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Abstract. Invariant delta functions (including imaginary-mass case) defined in
a complex π-dimensional space-time are explicitly calculated in position space.
It is proposed to define products of invariant delta functions in the ordinary
Minkowski space by analytically continuing the corresponding n-dimensional
ones to n = 4. The (not only leading but also non-leading) lightcone singularities
of [zj(x;m2)]2, Δ{x\m2)Δ{1\x\m2\ and [J ( 1 ) (x; m 2)] 2 are shown to be un-
ambiguously determined in this way.

1. Introduction

Recently, much attention has been paid to the dimensional regularization method
[1]. Though the Minkowski space is of course four-dimensional, Feynman
integrals in momentum space can formally be extended to those in a complex
π-dimensional space. Supposing that Re n is sufficiently small, one can calculate
the latter without encountering ultraviolet divergences. Then one analytically
continues the results to n = 4 and thus obtains regularized Feynman integrals
apart from possible poles located at n = 4.

The purpose of the present paper is to apply this method to singular products
in position space. Since invariant delta functions are singular on the lightcone,
their naive products are meaningless as distributions. In order to give them
reasonable definitions, we propose to use the dimensional regularization method.

In Section 2, we introduce the notion of complex n-dimensional Fourier
transform and investigate its basic properties. In Section 3, we explicitly calculate
the expressions for invariant delta functions in a complex π-dimensional space-
time. In Section 4, the dimensional regularization method is applied to \_Δ(x\ m 2)] 2,
Δ(x;m2)Δ{1\x;m2\ and [zl(1)(x; m 2)] 2, and the expressions for their lightcone
singularities are explicitly found without encountering poles at n = 4. Some
discussions on our results are made in the final section.

In Appendix A, we present various formulae of Bessel functions which are
used in this paper. Appendices B and C are devoted to the calculation needed
in the text.
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2. Complex-dimensional Fourier Transform

We begin by defining a complex π-dimensional integral. It should be defined in
such a way that it be analytic in n and coincide with the ordinary rc-ple integral
when n is a positive integer. Unfortunately, we cannot make use of Carlson's
theorem to do this extension. Therefore we must introduce the complex
^-dimensional integral in a direct way.

Let pμ = (PolPi, '- ,Pk> •••) be a complex ^-dimensional Minkowski vector in
an abstract sense. We define the complex n-dimensional integral of F(pμ) by

dp0 J d p , . . . ] dpk
— oo — oo — co

]dp± p1°-
k-2F(p0;pί,...,pk;pJ. (2.1)

0

Here F(pμ) is supposed to be a function of k + 1 scalar products x{1)p, x{2)p,..., x(k)p
and p2 together with ε(po) = po/\po\. The spatial parts of k complex π-dimensional
fixed vectors x ( 1 )

μ, ...,x(/c)

μ will generally span a fc-dimensional subspace. The
integration variables pl9 ...,pk are introduced as orthogonal coordinates in it,
and p± is defined by

p*=Po2-p1>-...-p2-pA*. (2.2)

If it happens that F becomes independent ofpk, then, as is easily shown by setting
p'1_

2 = p1

2 + pk

2 and using a formula

} dξ(l-ξ2γ=)/πnv + l)/Γ(v + 3/2), (2.3)
- 1

(2.1) reduces to

] dPo J dPl... J dpk^
— GO — 00

Pln-k-1F(p0;Pi,--;Pk-i;p'±)- (2.4)
0

Thus our definition (2.1) does not intrinsically depend on k.
It is more convenient to introduce k polar angles θl9 ...,θk and the radial

length | / 7 | Ξ ( / ? 1

2 + ... + P / c

2 + p 1

2 ) 1 / 2 . Then (2.1) is rewritten as

μ"pF(pμ) = [_2π*-k-^2/Γ((n-k-l)/2)-] J dp0]d\p\.\pΓ2 f dθ^smθ.Γ3

- o o 0 0

...J^sin^r-^^^o lpl θ!,..., )̂. (2.5)
0

The complex rc-dimensional Fourier integral is a special case of (2.5), that is,
the complex rc-dimensional Fourier transform of φ(p2, ε(p0)) is defined by

\dnpe-^φip2,ε(p0)) = L2π^~^2/Γ((n-2)/2)] f dp0]d\p\.\pΓ2

- o o 0
π

• $ dθ(sinθ)n~3 exp[-ip0x0+ί\p\rcosθ~]φ(p0

2-\p\2,ε(p0)),

° (2.6)
where we formally set xμ = (x0, JC) and |JC| = r.
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Since our definition (2.1) is stable against the change of the number of scalar
products involved in the integrand, we see that the abstract displacement of the
integration vector is possible, that is,

J d«pf(px, p\ ε(p0)) = f dnpf((p - q)x, (p - q)\ s(p0 - q0)).

From (2.7), we obtain the convolution formula

J dnpe ~ ** J dnqφ((p -q)\ε(p0- qo))ψ(q\ ε{q0)) = J dnpe " ίpxφ(p\ ε(p0))

(2.7)

(2.8)

for the complex ^-dimensional Fourier transform.
Now, we prove Lorentz invariance of (2.6). Since [ε(po)]2 = l> without loss of

generality we may set

where we of course assume that φ(p2) = 0 for p2 <0 in the lower row case.
The integration over θ is easily carried out by means of (A. 18); then (2.6)

reduces to

f d»p
i

J dp0 J
o o

(2.10)

where

For generic values of r, x0, and s, this integral converges only if 1 <Re n<4, but
such restriction is unnecessary because of analytic continuation in n.

Lorentz invariance of (2.6) follows from that of (2.11). The latter is proved if
χn{x0,r;s) is invariant under an infinitesimal transformation (xo,r)^>

To first order in ε, the increment of χn(x0, r; s) is

AXn(Xo, r, s)-

+ \P\2M , J(n-3y2(\p\r) d fcos|/s + | p | 2 x 0 |

1 Since (2.11) is non-singular at r = 0 in general, we may assume r > 0 so that r + ε x o > 0 for
ε infinitesimal
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The differentiation in the first term is easily carried out by means of (A. 13). By
using (A.14), we integrate the second term by parts:

= - ϊ d\p\(\p\rf
o

- s i n \p\2x0

:n-i),2(\P\r)Ws + \p\2)lp{xo/Vs + \pn

cos l/s + |p|2xoj
(2.B)

Then

Δχn{x0,r;s)= -εr2-" \ d\p\{\p\rt-»l2J{n_ί)l2{\p\r)
0

- sin ]Λ ' ' - | 2 ^

cos]/
(2.14)

In the upper row case, (2.14) vanishes because δ(s + \p\2)sin \/s + \p\2x0 = 0,
while in the lower row case it vanishes only if sΞ̂ O [but φ(s) = 0 for s < 0 by as-
sumption]. Thus Lorentz invariance of (2.6) with (2.9) has been established.

Because of the even-oddness in x0, (2.6) with (2.9) is a function of x2 =x0

2 — r2

only in the upper row case, while it is a function of x2 multiplied by ε(x0) in the
lower row case.

3. Complex-dimensional Invariant Delta Functions

The Fourier integral (2.6) is essentially a superposition of the following three
invariant delta functions:

Δn(x; m2)^(l/(2π)n-H) f dnpε(p0)δ(p2 -

1) f d"pδ(p2 +μ2)e^x ,

where m and μ are real constants.
We first calculate (3.1). From (2.10) with (2.11), we have

(3.1)

(3.2)

(3.3)

An(x;m2)= -
2 ] Jd\p\

o

00

= -[l/(2π)<"-1)/2r("-3)/2] I rfω(ω2-m2)("-3)/4

m

' J(n-3)/2(r j / ω 2 —m2) sinωx0 .

Hence (A. 19) gives us

P(Ύ W " ~ 2 ) / 2

^ ( 2 ) C

(3.4)

(3.5)

for l < R e n < 4 , but (3.5) can be analytically continued to any value of n.
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In order to see the lightcone singularities of (3.5), it is convenient to employ
a distribution defined by

for v=-k = 09 - 1 , - 2 , . . . ,

= (vv-1/Γ(v))θ(v) otherwise. (3.6)

It is well known in mathematics [2] that if φ(υ) is an arbitrary test function then
the integral

j dvφ(v)Yv(υ) (3.7)
-o

is an entire function of v. Then using the series expansion (A.I) of J v, we can
rewrite (3.5) as

An(x;m2) = -(ε(xo)/2π^2^2) f ((-l)ι/22ln)m2lY2_{n/2) + ι(x2). (3.8)
z = o

It is easy to see that if n = 4 (3.8) reproduces the well known expression for A(x\ m2).
In the form of (3.8), all lightcone singularities are manifest in any higher dimensional
space-time.

For m2 complex, (3.8) shows that An(x; m2) is an entire function of m2. Thus
(3.8) can be used even for complex ghosts [3]. Furthermore, from (3.8) we have

-^2)Y2^n/2)+k(x2) (3.9)

for the massless multipole ghosts [3].
Next, we consider (3.2), which reduces to

(3.10)

Hence the use of (A.20) yields

(-x2)^ (3.11)

for 1 <Re n<4, but, as before, (3.11) is valid for any value of n.
The modified Bessel function Kv is usually expressed in terms of the Hankel

function of the first kind H{1\ [see (A.4)]. In order to see the lightcone singularities
of Δ(1)

n explicitly, it is more convenient to rewrite (3.11) as

A{1)

n(x; m2) = {mn~2βnl2π{n-2)l2)'{[(meίnί2 ) / ^

' H{1\2_n)/2{meiπ/2 }/-x2 + i0) + (meiπ/2 ]/-x2 -ίθ){2~n)/2

_n)l2{me^2 l / - x 2 - ϊ 0 ) ] . (3.12)

This formula is verified in the following way. For x2 <0, (3.12) directly reduces to
the second term of (3.11). For x2^0, since a branch cut is encountered, we should
set — x2 +ίθ = e + iπx2 and — x2 — ίθ = e~ίπx2. Then it is straightforward to show
that (3.12) equals the first term of (3.11) by using (A.3), (A.7), and (A.2).
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A similar analysis for (3.5) yields

• H{1\2-ny2(meiπ/2 \/-x2 + i0)-(rneiπ/2 ]/-x2 - ίθ) ( 2 ~" ) / 2

-n)/2(me^2]/-x2-ί0)-]. (3.13)

Accordingly, the complex n-dimensional Feynman propagator AF n(x\m2) is seen
to be a boundary value of an analytic function:

AF>n(x; m2) = $lίε(xo)An(x; m2) + A{1)

n(x; m2)]

cίπl2 }/-x2 + ίti){2~n)l2

• H{1\2_n)/2(meiπ/2 ]/-x2 + i0). (3.14)

Finally, we discuss (3.3). Unfortunately, in this case, the author could not find
an appropriate integration formula in the mathematical literature. Hence, on the
basis of Lorentz invariance proved in Section 2, we calculate the "tachyon" [4]
invariant delta function A{2)

n(x;m2) in two special cases r = 0 and xo = O. By
means of (A.21) and (A.22), we respectively have

°°
ί Mω2 +μ2f ~3)/2 cosωx0

\ μ

rλ(2-n)/2

Δ t n N{n-2)/2(μr) (3.16)

for R e n < 4 . Thus

nπ
- cos —-
π 2

ί-«)/2
,.(«-2)/2

(3.17)

for any value of n. It is noteworthy that Δ{2\(x\μ2) identically vanishes in the
timelike region if and only if n is an odd integer.

An analysis similar to the derivation of (3.12) shows that (3.17) can be rewritten
as

Λ(2)
a n

' N{n-2)ί2(μ V-x2

γx2-m. (3.18)
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Comparing (3.17) or (3.18) with the analytic continuation in m of (3.11) or (3.12),
we can prove the relation

^A^n(x;μ2eiπ) + A^n(x;μ2e-ίπ)-] = A^n(x;μ2) (3.19)

with the aid of (A.2)-(A.4) together with (A.7).
The third invariant delta function [3] for an imaginary mass particle is defined

and given by

μ (i/=3?)(2-")/2J(μl/=^) (3.20)

Note that (3.20) is an entire function of x2 for any value of n; therefore it has no
lightcone singularity in any dimension.

4. Lightcone Singularities of Products of Invariant Delta Functions

As is well known and also as can be confirmed from (3.8) and (3.12), the invariant
delta functions Δ(x; m2) and Δ{1\x; m2) in the ordinary Minkowski space have the
following lightcone singularities:

Δ(x;m2)=-
ε(x0) m

2

(4.1)
2π

(4.2)

where P stands for Cauchy's principal value and γ = 0.5772 ... is Euler's constant.
In the above, dots imply quantities of order x2 Iog|x2 | or higher.

As is evident from (4.1) and (4.2), such products as \_Δ(x\ m 2 )] 2 ,
Δ(x;m2)Δ{ί\x;m2) and [zl(1)(x; m 2 )] 2 are mathematically meaningless in the
sense of Schwartz's distribution [2]. One knows, however, that it is reasonable
to set

δ(υ)P- = -$δ'(υ). (4.3)
v

Then the leading lightcone singularity of Δ(x; m2)Δ{1)(x; m2) is seen to be
— (2π)~3ε(x0)(5/(x2)2.But the non-leading lightcone singularity involves

P ^ 0 ( x 2 ) + <5(x2)log|x2|, (4.4)
x

which remains undefined. In order to give natural definitions to those products
of invariant delta functions, we propose to use the complex n-dimensional in-
variant delta functions, that is, we define the former by analytically continuing
the corresponding products of the latter to n = 4.

For a review on the lightcone singularities, see Frishman [5]
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First, we consider \_An(x\ m2)~]2. From (3.5) and (A.23), we have

r. ,...^-.2 1 ^ (-iyΓ(3-n + 2l)(m/2)21

 v , ,,
L ^ " " ; J " 4 π " " 2

 ztΌ Π[Γ(2-(n/2) + 0] 2 3 - B + lv "

where Yv is defined by (3.6). Hence its analytic continuation to n = 4 is

lim[zln(x;m 2)] 2 = m
T

(4.5)

(4.6)

It is remarkable that the most singular term (1 = 0) disappears. More generally,
from (3.8) we can show that

4/ k

lim f ] Δn(x;nij2) =
ε(x0)

8π

1
(4.7)

Thus the lightcone singularities of products of A(x;m2) are essentially the same
as those of A(x; m2). This result is characteristic to the even-dimensional space-time.

Next, we discuss Δn(x\ m2)Δ{1\(x;m2). In this case, direct computation of the
lightcone singularities as above is impossible because of the presence of Neumann's
Bessel function. By using the convolution theorem (2.8), it is straightforward to
compute the Fourier transform of An(x;m2)A{ί)

n(x; m2) and to obtain

oo

ί

with the aid of (3.5), where we have set

Fn(x2) = ε(x0)An(x;m2)A^n(x;m2).

(4.8)

(4.9)

But, unfortunately, (4.8) is not suitable for finding the lightcone singularities
because even for the leading term the integration over s is convergent only when

A more convenient formula for our purpose is (A.24). On substituting (3.5)
and (3.11) in (4.9) and using (A.24), we have

(2π)n ι\m I

2-n oo du

/ 2 .
u1 — 1

J2_n(2muγυ)Q(v). (4.10)

Expanding J2~n into a power series, we obtain

(2πr-1L = o ϋ 2Γ((n-2/-l)/2)

,3-n + fc-( (σ>0) (4.11)

where k < (Re n — 2)/2 because of the convergence condition of the integration
over u. For n = 4, therefore, the leading lightcone singularity is found to be
proportional to δ'(x2) in conformity with (4.3).
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It is a rather elaborative task to find the non-leading lightcone singularity;
in working it out we have to keep in mind the fact that analytic continuation is
possible only for exact expressions. As is expected from (4.4), we shall encounter
an unfamiliar distribution hence we should compute

J dvφ(v)Fn(v) (4.12)

rather than (4.10) itself. For simplicity, we restrict test functions φ(ϋ) to functions
holomorphic at v = 0. Then in order to find the lightcone singularities, we have
only to compute

Φ/ε) = lim J dυ vjFn(v), 0 = 0,1,2,.. .)
«->4 - 0

(4.13)

where lim stands for the analytic continuation to n = 4 and ε is a small, but strictly
>4n->4

3positive3, number. After lengthy calculation, which is presented in Appendix B, we
obtain

]/ε)N\( m (4.14)

2m yε
• Vε)N0(m (4.15)

for ; = 2. (4.16)

It is quite noteworthy that we encounter no higher transcendental functions
other than Bessel functions.

As is shown in Appendix C, to order εj (4.14), (4.15), and (4.16) become

1
(4.17)

m2

Ύj f o r j-2' ( 4 Λ 9 )

respectively.

3 This means that the order of ε—>0 and w->4 cannot be interchanged
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Now, we consider a distribution Pf[u 1θ{υ)\ which is defined by

J dvφ(v) Pϊ[υ ίθ(υ)']=φ(ε) logε — J dvφf(v) logi;.
-o o

(4.20)

This distribution was introduced previously by the present author [6] and by
Wightman [7] independently. For φ(v) = vj, we have

(4.21)

dv • vj Pflv ~x 0(t>)] = εJ/j for j ^ 1. (4.22)
- 0

Comparing (4.17)—(4.19) with (4.21) and (4.22), we find that the lightcone singu-
larities of A(x; m2)A(1\x; m2) are given by

ΪI F -«—ώΉ + τ
1

θ(x>)

(4.23)

The comparison of (4.23) with the naive expression for ε(xo)A(x; m2)A(1\x;m2)
implies that the undefined expression (4.4) just corresponds to the distribution
Pf [(l/x2)θ(x2)] 4. In (4.23), the dots denote finite terms, which can be calculated
from the naive expression if necessary.

Our final task is to investigate \_A[1\x; w 2 )] 2 , but instead of dealing with it
directly we consider

Gn(x2) = [A^n(x;m2)-]2-lAn(x;m2)-]2. (4.24)

On substituting (3.11) and (3.5) in (4.24) and using (A.25) and (A.26), we have

ιΛ\ 2

" J

? du

]/u2 - Γ

= K 2 _ n (2mMl/- v) (4.25)

The analysis of (4.24) is made quite analogously to that of Fn(x2), that is, as
before, we can calculate

Ψj(ε) = lim j dv• vjGn(v) (/= 0,1,2,...) (4.26)

4 This correspondence differs from the one given in Ref. [6] by a ^-function multiplied by γ. Of
course, the discrepancy is not serious because we are dealing with a mathematically meaningless
expression. Indeed, the calculation (4.14) of Ref. [6] is ambiguous up to a constant multiple of a
δ -function
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exactly (see Appendix B). We thus obtain

- IN Am ]fε)γ + U.2/π)K0(m j/ε~)]2 - l(2/π)Ki(rn (A)] 2 }, (4.27)

IN Am ]/ε)T + ί(2/π)K0(m ]

4rmyε

^ A J (4.28)

+ (- \)\Nk{m lA)] 2 - ( - iyi(2/π)Kk(m ]

+ α-l)"M-[Λ(^lA)] 2 + CiV1(mlA)]2+(-iy[(2/π)X1(m

for jt2. (4.29)

After somewhat complicated calculation, which is given in Appendix C, to order
εj we find

for J= 1.3,5,..., (4.31)

for ; = 2 , 4 , 6 , . . . . (4.32)

Analogously to (4.20), we introduce a distribution Pf[(l/t;)log|t;|] by

Γ 7 / \ TΛΓ / 1 I I I 1 Γ / \ / \Π /I \? 1 C 7 // \/1 I l\? (A 1Λ\

dvφίv) Pi - log|t; ΞτLφ( ε )~φ(~ ε )J( l o β ε ) i αϋ(Z) (i jίlog t;) , (4.33)
\ ^ / -ε

so that

j dϋ-t 7" Pf - l o g | u | 1 = — logfi— -\ for j o d d ,
-ε \̂  / J V 7/

= 0 for j even. (4.34)

Hence the above results (4.30)-(4.32) can be expressed as

1 Γ 1 π 2 , m2 /.

\ 1 1
(4.35)
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where Pf l/v2= — (d/dv) P ί/v [2]. Comparing (4.35) with the naive expression
for lA{1\x; m 2 )] 2 - \_Δ{x\ m 2 )] 2 , we see that Pf 1/v2 and Pf\_{\/υ) log|ι;|] correspond
to

P - ) -n2[_δ{v)\2 (4.36)
υ)

and

(4.37)

respectively.
Finally, combining (4.35) with (4.6), we obtain

(4.38)

Note that (4.38) contains no (5-type singularity.

5. Discussions

In the present paper, we have systematically investigated invariant delta functions
in a complex ^-dimensional space-time. As is shown in Section 3, the use of
complex dimension allows us to discuss higher-dimensional invariant delta
functions in a concise and unified way.

In Section 4, the complex n-dimensional method has been employed to
regularize products of invariant delta functions in the ordinary Minkowski space.
It is remarkable that we have encountered no poles at n = 4, that is, no subtraction
procedure has been necessary. Therefore our results are quite unambiguous.

Finally, we remark that A(x;m2)A{1\x;m2) and [zl ( 1 ) (x;m 2 )] 2 -[zl(x; m 2 )] 2

can be defined by a different procedure. Since

1 \ 1 m2 , m21 m2

l ( 2 Ό ) l
m1 m

- - l o g — + 2 y - l
2 π 2 [ x 2 - / 0 4 1W6V Λ ^iKJ) 4 Γ 5 4

(5.1)
we obtain

4[zJf(x; m 2 ) ] 2 = [/l(1)(x; m 2 )] 2 - [J(x; w 2 ) ] 2 + 2ίε(xo)zl(x; m2)Δa\x; m2)



Lightcone Singularities 109

Since we know

1 1

(5.3)

(5.4)

and can verify5

(5.5)

(5.2) precisely reproduces the right-hand sides of (4.23) and (4.35).
Mathematically, we know that Schwartz's distribution can always be expressed

as a linear combination of boundary values of analytic functions; the latter is
called a "hyperfunction" by Sato [8]. Products of hyperfunctions are sometimes
well defined on the basis of the defining analytic functions. As is seen above,
A(x; m2)A{1)(x; m2)and [zj(1)(x; m 2 ) ] 2 - [zl(x; m 2 )] 2 are well defined, but [zl(x;m2)]2

is still meaningless in the sense of hyperfunctions. Thus we may conclude that
as far as invariant delta functions are concerned, our dimensional regularization
method provides us a natural extension of the hyperfunction method in defining
products of distributions.

Appendix A. Bessel Function Formulae

We here summarize Bessel function formulae which are applied in the present
paper. We denote Bateman manuscript project's "Higher Transcendental
Functions" Vol. 2 [9] by HTF and "Tables of Integral Transforms" Vols. 1 and 2
[10] by TITj and by TIT 2 , respectively.

The formulae (A.1)-(A.14) are found on pp. 4-12 (and on p. 79) of HTF. We
denote Neumann's Bessel function by JVV instead of Yv in order to distinguish it
from the distribution defined in (3.6).

< A 1 >

z) = (sinvπ)- 1[J v(z)cosvπ-J_ v(z)] , (A.2)

z) = Jv(z) + zWv(z) = ( is invπ)- 1 [J_ v (z)-J v (z)e- i v «], (A.3)

v(z) = (π/2)ίeivπl2H{1\{eiπl2z). (A.4)

5 Integrate j dvφ{v)(v - zO) 1 log( - υ + iO) by parts, use log( -v + zO) = log |u| + iπθ(v) and compare

the result with (4.20) and (4.33)
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Forfc = 0,1,2,. . . ,

z\
k+21

ihι+hk+ίh ( A 5 )

~k+21

1 ίz\k+21

ihι+hk+ι)> ( A 6 )

where 7 = 0.5772 ... and h, = £ 1/m with Λo = 0.
m = l

J v ( Λ ) = e ί vVv(z). (A.7)

Let Z v be any one of J v , N v, and H ( 1 )

v .

Z_ t(z) = ( - l ) % ( z ) , (A.8)

X_v(z) = Kv(z); (A.9)

(2v/2)Zv(z)= Z v _ t(z) + Z v + !(z), (A.10)

) = Z v _ t(z) - Z v

Integrating both sides of (A. 14) for R e v > — 1 and making a scale trans-
formation, we have

0

Likewise
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Formulae (A. 18), (A. 19), (A.20), and (A.21) are presented on p. 81 of HTF, on
p. 113 of TIT l 5 on p. 57 of TΠ\ [using (A.9) and correcting an obvious error]
and on p. 11 of TIT! [changing the sign of v and using (A.9)], respectively.

for Rev> -1/2;

oo

J dz(z2-a2)v/2Jv(b ]/z2-a2) ύnyz

for α > 0 , fc>0, y > 0 , - l < R e v < l / 2 ,

J dz(z2-a2)v/2Jv(b ]/z2-a2)cosyz

(A. 19)

for α > 0 , b > 0 , y>0, - l < R e v < l / 2 ;

? I / 7Γ7 / 7 l\(7v 1 1/9 v " —-

uzyz -\- a ) cosj/Z— -—

for y>0, Rev<l/2

(A.20)

(A.21)

The following formula can be derived by combining the formula (32) on p. 25 of
TIT2 (setting μ = —1/2 and replacing v by — v) and the formula (29) on p. 102
ofTIT2.

for y > 0 , α > 0 , Rev<l/2 .

The expansion formula

(A.22)

J (z)J ( z ) - f (-

is given on p. 11 of HTF, and the right-hand side is expressible in terms of a
generalized hypergeometric function 2F3.

The formulae (A.24)-(A.26) are obtained from those presented on pp. 97, 96,
and 54 of HTF by setting μ = v and cosh t = u.

Jv(z)Nv(z)= -\] -βL=J2v{2zu),
1π \ lA2"- 1

[J v (z)] 2 -[N v (z)] 2 =~ί ? 7 | ^

^2v(2ztί)

(A.24)

(A.25)

(A.26)

They are valid for z > 0.
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Appendix B. Derivation of (4.14)-(4.16 and (4.27M4.29)

The basic formula for the calculation of Φj(ε) is

w VV ( V + 1 ) / 2 r-
\dυ-vv/2Jv{2mu]/i) = Jv+1(2mu \Av), (B.I)
o wiu

which follows from (A. 15).
We first calculate Φ0(s). The integration over v is carried out by means of

(B.I) with w = ε and v = 2 — n. We analytically continue the result in n and can set
n = 4 safely because ε is non-zero. Hence

^ 2 0 0 Λ . . Λ

*o(β) = 7 ^ 3 ί I T ^ - T • η V Λ(2m lΛ«) (B.2)
(2π) ]/u 1 my εu

with the aid of (A.8). We apply (A.IO) to the integrand of (B.2). Then we can carry
out the integration over u by means of (A.24). Thus (4.14) is obtained.

Next, we consider Φ^ε). Integrating by parts with the aid of (B.I), we obtain

ε _ _ e(5-n)/2 e(4-n)/2

\Jυ.υφ)2-"J2_n{2mu\^)= —— J3_n(2rn]/εu)- -~-^j^_n(2m]fiu).

(B.3)

We may set n=4 in (B.3) as before, but we do not do so because of a technical
reason. Repeated application of (A.IO) brings the right-hand side of (B.3) into

ε(6-n)/2

]/~εu)-J6.n(2rn]/εu)-] . (B.4)

Hence

(B.5)
m2ε

1 W υ w (2π)
with

v / ^ 4 ; J/t/ 2 -l 4-n

Carrying out the integration over u by means of (A.24), we have

R(ε)= - ^lim - U*-i{m ^N^^m ]fi)-Ja+1(m /ε)Na+1(m ^ ) ] . (B.7)

The limit is calculated by the PHόpital rule. Then the use of (A.8) and (A.IO)
yields

4 m j/ε

tJγ=JMΫ£)\ }• (B.8)

Thus we arrive at (4.15).
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To calculate Φj(ε) for j}±2, we apply (B.I) repeatedly. Then

0

j ,'f p(2j+3-n-k)/2

The right-hand side of (B.9) reduces to

ϊovn = 4.
Now, we note that the following interesting identity holds:

where
7!Γ7 — ? M

We prove (B.ll) by mathematical induction with respect t o / For7 = 2, it reduces to

which is easily verified by means of (A.10) and (A.8). Hence we assume that (B.ll)
holds. After multiplying its both sides by t, we differentiate them with respect to t.
Then, with the aid of (A. 13), the left-hand side becomes

Hence induction completes if

But it is straightforward (but somewhat tedious) to verify (B.I5) by using (A. 12)
and (A.10). Thus (B.ll) has been established.

The use of (B.ll) in (B.10) yields

j W (2π)3 { ]/u2-\tι rn]/^u

It is now easy to carry out the integration over u by means of (A. 10) and (A.24).
We then have

from which (4.16) follows immediately.
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The calculation of ^(ε) is quite analogous to that of Φ7 (ε) though slightly
more complicated. From (4.24)-(4.26), ^(ε) can be written as

n — 2n 2 oo Λ.. ε

Ψj(ε) = lim - 3 Γ T Π ί r r ^ ^ ί dυ• υ>[-(\Γvf ~"N2_π(2m«
n_>4 I n |/ι/ — 1

For 7 = 0, by means of (A. 16) and (A. 17), we obtain

2 ? du N1(2m]/rεu)-(2/π)Kί(2m]/su)

|/εVrm |/εt/

with the aid of (A.8) and (A.9). Note that the additional terms encountered in
(A.16) and in (A.17) are cancelled out in (B.19). It is easy to see that (4.27) follows
from (B.19) by using (A.10), (A.ll), (A.25), and (A.26).

The calculation of ^ ( ε ) is carried out in parallel with that of Φ^ε). Cor-
responding to (B.5) with (B.7), we obtain

m2ε
S(ε), (B.20)

where ^o^) stands for what is obtained from Ψ0(s) by changing the signs of its
last two terms [this change is owing to (— I)7 in (B.I8)] and

S(ε) = \ lim \ {- [J β _ γ(m ]/ε)] 2 + [iVα_ M]β)Λ2 + C Ja+ j

- DVα+ M ]/s)T - l(2/π)Ka^(m ]/ε")]2 + [{2/π)Ka+1(m

It is easy to calculate (B.21) by the lΉδpital rule together with (A.8)-(A.ll). In
this way, we can derive (4.28).

Finally, the calculation of ^(ε) for j ^ 2 is carried out in the same way as that
of Φ (ε) for j ' ^ 2 . It is sufficient to note that the same identity as (B.ll) holds also
for Neumann's Bessel functions and that for the modified Bessel functions it is
modified into

Σ77iW ^ # ^ = Σ 1(-ir ic j^ 2,+ 1(2ί) for mi. (B.22)
k=oυ~κ) ι k=i

Appendix C. Derivation of (4.17)-(4.19) and (4.30}-(4.32)

Since from (A.5) we have

(C.I)

( C 2 )

it is easy to show (4.17) and (4.18) from (4.14) and (4.15), respectively.
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Since (A.I) and (A.5) yield

(π/2)Jk(m}/~ε)Nk(m}/ε~)~-

(4.16) behaves like

- 2 Γ J (-Um

20-1).
for j ^

Since the well-known formula

Γ{c)Γ(c-a-b)
2F1(a,b;c;ΐ) =

gives us

j ί — 1 ϊ k

Γ(c-a)Γ(c-b)

(C.3)

(C4)

(C.5)

(C.6)

(C.4) reduces to (4.19).
Now, we consider f,(ε). From (A.6) we see

K0(m}/ε)~-log m
-y,

m

m Vs

(C7)

(C.8)

By using (C.I), (C.2), (C.7), and (C.8), it is straightforward to show (4.30) and
(4.31) for ./= 1 from (4.27) and (4.28), respectively.

It is a rather intricate task to find the small-ε behavior of Ψj{ε) for '^2. From
(A.5) and (A.6), neglecting positive-power terms, for k~§. 1 we have

-2k

ι = o

1=0

2.

"71 12

Hence the coefficient of log(m |/ε/2) + y in ^(ε) is

1m •
pj

π 4 "

J (-l)kj\(j-2)\

(/+fc)!(/fe)!

(CIO)

(Cll)

As we have seen in (C.4), the quantity in the square bracket of (Cll) equals 1/2/.
Next, we have to simplify the first term of (C9). Since positive-power terms

are omitted, we have

-2k fc-1

Σ
1 = 0

(k-l-ί)\(z
l\

2Ψ 2r-2k k-1 1
(C.12)
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where

α ^ = 4 W^\ • ( C 1 3 )

Let v be a complex number and consider an identity

έ 7 i f i ( v

ι = o ι\\r — ι)\ r\
(C.14)

Its right-hand side is calculated by means of (C.5). Then taking the limit of
v-> k — 1 ̂  r, we obtain

[(fc-r-l) !] 2 (2/c-r-l) !
β f r " r ! (2*-2r- l ) ! ' ( C 1 5 )

On substituting (C.12) with (C.15) in (C.9), we find that the negative-power part
in l(n/2)Nk(z)T is

2(/c+p-l)!/z\-^

D! l2J ( C 1 6 )

and that the constant term in [(π/2)JVfc(z)]2 is

apart from —γ/k. The corresponding quantities for \_Kk(zj]2 are obtained by
replacing z by zz in (C.16) and multiplying (C.16) and (C.17) by (-l) k .

We show below that the negative-power part of

j 2k

Σ i 0 - + f c ) , 0 _ f c ) , {(-im^^)] 2 -(-D J [^(z)] 2 } (CIS)

vanishes exactly. From the above results, it is rewritten as

j, l - ( - l Γ " [(p-l)!]2

Λ 2
where

Since the p=j term of (C.I9) evidently vanishes, it is sufficient to prove

bjp = 0 for p=l,2,...,j-ί.

To show (C.21), we rewrite (C.20) as

( C 1 9 )

From (C.22), we obtain (C.21) by means of (C.5). ( C 2 2 )
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Thus the only surviving negative-power part of ε'jΨj(ε) is the contribution
from

ίN1(m lA)]2 + (-iy[(2/π)^1(m/ε")]2^(2/π)2[l+(-iy](m2ε)-1. (C.23)

Finally, we consider the constant term of ε~jΨj(ε). As is seen from (4.29) and
(C.I7), we have to calculate

1 f 1]

βj-ιy J

where

1 '"<-Cj)+^-r,, (C.24)

Λ i

tΊm ( C 2 5 )

(-lfQ !)2 1

Since we can write

B^ίδ/^^ί-Λfe j + l; 1)|6=1, (C.27)

(C.5) yields

C ^ ) (C28)

On the other hand, we have

0

1

= \dx-x~ι

0

1

=j\dt(l-t
0

I

j]
o

it

1

ί
0

0 0

+l

Substitution of (C.28) and (C.29) in (C.24) yields

(C 30)



118 N. Nakanishi

Collecting the results (C.ll), (C.23), and (C.30), we obtain

6 2

wV /2\ 2 Γl+(-iy 28"1 l - ( - ]
+ 2V\πj
for ; ^ 2 . (C.31)
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