 1

so that

|Tr(MTM)-Tr(M nTMB) |^ Σ λk\\\Mek\\2-\\Mnek\\2\
k= 1

+ 2 f λk\\Mek\\2<εβ + 2εβ = ε
k = mε+ 1

if n>n ε ? where nεeN is suitably chosen. This completes the proof of the lemma.

Proposition 5.3. Let Tbe a local solution of problem (2.1) with Toe2(a\ so that T
is a classical solution. Then

(5.2)

Proof. We have

(id/dT) Tr(MΓ(ί)M) = Tr(M [4, T ] _ M) + Tr(M[ΰ(Γ), T] _ M)

= Tr(M[B(T),T]_M)

by Proposition 4.4.

4 We suppose {ek; keN} to be a complete orthonornal system in E.
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Because of hypothesis iii) on B we obtain

\(ididT) Ύr(B(T) T) = i Ύτ{B(T(ή) f(ή)

T] _

Recalling the definition of M, by Lemma 5.2. we can conclude

id/dt{Tr{MTM) + $Ύτ{TB(T)))-Tr(M[B(Γ), T]_ M)

+ Tr(B(Γ)[>4,Γ|_) = ()

so that the desired conclusion easily follows.

Proposition 5.4. Let ToeH^(E) and T be the mild solution of the problem (2.1),
then (5.2) still holds.

Proof. By Lemma 3.1 there exists (Tn)neN such that Tn is a classical solution of
problem (2.1), i.e.

Then we have, as in Proposition 5.3.,

(id/dT) [Tr(MTttM + i TnB{Tn)y\ = Tv(MSnM) + Tr (B(Tn)Sn) -Ί[^r+ 0

and this proves the assertion.

Proposition 5.5. // 0^ T0:g/ then T can be extended to all the positive real axis.
Moreover if Toe@(a) then T is the unique global classical solution.

Proof It is enough to verify hypothesis i) of Proposition 3.3. From (5.2) it is easily
seen that

Tr(MΓ(ί)M)gC', CeR+ .

Now 0<; T0^I implies (see [1], Proposition 4.3.) that

Tr(|MΓM|) = Tr (MTM)

and this proves the assertion.

6. The Hartree-Fock Time-dependent Problem

Let

E = L2(R3).

The operator A of problem (2.1) can be interpreted as the kinetic energy operator
(i.e. —Δ)\Ά the case of nuclear or molecular physics and as the kinetic energy plus
an attractive central Coulomb potential in the case of atomic physics.

The operator B is defined as follows:

= BD(T)φ-BEX(T)φ, φeL2(R3),
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(the so-called "direct" and "exchange" potentials) where, if T(x,y) denotes the
kernel of T, we have

(BD(T)φ) (x)= / f v(x-y) T(y, y)dy) φ(x)

(BEX(T)φ)(x)= J υ(x-y)T(x9y)φ(y)dy.

Here v:R3-+R is the two body interaction potential, which we suppose to be
differentiable almost everywhere.

Then

/ z \
M = — A + —— + k\ in the case of atomic physics

\ ll ̂ Ίl /
M = ( — A + l)* in the case of nuclear or molecular physics.

It is easy to see that 3>(M) = H\R%
Let {φk;keN} be an orthonormal complete system in L2(R3) such that

φke@(M). We write the one-particle density matrix in the form*

T(x,y)= X λkφk(x)φk(y) (6.1)
fc=l

V/CGAΓ. (6.2)

Since we consider only systems with finite total number of particles we have
00

Σ Λ*< + oo.
fc=l

TeHi(E) implies that

(| Σ i < + o o . (6.3)

If we denote by v the linear operator defined by

(vφ)(x) = v(x)φ(x)

we suppose that

Now the conditions on the linear part A are easily verified. Let us show that B
verifies conditions i),..., iv).

iii) and iv) are trivial,
i) Let us consider BD:

(BD(T)M~ V) (x) = aτ(x) (M- V) (x)

where

ocτ(x) = J υ(x - y) T(y, y)dy .

* Note Added in Proof. It is enough to consider T^ 0; indeed for any Γwe can write T= Tx — T2, Tx ^ 0,
T 2 ^0, T^M-'iMTMyM-1, T2 = M-\MTM)~M-\ so that | | T | | 1 > i 4 = | | T 1 | | l i i 4 + | | Γ 2 | | 1 > i 4 and
B(T) is continuous on H^(E). We thank Prof. Chadam for a comment on this point.
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Now αΓeL°°(.R3) and
00

k=ί

GO

k=l

Moreover we have
CO

λk\\\υ{x-y)Di\φk{y)\2dy\\x

A (6-5)

This proves that BD(T)M~ 1φe@{M) = H1{R3).
For what concerns BEX it is enough to note that

\Di\υ{x-y)φk(y)ψ{y)dy\^C\\Mφk\\2\\Mφ\\2 (6.6)

hence condition i) is completely verified by analogous calculations.
Let us now verify condition ii).
Let φe C$(R3); we consider

we have

> | > | | | + Σ \\Dίβ{T)M-ιφ)\\\

as it can be seen by relations (6.4), (6.5), (6.6); hence

so that condition ii) is proved by use of a density argument.
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