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Abstract. The notion of a quantum dynamical semigroup is defined using the
concept of a completely positive map. An explicit form of a bounded generator
of such a semigroup on B(j4?) is derived. This is a quantum analogue of the
Levy-Khinchin formula. As a result the general form of a large class of Mar-
kovian quantum-mechanical master equations is obtained.

1. Introduction

The dynamics of a finite closed quantum system is conventionally represented by
a one-parameter group of unitary transformations in Hubert space. This formalism
makes it difficult to describe irreversible processes like the decay of unstable
particles, approach to thermodynamic equilibrium and measurement processes
[1-3].

It seems that the only possibility of introducing an irreversible behaviour in a
finite system is to avoid the unitary time development altogether by considering
non-Hamiltonian systems. One way of doing this is by postulating an interaction
of the considered system S with an external system R like a heat bath or a meas-
uring instrument. This approach is suggested by the theory of the measurement
process in quantum theory, which provides an example of an irreversible process
even in the axioms of quantum theory, and by Einstein's theory of Brownian
motion where the fluid provides a stochastic external force which determines
the irreversible nature of the motion. A different physical interpretation with the
same mathematical structure is to consider S as a limited set of (macroscopic)
degrees of freedom of a large system S + R and R as the uncontrolled (microscopic)
degrees of freedom. If the reservoir R is supposed to be finite (but large) then the
development of the system S + R may be given by a unitary group of transforma-
tions. The partial state of S then suffers a time development which is not given by a
unitary transformation in general.

The simplest dynamics for S which could describe a genuinely irreversible
process is a semigroup of transformations which introduces a preferred direction
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in time. It is difficult, however, to give physically plausible conditions on the
system S + R which rigorously imply a semigroup law of motion for the sub-
system S. Intuitively the time scale considered for S should be very long com-
pared with the relaxation time of the external system R, but shorter than the
recurrence time for the system S + R considered as a closed finite system. There is
thus only an intermediate time interval in which the semigroup behaviour is
approximated. In order to obtain an exact semigroup law for S it is necessary
(but not sufficient) to let the size of R approach infinity.

The only rigorous treatments of this problem known to the author were
given by Davies for a model of a harmonic oscillator [4] and for a N-level atom
[5] and by Pule for a spin \ system [6]. In each case the system is in contact with
an infinite heat bath. The results are that the weak coupling limits of the time
developments are Markovian for large classes of interaction Hamiltonians.
The argument for choosing the set of dynamical maps to form a semigroup
must, however, be based mostly on the simplicity and the success of physical
applications. Applications to processes like laser action, spin relaxation etc.,
of Markovian master equations, where the Liouville operator is just the generator
of the dynamical semigroup, have led some authors to introduce the semigroup
law as the fundamental dynamical postulate for open (non-Hamiltonian) systems
[7-9].

The axioms for a dynamical semigroup as given by Ingarden and Kossakowski
[8, 9] will be repeated here in the Heisenberg picture.

Let stf be a P^*-algebra. A dynamical semigroup is a one-parameter family
Φt of maps of s& into itself satisfying

a) Φt is positive
b) Φt(I) = I
c) Φs Φt = Φs+t

d) Φt{X)-+X ultraweakly, ί^O
e) Φt is normal (ultraweakly continuous).
Then we know that there is a (generally unbounded) map L defined on an

ultraweakly dense domain such that

for X in the domain [10].
The purpose of this paper is to derive an explicit form for the generators of a

dynamical semigroup. In order to obtain the desired result we have to introduce
two restrictions in the class of dynamical semigroups compared with the scheme
outlined above.

First we have to assume that the semigroup is norm continuous, that is that
the generator is a bounded map ([11], p. 341), a condition which is not fulfilled
in many applications. (We may hope that this restriction can be ultimately
removed using more powerful mathematics.) This means that d) is replaced by

d') l i m t i O | | Φ f - / | | = 0 .
It then follows that there is a bounded map L: srf-*stf such that
f) Φt = cxptL

g) lim t4O | |i-r1(Φ ί-/)ll=0.
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From the fact that the set of ultraweakly continuous linear functional on si
is norm closed it follows that the set of ultraweakly continuous maps of si into
itself is norm closed ([12], 1.3.3). Consequently

h) L is ultraweakly continuous.
The second restriction is that we have to assume the dynamical maps to be

not merely positive but completely positive (CP) in the sense of Stinespring
[13], i.e., using the notation of § 2, we replace a) by

a') ΦteCP(s/).
This we believe to be a physically motivated hypothesis. § 2 is devoted to a

justification of this statement and a description of those mathematical properties
of CP maps which are essential for the following paragraphs.

In § 3 the generators of CP semigroups, here called completely dissipative
(CD) maps, are introduced as well as a dissipation function which describes the
deviation from Hamiltonian dynamics. The canonical form for the CD generators
is derived in § 4 in terms of a CP map and a Hamiltonian. The set of CD generators
form a convex cone. In § 5 this convex structure is described and the extreme rays
of the cone are given. The results of § 4 and § 5 provide a quantum analogue of the
classical Levy-Khinchin formula [14]. In §6 the connections with previous work
is described further.

2. Completely Positive Maps

At first sight it is a surprising fact that the property of positivity is not sufficient
for a dynamical map to have a physical interpretation for quantum systems, and
that we must demand the stronger property of complete positivity. In order to see
the physical background of this we consider two quantum systems Sx and S2

and a heat bath R. We assume that S1 is interacting with R in such a way that
the time development of Sλ is described by a family of maps

where j ^ is the Hubert space belonging to St. We can consider one fixed time and
drop the time parameter. We further assume that S2 is a closed system, i.e. its
dynamics is given by a Hamiltonian H2. We put H2 = 0 for the moment. Then
we ask: can the map Φ1 be extended to a positive map Φ :B(j^)^B(jίf) where
j ^ ? = j^f1(g)^f2ί such that S2 is unaffected? This is obviously so when the dynamics
of Sί is Hamiltonian. Then the dynamics of Sι + S2 is given by the Hamiltonian
H = Hί0I2. Φ is defined by

Φ(X®Y) = Φ1(X)®Y (2.1)

all XeB^l YeB{^2\ or more explicitly by Φ(X)=U+XU where U =
exp(ίH1t)(g)I2, and Φ is obviously positive. In the case where the dynamics of Sί

is non-Hamiltonian (2.1) follows from the conditions

but the positively of Φ is not obvious from a mathematical point of view though
necessary for physical reasons. Let first J^2 have finite dimension n. Then
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where Mn(si) denotes the nxn matrix algebra over a C*-algebra si.
Consider a more general case by introducing two C*-algebras si, J*. If Φ is a
linear map from si into J* then Φ extends to a map Φn: Mn(si)->Mn($) defined by

Φn(X®Eij)=Φ(X)®Eij (2.2)

where Eip i, j = 1,..., n are matrix units spanning MΠ(C). We write this as Φn = Φ®In.
When sί = 0ί = Si(3^1) then (2.2) is (2.1).

Now Φn is not necessarily positive. We must therefore restrict ourselves to
maps Φ such that Φn is always positive.

Definition. Φ: si-*& is called completely positive iff Φn is positive for all n. We
write this as Φ<ECP(J/, @) or ΦeCP(si) if si = @. If si = & = 08(3tf) then we write
ΦeCP(jT)/or simplicity [13,15,16].

Remarks 1. There are positive maps which are not CP [15,17].
2. CY*(si, 3$) is a convex cone.
3. ΦeCT?(s/9ό8), ΨeCF(^,%)=>Ψ'ΦeCΈ>(si,%).
Stinespring has given the following canonical form of CP maps [13]. We

assume that si, 3$ have units troughout.

Lemma 1. Φ: j / - > J * C ^ p f ) is CP iff there is a *-representation π of si in a
Hilbert space $C and a bounded linear map V: 34? —>Jf such that

Φ(X)=V + π(X)V. (2.3)

Corollary. // Φ e C P ( ^ , 3S) then ΦneCP(Mn(j/), Mn(β)) all n.

The proof is obvious.
If si, 08 are FΓ*-algebras we will denote by C P ( J / , 3S)σ the set of ultraweakly

continuous (normal) elements in C P ( J ^ 5 3$).

Lemma 2. ΦeCP(jf )σ iff

ΦiX^ΣV + XVi (2.4)

where V^V

The proof of this lemma was given by Kraus [18].
It is now easy to see how to generalize the tensor product extension property

discussed in the beginning of this paragraph.

Proposition 1. Let 3tf = 3tfι®3tf2 and assume that ΦαeCP(jfα)σ for α = l , 2 . Then
there is a unique ΦeCP(Jf% such that Φ(X®Y) = Φι{X)®Φ2(Y\ all

Proof From Lemma 2 we know that Φa(X)= £ f Vaf XVai, α= 1,2. Then obviously

has the stated properties. We write this as Φ = Φί®Φ2.

In addition to this extension property the CP maps have the important
property of being realizable through the interaction of the considered system S
with an external system R. Let ρ 0 be the initial state of the system R. If S + R is
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treated as a closed finite system, then its development during a specified time inter-
val will be given by a unitary transformation U in jf' = J/Fs®JtfR. In the Heisen-
berg picture the development of S is given by

It is evident that ΦeCP (Jtfs)σ and Φ(I) = I.
We have a converse result. Let S(j4f) denote the set of normal states on B(J4?).

Proposition 2. // ΦeCP(jf1)σ, Φ(I) = I then there is an isometric operator V in
j f = jfx(g)j^2, w/ieπ? Jf2 *s s o w β Hilbert space, such that for all ρeS(j/?2)

) = Tr2(ρV+(X®I)V).

Proof. We know from Lemma 2 that

When j ^ 2 is oo-dimensional there are isometries Wt in f̂2
 s u c h that Wt

+Wj =
ijl. Define K= Σ ^®H^. Then

Remark. V can be extended to a unitary operator 1/ in a larger Hilbert space 3tf"
[19]. Then the statement holds with U replacing V for some ρ in

The properties of CP maps given above seem to be argument enough to
postulate the dynamical maps to be CP. Note that for classical systems where
the algebra of observables is abelian, positive maps are always CP [13], hence
there is no additional restriction in that case.

We introduce a partial order on CP(sf) by:

Ψ^Φ iff Φ-ΨeCF(^).

Definition. ΦeCP(>/) is pure (belongs to an extreme ray) iff ΨeCP(j/)9 *F^Φ=>
Ψ = λΦ, λe[0,1]. We write this Φeextr CP(J^).

Lemma 4. Φ e extrCP(^) σ iff Φ(X)=V+XV, VeB{^).

Proof. Corollary 1.4.3 of [15] says that Φeextr CP(Jf) iffπ in (2.3) is an irreducible
representation of β(Jf). Hence if π{X) = X then

ΦeCP(^) σ nextr CP(j^)Cextr CP(Jf )σ .

But from Lemma 2 follows conversely that every Φe extrCP(J^)σ is of the
formF + XF.

Lemma 5. If ΦeCP(j/), where s$ is a C*-algebra, then for all

Φ(X+)Φ(I)~1 Φ(X)^Φ(X+X). (2.5)

When Φ(I) = I we get

Φ(X+)Φ(X)^Φ(X + X) (2.6)

Proof (2.6) actually implies (2.5) by the transformation Φ{X)-+Φ{I)-*Φ{X)Φ{iy*.
(2.6) is proved in [16] Theorem 3.1.
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Remarks 1. From the corollary of Lemma 1 follows that Φn satisfies (2.5) for
alln.

2. From (2.5) follows that ||Φ(C7)|| <Ξ ||Φ(/)|| if U is unitary. From Corollary 1
of [20] we know that | |Φ|| =sup t/ | |Φ(C/)|| where supremum is over the unitaries
in sέ. Consequently ||Φ|| = ||Φ(/)||.

3. Generators of Completely Positive Semigroups

In this paragraph we let j / be a H^*-algebra and Φf = exptL a norm continuous
semigroup in C P ( J / ) . At first we will assume that Φt(I) = I. The extension Ln of
the generator L to Mn(sί) is defined by Ln = L®In and obviously

Differentiation of the inequality (2.6) for Φtn at ί = 0, noting that equality
holds at ί = 0, gives

Ln(X+X)-Ln(X+)X-X+Ln(X)^0 (3.1)

for all XeMn(stf). From Φtn(I) = I and the fact that a positive map is a *-map
follows Ln(/) = 0, Ln(X+) = Ln(X) + . Introduce a dissipation function D(L):s/x
s$-+srf by

D(L;X, Y) = L{X+Y)-L{X+)Y-X

Definition. // a bounded map L'.stf^srf satisfies L(I) = 0, L(X+) = L(X)+ all
Xejtf, and D(Ln; X, X)^0 all XeMn(<srf\ all n, then L is said to be completely
dissipative. We write this LeCΏ(stf). Denote by CD(j^)σ the set of ultraweakly
continuous elements in CD(^) .
Remarks. 1. The conditions L(I) = 0 and L(X+) = L(X)+ extend to Ln.

2. C D ( ^ ) forms a convex cone.
3. There is the usual polarization identity such that D(L) is determined by the

diagonal values D(L; X, X).

Proposition 3. D(L) determines L up to a Hamiltonian.

Proof If D(L;XJ)=0 for all X, Ye si then L is a derivation. We know that
every derivation of a P1^*-algebra is inner [12,21]. Hence there is a Yes$ such
that L(X)=\Y,X\ But from L{X+) = L{X)+ follows that Y = iH where H is s.a.

If L(X) = i[H,X~\ then Φt can obviously be continued to a group of auto-
morphisms Φt(X) = eιHtXe~iHt. Conversely if L generates a group of CP maps
then both L and -L satisfy (3.1). Hence D(L; X,X) = 0 i.e. D(L) = 0 and L(X) =
i\_H, X~\. Consequently D + 0 characterizes the lack of reversibility as well as the
deviation of Φt from an automorphism.

In the following proposition we show the relation between (2.6) and (3.1) in a
somewhat more general form than we need.

Proposition 4. Let L\stf-+si be a bounded *-map and put Φt = oxptL. Then
(1)<=>(2) where

(1) Φt{X+)Φt{X)^Φt{X+X) all Xesd, Φf(/) =

(2) D{L;X,X)^0 all Xest, L(/) = 0.
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Proof. We have already noted that (1)=>(2). In order to show that (2)=>(1) we
recall that L generates a norm-contraction semigroup iff

(see [22] Theorem 2.1). From Corollary 1 of [20] we obtain

where the supremum is over all unitary elements in stf. But from (2) with X= U
follows that for ί ^ |

= \\I + t(L(U+)U +U + L(U)) + t2L(U+)L{U)\\

i.e. Γ
Hence Θ(L)S0 and L generates a contractive semigroup Φt. Obviously

φt(I) = I and consequently \\Φt\\ = 1. But from Corollary 1 of [20] can then conclude
that Φt is positive. [If we know that LeCD(jtf) we can repeat the argument applied
to Ln and conclude that Φt is CP.] If Φt is positive, then so is

Sλ = λft e~λtΦtdt = λ{λ-L)-\ λ>0.

Note that Sλ{I) = I, and once more by Corollary 1 of [20] that | |SJ = 1. Now
we can prove that

LetY = (λ-Ly1 X. Then by (2)

λ(X+X) = Sλ[λ2Y+Y-λ(L(Y+)Y+Y+L(Y)) + L(Y+

We know that ([11] p. 341)

where Φ{

t

n) = (Sn/t)
n satisfies (1) and so does Φt by continuity.

Theorem 1. Let Lbea bounded ""-map sέ^srf and let Φt = εxptL. Then Φt

Φt(T) = I iff LeCD{st).

Proof. Apply Proposition 4 to the extensions Ltn and Φtn to Mn(sf) for every n.

Corollary 1. Φt is a norm continuous dynamical semigroup on s/ iff Φt = exptL
where

It may be interesting to extend this theorem to semigroups of CP maps which
do not satisfy the condition Φt(I) = I.

Differentiation of the inequality (2.5) for Φtn at t = 0 gives

(3.2)

for all XeMn(^). Define L through
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where {X, Y} = XY + YX. If (3.2) holds for L then (3.1) holds for L\ consequently
Z/eCD(j/). The map L"(X)={K, X], K s.a.e J/ , generates the semigroup

and obviously exptL"eCP(si). The semigroup generated by L + L\ L'eCD(si)
is given by the Lie-Trotter formula

Φt = exp \t{L + L")] = limn_ ̂  [exp (tL'/n) exp (ίL"/n)]"

hence ΦteCP(si). We have arrived at

Corollary 2. Lei L b<? a bounded *-map srf-*sΰ and let Φt = expίL. Γ/zen ΦteCP(s/)
iff (3.2) is satisfied for all n.

Remark. Proposition 4, Theorem 1, and Corollary 2 obviously hold when si is
only assumed to be a C*-algebra.

4. General Form of Completely Dissipative Generators

To begin with the assume that si is a hyperfinite factor in a separable Hubert space
2tf [23,24] which includes the case s/ = B(jtf') ([25] p. 92). si is generated by a
sequence of finite type In{p) factors sip such that si = (\J sip)'\ sipQsip + 1. The set
of unitary elements in sip is then a compact group with an invariant mean Jίv

defined by the Haar measure.

Proposition 5. // LeCΌ(s^)σ then there is a ΨeCP(si)σ and a s.a. Hesi such that
for all Xe si.

L(X)= Ψ(X)-±{Ψ(I), X} + i[H, X] . (4.1)

Proof. Define Kvesd through

κp=jιPmu+)ir\.

Obviously \\Kp\\ ^ ||L||. For a unitary Vestfp we have, due to the invariance

ίp

Hence, as every element in sip is a finite linear combination of unitary elements
in j / p

for all Xes/p. For X, Ye stfp we find that

JίplD(L; UX, UY)li = L(X+ Y)-KpX
+ Y-X+

Define the linear map Ψp: si-+ si by

Ψp(X) = L(X)-KpX~XK; .

Then as LeCΌ(si\ we have for

; UX,
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i.e. Ψp\srfp is positive. We can apply the same argument to M n { s d p ) ^ p

and find JtpnίLn(U+) U] = Kp®In where Jipn is the invariant mean on the group
of unitary elements in Mn(stp). F r o m this it easily follows that

Define

) - KX - XK+,

p Ψκ\^peCP(^p,sέ), \\K\\ ί \\L\\}.

As KpeΓp we have that ΓpΦ 0, every p. Obviously Γp + 1CΓp and hence any finite
intersection of Γps is nonempty. Furthermore it is evident that Γp is weakly
closed.

As the unit ball in sd is compact in the weak operator topology Γp are weakly
compact ([12] 1.3.4). Consequently Γ = f ) Γ Φ0.

Pick one KeΓ. Then Ψ= Ψκ is CP on \j&#p. As L is ultra weakly continuous,
Ψ is CP on {\Jstp)". Obviously Ψ{I)=-K-K+. Put H = ̂ i{K+-K). The
statement then follows.

Remark. The proof is easily modified to give the following statement. If L: s$-*s$
is a bounded ultraweakly continuous *-map such that D(L,X, X)^0 for all
Xestf then there is a positive normal map Ψ:jtf^>jtf and K G J / such that L(X) =
Ψ(X) + KX + XK + . This result does not have any direct converse.

Now let jrf be any C*-algebra.

Proposition 6. // ΨeCΈ>{stf\ H s.a.estf then L defined by (4.1) is in C D ( J ^ ) .

Proof. Obviously L(7)=0 and L(X+) = L(X) + . We know from Lemma 1 that Ψ
is of the form (2.3) where we can choose π(I) = I. Then

Ψ(I)X-Ψ(X+)X-X+Ψ(X)

= (π(X) V-VX)+ (π(X) V- VX)^0 .

A simple rearrangement gives D(L; X, X)^0.
The same argument applied to the extensions Ψn and Ln to Mn(sf) shows that

From Propositions 5, 6, and Lemma 2 follows

Theorem 2. LeCD(jf )σ zjff ϊί is o/ ί/ie form

L(X)= Σ(VfXVj-${VfVj,X}) + ilH9r\ (4.2)

Vj9 ^ Vj+VjβB(jf% H s.a.eB(j^). The dual generator on the state space
(Schrόdinger picture) is of the form

^)-iΣ([^V] + [^^/])-^^] ( 4 3 )
Corollary 1 of Theorem 1 and Theorem 2 give the explicit form of the generators

of norm continuous quantum dynamical semigroups on B{2/£).
Propositions 5, 6, and Corollary 2 of Theorem 1 give the following more

general statement.
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Theorem 3. Let srf be a C*-algebra, L'.stf^stf a bounded *-map and put Φt =
expίL. IfL(X)= Ψ(X) + KX+XK+ where Ke^ and ΨeCP(s/)9 then ΦfeCP(j/).

Conversely if s$ is a hyperfine factor and if ΦteCP(j^)σ, then L is of this form
with

5. Convex Structure of the Completely Dissipative Generators

It is tempting to interpret the form (4.1) of the CD generators as a decomposition
into a Hamiltonian part and a dissipative part. Unfortunately this decomposition
is not unique as can easily be seen from simple examples. It turns out to be con-
venient to study the equivalence classes of generators modulo Hamiltonians.
In the case s/ = B(J4?) this gives a nice convex and partial order structure on the
set of equivalence classes. We define an equivalence relation on CD(jf )σ by

L~L iff D(L;X,X) = D(L';X,X) for all XeB(j4f).

Proposition3 says that L~L' iff L{X) = L\X) + /[iί, X] for some s.a. HeB(je).
In this case we also have D(Ln; X, X) = D(L'n;X, X) all XeMn(B(^)l all n.

We can now define the set of equivalence classes CD(jf% of CD generators
modulo Hamiltonians. The equivalence class of L is denoted L . CDpf% forms a
convex cone. We introduce a partial order in CD(jf% by

^L iff D{Ln\X,X)^D{Ln\X,X) for all XeMn(B(3V)), all n.

D(Ln) is a function of L alone, hence the definition is independent of the choice
of representative element. Obviously L^L and L'^L imply that L = Lf.

Definition. L is pure (belongs to an extreme ray) in CΌ(J^yσ iff L ^L implies
thatL' = λ

Introduce the set of CP maps Ψx defined by

, YX)-D(L;X, Y)X.

Note that Ψx determines L. The CP property follows from the CD property
of L, but we can use (4.2) to obtain directly

If the sum in (5.1) contains terms not proportional to Ψx then L is obviously
not pure. Conversely, if L is not pure then Ψx cannot be pure for all X. Hence L
is pure iff Ψx are all pure. If Ψ in (4.1) is pure then the Ψx are all pure and so
is L. Conversely, if L is pure then in (5.1) we must have

ΨixκΨjX for all i,j,X.

Then we can choose V such that (5.1) holds with a single V^V. Consequently
ψ(X)=V+XVsatisfies (4.1). This proves

Theorem 4. The pure elements of CD(jf Jσ ard precisely the equivalence classes of
generators of the form (4.1) with pure Ψ.

Theorem 2 says that countable sums of such elements make up CD(jf%.
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As special cases we can mention the generators of Gaussian semigroups.

L(X)=VXV-^{V2,X} Fs.a,

and Poisson semigroups

L(X)= V+XV-X V unitary .

Kossakowski [8] treated these cases in detail.
Davies [26] gives a general theory of quantum semigroups subordinated to a

classical convolution semigroup on IR and derives the form of the generators
from the classical Levy-Khinchin formula. The Levy-Khinchin formula says
that the generator of a continuous convolution semigroup of measures on IR
is the sum of an integral over generators of Poisson semigroups, a Gaussian
generator and a translation generator (which is the decomposition into pure
elements in that case) [14]. We find that for quantum dynamical semigroups
the pure elements in the set of generators are of a more general type than in the
classical case, but contain the generators of Poisson and Gaussian semigroups
as special cases. The most general form (4.2) of a generator as a sum over pure
elements can then be considered to be a quantum analogue of the Levy-Khinchin
formula.

6. Relations with Other Work

The type of semigroup generators considered here is not new. Davies has treated
generators of the form (4.1) (but in the Schrδdinger picture) in his work on quantum
stochastic processes [26,27]. There the generators were defined through a
stochastic kernel which correspond to the map Ψ in (4.1). As a special case Davies
considered kernels which correspond to CP maps Ψ. The new point here is the
claim that the restriction to semigroups of CP maps implies that the generators
are of this simple form. Kossakowski has treated the general case of semigroups
of positive maps. For a spin \ system the explicit form of the generators was given
in [28]. In the case of an arbitrary Hubert space necessary and sufficient conditions
on the generators were derived in [29].

Equation (4.3) gives an explicit form for the most general time-homogenous
quantum mechanical Markovian master equation with a bounded Liouville
operator

ρ = L(ρ).

It is an empirical fact that the Markovian master equations found in the
literature turn out to be of this form after some rearrangement of the terms and
allowing for unbounded operators. The conventional derivation of this type of
master equation is either through a second order perturbation calculation with
respect to the interaction of the considered system with the external reservoir
[30] or by the projection technique introduced by Zwanzig [31-33]. In both cases
the Markov approximation has to be postulated. The rigorous result by Davies
(Eq. (4.9) and (4.19) of [5]) is once more a master equation with a Liouville operator
of the form (4.3).

In [26] Theorem 5 it was shown that a semigroup generated by a master
equation of this type can always be regarded as resulting from an interaction with
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a heat bath of a singular type. Adding the results of § 4 we obtain the following
statement which is formulated in the Schrόdinger picture.

Proposition 9. Let Φt:S(34?)->S(Jή?) be a norm continuous quantum dynamical
semigroup. Then there is a Hubert space Jf', a one-parameter isometric semigroup
Vt on W and trace-preserving linear maps e\S(3tf)-+SW) and r:S(je')^S(je)
such that

Φt(ρ) = r(Vte(ρ)Vt

+) for all ρeS(Jt?) and ί^O.

After the completion of this work we have recieved a preprint of a related work
by V.Gorini et al. [34]. A result similar to Theorem 2 is derived for a system
described by a finite-dimensional Hubert space, using methods different from ours.
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