
Communications in
Commun. math. Phys. 48, 131—135 (1976) Mathematical

Physics
© by Springer-Verlag 1976

On the Probabilistic Structure of Quasi-free States
of a Clifford Algebra

M. Sirugue-Collin
Universite de Provence, U.E.R de Physique, Marseille, and Centre de Physique Theorique, CNRS,
F-13274 Marseille Cedex 2, France

M. Sirugue
Centre de Physique Theorique, CNRS, F-13274 Marseille Cedex 2, France

Abstract. We prove that the correlation functions of a non-relativistic Fermi
field given by a quasi-free state are directly related to the values of the charac-
teristic function of a probability measure over the phase space of a classical
spin system.

Introduction

In the past few years probabilistic methods have been proved to be very useful
in constructive field theory and especially for the study of Schwinger functions.
Indeed the Schwinger functions of a Bose field are symmetric functions of their
arguments, hence they can be the moments of a probability measure; moreover
for the free Bose field the Wick theorem leads to a gaussian measure [1].

However for fermions and except for some results [2, 3], the situation is less
clear, even for the free Fermi field, since the Schwinger functions are completly
antisymmetric with respect to their arguments. Consequently it is a priori impos-
sible to repeat for fermions what has been done for bosons.

Our aim with this note is to present an attempt to bypass this difficulty.
Namely what we prove is that, given a quasi-free state over a Clifford algebra,
the correlation functions are, up to a trivial factor, the values of the characteristic
function of a probability measure over the phase space of a classical spin system.
[Theorem (2.26).]

Moreover we show that this theorem is the analogue of what can be done for
boson systems.

2. Quasi-free States as Given by the Characteristic Function
of a Probability Measure

To fix the notations we repeat some definitions and results which can be found
in an extended form in [4].



132 M. Sirugue-Collin and M. Sirugue

§ is a real separable Hubert space of even or infinite dimension with a sym-
metric^ real-valued, positive-definite, scalar product S. The Clifford algebra

, S) is the C*-algebra generated by the b(φ), φeξ>, which satisfy

(2.1) b(aφ + βψ) = ab(φ) + βb(ψ), Vα,

(2.2)

(2.3)

A quasi-free state over 3I(§, S) is a state of 2ί(§, S) which satisfies

(2.4) ω(b(φ)) = 0,

(2.5) έ

V^jG§; namely it satisfies the Wick theorem. As a consequence it is completely
defined by its two-point function:

(2.6)

where v4 is a (real) linear operator on § such that

(2.7) S ( ^ v O = - S ( < M v > ) > V<p,y>eS,

(2.8) M l l ^ l .

Vice-versa, given a real linear operator A on jr> which satisfies (2.7) and (2.8), then
there exists a quasi-free state ωA of ϊ[($, S) whose two-point function is given
by (2.6).

Let A = \A\J be the polar decomposition of A which satisfies (2.7) and (2.8),
then J satisfies

(2.9) J2 = -1,

(2.10) S{Jφ,ψ)=-S(φ,Jψ), Mφ,ψeξ>.

In what follows we shall restrict ourselves to those As for which \A\ has a pure
point spectrum. This is not a too severe restriction since in each quasi-equivalence
class of ωA there exists a quasi-free state ωA, for which \Ά\ has a pure point spectrum
(see e.g. [5-7]).

Consequently there exists an orthonormal basis {ei,fi}i = ίi2,... of § such that

(2.10) jei=ft, Jft=-eι,

(2.11)

(2.12)

(2.13) 0 ;eIR+ or + 0 0 .

We shall restrict ourselves to 0 ;<oo, which is possible if we consider the ωA

up to quasi-equivalence.
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Moreover using the result of [8] ωA is a product state, namely

(2.14) ωyl(fc(xίl)ft(yil)6(xίl)&(yl2)... b(xip)b(yip))

= ωA(b(xiι)b(yiι))ωA(b(xiMyi2)) • • • o}A(b(xip)b(yip)),

where x^, j ^ . belong to the space generated by (e^.,/^) and all ij are distinct.
Now we shall give another description of the Clifford algebra which is con-

venient for what follows in the sense that it bears a strong similarity to the algebra
of commutation relations [9,10]. We shall not be systematic in order to make
clear the correspondance between the two descriptions.

Let 2JV (resp. oo) be the real dimension of § and G the group of subsets of a
set with N elements (resp. the set of finite subsets of the set of natural integers)
endowed with the symmetric difference as product; this group has been already
considered by Ginibre in [11]. If geGxG:

(2.15) g = ( ( h , . . 9ip),(Ji> -Jq))>

one defines (one can assume iί <i2... < ip, j 1 <j2... <jq)'

(2.16) δ g = ^ 2

The factor ,<P+«>(P+<!-I>/2 i s s u c h t h a t ^ i s seif_adjoint. Then it is not difficult to

realize that:

(2.17) δβδ, = ξ{g,gr)δβ.,, Vg,g'eGxG,

where Q*Q' stands for the product within GxG and ξ is an exponent of Gx G,
i.e. defines a central extension of GxG.

Let us specialize to the case where the real dimension of § is two. Let (e, f)
be the orthonormal basis which diagonalizes \A\. GxG is the group of subsets
of a set with two elements {1, 2} and isomorphic to S2 x S2 (S2 is the group of
two elements)

(2.18) G X G = { 0 , { 1 } , { 2 } , { 1 , 2 } } ,

then

(2.19) < 5 β = l , δ{1) = b(e), δ{2) = b(f),t δ{U2) = ib{e)b{f).

From which the Clifford algebra generated by b(e\ b(f) appears as the group
algebra of the central extension of S2 x S2 by an exponent ξ which one can easily
calculate from (2.19).

Let us consider on this Clifford algebra [resp. on A (G x G, ξ)~] the state ωA

(resp. the state ρA) such that:

(2.20)

(2.21) ρA(δ{1)) = ρA(δ{2)) = ωA(b(e)) = ωA(b(f)) = 0 ,

(2.22) ρA{δ{U2]) = iωA{b{e)b{f))= - t h ( θ ) , Θ E R + .

One can formulate the following lemma:

Lemma (2.23). ρA as a function of the group S2 x S2 is the characteristic function
of a probability measure on the dual group S2 xS2.
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Indeed S2 has two elements σί and σ2 (σ1 is the trivial character) so that
S2xS2 = {(σl5 σj, (σ l 5 σ2), (σ2, σx\ (σ2, σ2)}; one can write

(2.24) ρA(δg)= Σj^A^σ^σ^ig), VgeS2xS2

σt,σ j

and (σi? σj)(g) is the value of the character (σi9 όj)eS2 xS2 on g.
An easy computation shows that

(2.25) μA(σi9σj) = e-θ/4ch(θ) if i=j,

(2.26) μΛ(σi9σj) = e+θ/4ch(θ) if i φ j ;

this measure is of Gibbsian form, namely μA = Z~ίe~H, and // is of ferromagnetic
type (see e.g. [11]).

If we gather this result with formula (2.14) we have the following theorem.

Theorem (2.26). Let ωA be a quasi-free state of 9I(§, S)(dim§==oo) such that
if A = \A\J is the polar decomposition of A then \A\ has a purely discrete spectrum.

Let (ei9fi)i = ίt2,...,n,... be the orthonormal basis of 9) which diagonalizes \A\ and
such that Jet = f; let G be the group of finite subsets of the set of natural integers
equipped with the symmetric difference as product; then there exists a probability
measure μA on Gx G such that

ω^(b(eiι)b(ei2)...b(eip)b(fjl)...b(fjq))

where one has assumed that i1 <i2... <ip9 j1< ... <jq. (—l)δ is the parity of the
permutation which brings ix...ipj^..jqto fc1?...kp +q (kr = ir or jr)and k1^k2,...^kp+q.
(σfσ)((iί,...,ip),ijί...jq)) denotes the value of the character (σ,σ) of GxG on an
element {(i1... ip), (ju... Jq) of GxG.

There is an analogue of this formula for bosons; indeed let us consider a one-
dimensional harmonic oscillator with canonical (quantum) variables p and q;
let Ω be its ground state; then an obvious calculation shows that:

(2.27) (Ω\e^+^Ω)= Jί« Jί^ dμΩ(u, v)e-^+^,

where

(2.28) dμΩ{ύ, v)= [ j j dύdv Gxp{-(2/hώ)Jf(u9 ί ) ) ] " 1 e~ Mhω)^>ϋ)dύdϋ,

and Jf(ύ9 v) is the classical Hamiltonian.
Let us make some further remarks: another proof of the theorem would be

to use the fact that ωA is non zero on a maximal abelian subalgebra of 9ί(§, S);
namely the one generated by the ϊb(e^)b{f^ hence its restriction to this abelian
subalgebra is the Fourier transform of a probability measure over the space of
its characters. The proof can be completed by using Theorem (2.14) in [12]. This
shows that the situation we have here is more general than the one in formula
(2.27) where the essential point is that a Gaussian is a positive type function on
R 2 and on the Weyl group.

On the other hand it is clear that G is isomorphic to a classical spin system
(see [11]); in this sense we can say that the classical spin system is the analogue
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of the classical phase space for the Fermi system we have considered. Moreover
the measure of Theorem (2.26) is of Gibbsian form for a ferromagnetic interaction
between the classical spins.
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