
Communications in
Commun. math. Phys. 48, 31—51 (1976) Mathematical

Physics
© by Springer-Verlag 1976

Canonical and Grand Canonical Gibbs States
for Continuum Systems

Hans-Otto Georgii
Institut fur Angewandte Mathematik der Universitat,
D-6900 Heidelberg, Federal Republic of Germany

Abstract. It is shown that for a large class of interactions any canonical Gibbs
state satisfying a natural temperedness condition is a mixture of Gibbs states
with appropriate activities, and vice versa. Some general results on Gibbs
states and canonical Gibbs states are established. In particular, a differential
characterization of Gibbs states is given.

0. Introduction

A state of a many particle system is called a canonical or a (grand canonical)
Gibbs state1 if its conditional probabilities in bounded volumes are given by the
canonical or grand canonical Gibbs distributions, respectively. While the Gibbs
states are easier to deal with, the natural candidates for the invariant states under
the motion of interacting particles are the canonical Gibbs states. This intuition
has been confirmed not only for lattice systems (see [15] and the references in [6])
but also for continuum systems - the relation between canonical Gibbs states
and the so-called classical KMS condition recently established by Aizenmann,
Goldstein, and Lebowitz2 (private communication) is a result in this spirit.

The first question concerning canonical Gibbs states is whether they are
mixtures of Gibbs states. For lattice systems an affirmative answer has been
given by Thompson, Logan, Shiga, and the author (see [6,7,15] and the references
there), and for continuum systems of independent particles by Nguyen and Zessin
[11]. In this paper we do the same for continuum systems of interacting particles.
The essential ideas are those of [7], but the technical details are rather different.

Now we describe the main result for the special case of shift invariant interac-
tions.

(0.1) Theorem. Suppose that the interaction is given by a translationally invariant
finite range potential of one of the following four types:
(PP) Positive pair potential.

1 Gibbs states are often called equilibrium states satisfying the DLR-equations.
2 Their interest in canonical Gibbs states for continuum systems stimulated the work presented here.
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(DP) Pair potential bounded from below and diverging at the origin faster than
\x\~d, where d is the dimension.

(CP) Hard core pair potential bounded from below.
(WR) The Widom-Rowlinson potential [16].

Suppose further that μ is a canonical Gίbbs state whose particle density is
almost surely finite or, in case (CP), strictly smaller than the density of the densiest
packing of the hard balls. Then μ is a mixture of Gibbs states with respect to this
interaction and certain activities. The distribution of the activities is given by the
distribution under μ of a certain function z(.) on the configuration space. Further-
more, under μ the σ-fields of the tail events and of the symmetric events almost
surely coincide.

The complete statement of the main theorem and related results are collected
in Section 5. The key result - the existence of the tail measurable activity indicating
function z(.) - is proved in Sections 6 and 7. Section 1 contains the set-up, nota-
tions, and a description of the interactions. In Sections 2 and 4 some fundamental
results on Gibbs states and canonical Gibbs states are established. In Section 3
we show that Gibbs states exhibit a characteristic behaviour if a particle is fixed
at a given site.

1. Preliminaries

1.1. The Particle Space. We denote by S the ^/-dimensional Euclidean space IRd,
d;> 1, and by S? the σ-field of Borel sets in S. Furthermore, let JS? be the set of all
bounded Λe&Ί and

where

If A runs through a certain increasing cofinal subsequence of if, we write A\S,
and if A runs through the sequence j ^ , we write ΔίS.

We fix a certain Radon measure σ on (S, Sf) being atomless in the sense that
cr({x}) = 0 for all xeS. The usual choice is σ = λ where λ denotes the Lebesgue
measure, at least in all cases where translation invariance is needed. Another
standard choice is σ = eφλ, where the measurable function x^>φ(x) has the inter-
pretation of a chemical potential. If we choose σ(S\So) = 0 for some Soe^ then
the actual particle space is So (for barometric problems, e.g., let So be the upper
halfspace). Sometimes we shall need the following condition on σ:

(S) )imσ(A(k+l))/σ(Δ(k)) = l

which is trivially satisfied if σ = λ. Finally, we denote by ££\ the set of all AeS£
withσ(Λ)>0.

1.2. The Configuration Space. We are interested in configurations ω of in-
distinguishable particles in S which are locally finite, i.e., in every AeS£ there are
only finitely many particles. Thus we consider the configuration space

Ω={ωCS:ω(yl)<oo for all
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where

ω(Λ) = N(Λ)(ω) = ca.τd{xeΛ:xeω} (ΛeSf).

The latter expression defines a so-called counting measure, i.e., an integer-valued
Radon measure on (S,^), such that ω({x})^l for all xeS. Conversely, any such
counting measure defines a unique ωeΩ. Hence we can represent a configuration
ω equivalently in both ways, and notations as xeω or jω(dx)f(x) are both
meaningful.

For any Aeίf, JV^O, let

Ω°Λ={ωeΩ:ω(S\A) = 0}

and

Clearly, Ω°Λ is isomorphic to the set of all locally finite subsets of Λ, and Ω is
isomorphic to Ω ^ x ^ μ . If ωeΩ then ωΛ = ωr\ΛeΩA denotes the restriction
of ω to A. If ζ, ωeΩ then ζω = ζuωeΩ is their union. In particular, if ζ= {x} we
write ωx instead of ω{x}. 0 denotes the empty configuration.

1.3. Events in Ω. If AeSP let $FA be the σ-field in Ω generated by the cylindric
sets Ωvk, k^O, AD Ve&, and #" = #£. Clearly, $F = 2FA®3FsχAA\ is well-known
that there is a Polish topology on Ω such that $F is the Borel field with respect
to this topology, see [10], e.g. An essential role plays the tail field

Λεse

If Ae5£ the σ-field <SA of yί-symmetric events is the σ-field generated by the events

ΩΛtNnA (N^0,Ae^sχΛ),

and the σ-field of symmetric events is

AeSe

1.4. States on Ω. A probability measure μ on (Ω, #") is called a state or a simple
point process. We are concerned only with states being locally absolutely contin-
uous with respect to the Poisson point process π with intensity measure σ. We
write μ <ζ v if μ is absolutely continuous w.r. to v, and local absolute continuity
means that /i^von $FA for all Ae5£. The Poisson point process π with intensity
measure σ is defined by

where iV^O and Ae££. Note that the right hand side is carried by ΩAN since σ is
atomless. An essential property of π is that if Ae<£ is the disjoint union of Λ1

and Λ2 then π|Ω° =π|Ω°1(x)π|Ω°2, that is, <^Λί and # ^ 2 are independent under π.
/.5. The Particle Interaction. An interaction potential is a measurable function

U on Ωf = u{Ω°Λ:Ae^} such that [7(0) = 0 and
(Ul) Stability. There is a constant 5 ^ 0 such that U(ω)^ -Bω(S) for all ωeΩf.
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(U2) Fίniteness. There is a norm ||.|| on S such that {xeS:||x||^l} is convex,
and a constant r^O such that U(ω)<co if and only if ωeΩr where Ωr =
{ωeΩ:\\x~y\\^r if x, yeω and x + y}.

Clearly, Ωo = Ω. If r > 0 then U is called a hard core potential, and the particles
are imagined to have the shape of a r/2 — ||. ||-ball.

If r = 0 then we shall need for our main result that U is of finite range. For the
sake of simplicity, we shall suppose this property throughout the paper, i.e.,
(U3) Finite Range. There is a constant R>0 such that for all ωeΩ and all Aeif

such_ that ωS\ΛeΩr U(ωΔ)- U{ωΔ^Λ) = U(ωχ)- U(ω8Λ) whenever AC A eS£.
Here Λ = AvjdA, and dΛ is the set of all xeS\A whose Euclidean distance

from A is not greater than JR.
Mostly we are concerned with pair potentials. U is called a pair potential if

there is a measurable symmetric function Φ on S xS such that for all ωeΩf

Φ is assumed to have the properties
(PI) Φ(.,.) ;> - C for some constant C ̂  0.

(P2) For all a>r, sup J σ(dx)Φ+(x, y)< oo
>>eS | | χ - y | | ^ α

where Φ+ = max(Φ, 0). Our main result shall be proved for the following four
types of potentials.
(PP) Positive Pair Potentials. Φ<oo, i.e., r = 0 in (U2), and C = 0 in (PI), hence

£ = 0in(Ul).
(DP) Divergent Pair Potentials. Φ< oo, i.e., r=0 in (U2), and there is a decreasing

function ψ) on ]0, R] such that Φ(x, y)^ψ(\x — y\) for all xφj; and ψ(r)rd-^oo
ifr->03.

(CP) /ίαrd Core Pair Potentials. r>0 in (U2), i.e., Φ(x,y)=oo if and only if
\x-y\<r.

(WR) Wίdom-Rowlίnson Type Potentials. There is a measure τ on (S, 5̂ ) such
that τ^cλ for some c>0, and a set OeiCeif such that

where K + x= {y + x'.yeK}4.
It follows easily from (U3) that the potentials (PP), (CP), and (WR) are not

only stable but strongly stable in the sense that for all xeS and ωeΩr

for some constant B^O.
Sometimes we shall consider translationally invariant interactions. We shall

indicate this condition by writing (PP)β, (DP)^ (CP)Θ, or (WR)β, respectively.
Here θ denotes the shift group (θx)xeS acting on Ω and defined by θxω={x + y.
yeω}.

3 This together with (U3) implies (Ul), see 3.2.8 in [13].
4 U satisfies (U 3) with R = diam K.
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2. Gibbs States

In this and the following section we let σ = 0 be an arbitrary atomless measure
on (S, Sf) and U be an interaction potential satisfying (Ul), (U2), (U3).

For any z > 0 and ΛeJ? the Gibbs distribution in A with activity z and boundary
condition ωeΩ is the probability measure on (Ω, ̂ A) defined by its Radon-
Nikodym density with respect to π\ϊFΛ:

nn t*ιr\ \ J Z ^ ω ) z e x p [ U(ζAωdJ] if ωsχΛeΩr(2.1) Λ(C|ω) = |

where the grand canonical partition function

e"^ZΛ(z, ω) = *•*•> J π ( < V > exp [ - U(ζλωaJ}

= Σ 777 ί σ(dxι)...σ(dxN)expl-U(x1...xNωΰΛ)-]^e-v^Σ 777 ί
Γ = O i V ! ΛN

is finite due to (Ul). We include the case z = 0 by setting

ίl if ζ(Λ)=0

otherwise.

The following consistency property is easily checked.

(2.2) .

whenever A C A e 5£, ζ, ωe Ω.
If μ is a measure on (Ω, $F\ define the measure μ on (Ω x Ω, £F ®3F) carried

by the diagonal by

or, equivalently,

(2.3) μ(C) = μ[ωeΩ:(ω,ω)eC]

(2.4) Definition. A state μ is called a Gibbs state for the interaction U and the
activity z^O if μ(Ωr) = l and for any

A(ζ9ω)=m\ω) for

or, equivalently, for any

(2.5) f

Of course, this definition of Gibbs states is nothing else than that by the so-
called DLR-equations.

We denote by ©(z) the convex set of all Gibbs states for z and U and by ex ©(z)
the set of all extremal points of ©(z).

(2.6) Remark. ©(0)= {ε0} where ε0 is the unit mass on the empty configuration
0. If U is of the form (PP)Θ, (DP)?, (CP)* or (WR)fl then ©(z)Φ0 for any z>0.

Proof. The first statement is trivial. For the existence in the cases (CP)0 and
(DP)β see [3,14,12]. The cases (WR)fl and (PP)Θ can be handled by the methods
in [12]. •
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(2.7) Theorem. // ®(z) + 0 then ex©(z)Φ0. μe©(z) is extremal in ©(z) z/ αraZ
z/μ(γ4) = 0 or 1 /or any ^eJ*^. ^πy μe©(z) /zas a unique representation

μ= J vPμ(dv)
ex©(z)

by a probability measure Pμ on ex©(z).

Proof. Let ®'(z) be the set of all states μ with property (2.5). Since Ω is a Polish
space and (2.5) defines a system of probability kernels ΠΛ from (Ω, # ^ ) to
(Ω, #^), ΛeJ£σ, which is consistent according to (2.2), we can apply the Martin-
Dynkin boundary construction in [5] leading to the results stated in the theorem
with ©(z) replaced by ®'(z). Thus it is enough to show that ex©(z) = ex©'(z)n9ΐ
where Jt is the set of all states carried by Ωr. But this is obvious. •

lϊVcΔe^ let

(2.8) f£A(ζ\ω) = $π(da)fz

Δ(ίvXA\v\ω)

be the probability density with respect to π of the restriction to 3FV of the Gibbs
distribution in A with boundary condition ω.

(2.9) Corollary. // μeex(5(z) then for any sequence Δ]S in <£ σ and any VeJ£σ

the following is true: For μ — a.a.ωeΩ the sequence fγΔ{\(Jθ) converges π — a.s.

and in ^(πynorm to dμ/dπ\έFv.

In other words: If A | S then for μ — a.a. ω the Gibbs distribution in A with
boundary condition ω converges to μ in the sense of the total variation norm on
any J*v, Fei?.

Proof. Observe first that for any μe©(z)

dμ/d(π®μWv®^A(t,ω) = fϊA(ζ\ω)a.s.

Thus the martingale convergence theorem asserts that iϊA^S then fγΔ{.\) converges
a.s. and in L1-norm with respect to π®μ to a function fv(.\.) being measurable
with respect to «^> 0 0= f] ^V®^S\Δ-

άεse
Now let μeex(δ(z). Then

(2.10) JV? o o-JV®{Ω,

Indeed, trivially we have 'D'. Conversely, if Ae^v>ao consider the cuts Λζ =
{ωεΩ:(ζ,ω)eA}. By Fubini's theorem, A^elF^ and the function ζ^μ(Aζ) is
^-measurable and takes only the values 0 or 1 according to (2.7). Thus again by
Fubini's theorem it is seen that the set

π®μ-almost surely coincides with A.

Now we conclude from (2.10) that there is a ^-measurable function fv(.)
such that fv(ζ\ω) = fγ{ζ) for π®μ — a.a.(£, ω), and for any AetFv we have

\π(dζ)fv{ζ) = \im J (π®μ)(dζ,dω)fVΔ(ζ\ω) =
A Aϊ S AxΩ

Hence fv = dμ/dπ\^v.
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Finally, it follows from Fubini's theorem that for μ — a.a.ω π\_fyΔ(.\ω)-^fv~] = 1,
and, since all these functions of ζ are probability densities, the a.s. convergence
implies norm convergence, see the proof of Korollar 20.5 in [1], e.g. •

Let us conclude this section with a remark concerning the shift invariant case.
Let σ = λ and U(ω)= U(θxω) for all ωeΩ and xeS. Then the densities fz

Λ{.\) are
also shift invariant, and we can conclude from [5] that Theorem (2.7) remains
valid if (δ(z) is replaced by the set ®θ(z) of all translationally invariant Gibbs states
and $F^ by the σ-field of invariant sets. Thus the extreme points of ®θ(z) are
ergodic and limits of averaged Gibbs distributions in bounded volumes.

3. A Differential Characterization of Gibbs States

It is known that states for lattice systems are Gibbsian as soon as their one-point
conditional probabilities are given by the Gibbs distributions [2]. Here we prove
a similar result for continuum Gibbs states.

Let μ be a state, μ is said to be a point process of first order if its intensity measure

ρ(D) = $μ(dω)ω(D) (DeS?)

exists, i.e., ρ(D)<oo if DeJδf. Suppose that μ is of first order. Then the Campbell
measure μc of μ is the measure on (SxΩ,^® ^) defined by

μc(D xA) = \ μ(dω)ω(D) (De^,Ae^).
A

By desintegration of μc one obtains (see [8]) that for any xeS there is a prob-
ability measure μx on (Ω, 3F) such that

μc(D xA) = \ ρ(dx)μx(A) (De£?9 Ae^)
D

μx has to be imagined as the conditional probability with respect to μ under the
condition that the site x is occupied. The following properties hold (see [8]):

(3.1) For any

ί dVcg = ί μ(dω) J ω(dx)g(x9 ω) = J ρ(dx) f μx(dω)g(x, ω).

(3.2) For ρ —a.a. xeS, μx[ωeΩ\ x e ω ] = l .

In particular, these facts hold for π and its intensity measure σ.

(3.3) Lemma. Let VeJ£σ and g be ^-measurable such that N(Δ)geL1(π)
for any Δe^. Then for σ — a.a. xeS

j πx(dω)g(ω) = j π(dω)g(ωx).

Proof. This is a simple computation, see also [10]. •
For any xeS define the measure μx carried by {ωeΩ xφω} via

(3.4) j μ°x(dω)g(ω) = $μx(dω)g(ω\{x})

where g is any bounded J^-measurable function. From (3.3) it is seen that for
σ — a.a. x we have πx=π. Since Gibbs states are conceived as locally modified
Poisson states, we can hope that Gibbs states can be identified by observing how
the measures μ°x differ from μ. Let U and σ be as in the preceding section.
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(3.5) Theorem. Let μ be a state of first order. Then μe©(z) if and only if
(a) μ(Ωr)=l,
(b) ρ <ζ σ with density r(.),
(c) μ®<ζμfor ρ — a.a. xeS,
(d) For σ®μ — a.a. (x, ώ)

z e - w J ° if rW=0

\r(x){dμl/dμ)(ω) if r(x)>0.

Proof, "only if. (a) holds by definition. For (b) observe that for any VeJ% μ<ζπ
on SFV with density /£ = jμ(dω)/£(.|ω). Thus we see from (3.1) that for all Όeίf,
DcV,

Q{D) = \π{dω)f${ω)ω{D) = \ σ(dx)jπx(dω)fP(ω).
D

For the proof of (c) and (d) choose some Λe^σ and A and B from a countable
generator of SFΛ and !FS\A, respectively, and let ΛDDeSf. Then

ί σ{dx)r{x)μϋ

x{AcΛB)=[ ρ(dx)$μx(dω)ίAnB(ω\{x})

ζ\ω)ϊ ζ(dx)ίΛ(ζ\{x})
B D B D

= J μ(dω) ί σ(dx)$π(dζ)fΛ(ζx\ω)lA(Q
B D

= J μ(dω) j π(dζ)m\ω)z j σ(dx) exp [ - U(x\ζAωs^A)-]

B D

= \σ(dx) j μ(dω)ze~U(χ\ω)

D AΓΛB

"if. Fix some Λe&σ and let gΛ(0\ω) = eσ{Λ)μlΩΛiO\&r

S\Λ~](ω). We show that

t(0|ω)zζ(yi) exp [ - U{ζΛωδΛ) + U(codAJ] if ωsu e Ωr

otherwise

is a version of dμ/d(π®μ)\^A®^S\A(C> ω) To this end it is enough to show by
induction on JV that for any immeasurable bounded function h carried by ΩAN

the equality

\μ{dω)h(ω)^\μ{dω)\π{dζ)gA{ζ\ω)h{ζAωsχA)

holds. For N = 0 this is true by definition. If N>0 it suffices to consider functions
of the form h=lAlB where Be^S\A and

k

for some measurable partition Λ±κj...uΛk = Λ and integers N^O such that

j

k
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Then

\μ{dω)\π{dς)gΛ{ζ\ω) = \μ{dω)±- J σ(dx) $ π(dζ)gA(ζ\ω)ze-u^^
B A B i V l Ax Aγ

= ί Q(dx)^- j μ(dω)lAί(ω)dμ°x/dμ(ω)
A! i V H

= ί eWτΓ $μx(dω)lAί(ω\{x}) = \μ{dω)\A{ω)ω{Λγ)/Nι=μ{ArΛB). Q
Λi i V l B B

If μ is a shift invariant point process of first order then μx = θxμ0 for ρ —a.a.
xeS, see [8], and μ0 is called the Palm measure of μ. Furthermore, ρ = cλ for some
c^O. Thus μeθbθ(z) if and only if either c = z = 0 or c>0, μ(Ωr) = l, μ%<μ, and

4. Canonical Gibbs States

The canonical Gibbs states are defined by a very similar procedure as the Gibbs
states, but now the grand canonical Gibbs distributions are replaced by the
canonical ones. Let σ and U be as in Section 2.

If AE j£?σ the canonical Gibbs distribution in A with boundary condition ωeΩ
and particle number N^O is the probability measure on (Ω, !FA) whose Radon-
Nikodym density with respect to π\^A is

(4.1)

5 t / ( ^ ω , y l ) ] if ζ(A) = N and

π[<xeΩΛiN:ocΛωsχΛeΩr]>O

ί/π(ΩΛtN) if ζ(Λ) = N and

π[_aeΩΛίN\aΛωsχΛeΩrJ = O

0 otherwise

where the canonical partition function is given by

eσ{Λ)ZΛ>N(ω) = e^ J π(dζ) exp [ - U(ζΛωdAί]
ΩΛ,N

= W\ ί σ(dXi) - σ(dxN)expl-U(x
JM\ ΛN

The canonical Gibbs densities satisfy the following consistency properties.
(42) Remark, (a) Whenever ΛcAe&, σ(Λ)>09 ωeΩ, and N^O then for

π —a.a. ζeΩ

ί

(b) For any ΛeJ£σ, ωeΩ, and z ^
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Proof, (b) is easy. In order to prove (a) it suffices to consider the case ζ(A) = N.
Iϊπ[aeΩA N'.aAωS\AeΩr~] = 0 then by Fubini's theorem for π —a.a. ζeΩAίN we have
π[βeΩΛ ζ{Λ):βΛζA\ΛωS\AeΩr~]=0 so that the assertion reduces to

Now let π[oceΩA N:ocAωS\AeΩr']>O and fix some n^N and ζ°eΩ^ΛN_n. If
π[βeΩΛin:βΛζ°ωS\AeΩr'] = 0 then the integral on the right hand side vanishes,
and so does the left hand side for π —a.a. ζ such that ζA\Λ = ζ°. In the remaining
case all terms are defined by the potentials, and the consistency follows from
(U3). D

Note that for any ΛeJ£σ the function

(ζ,ω)-+fΛtωiΛ)(ζ\ω)

is measurable with respect to $FA ® Ή A.

(4.3) Definition. A state μ on (Ω, 3F) is called a canonical Gibbs state for the
interaction U if μ(Ωr) = l and for all

Λg, ω)=fΛ,ω{Λ)(ζ\ω) a.s.

The convex set of all canonical Gibbs states with fixed interaction U is denoted
by (£. Since @Λ is generated by the sets of the form ΩΛ NnB where N^O and
Be^S\Λ> a s t a t e A* belongs to (£ if and only if μ(Ωr) = l and for all ΛeJ£σ, N^O,

A9 and

(4.4) \π(dζ) j μ(dω)fΛN(ζ\ω) = μ(AnBnΩΛN).
A BΓΛΩΛ,N

In particular, μ<ζπ on 3FA with density

(4.5) fm

Since ®(0)= {ε0}, the following proposition yields as a by-product that (£=1=0,
moreover, that ex(£Φ0.

(4.6) Proposition. For all z^O, μe(δ(z) ι/ and only if μe& and for all
^O, and μ — a.a.ω

)= j βLdζ\^s\Λ](ω)i σ(dχ)ze

ΩΛ,N A

-U(x\ζΛωόΛ

Proof. First, let μe©(z) and / t G ^ σ . Then for any Ae^Λ, Be^sχΛ, and JV^
we obtain from (4.2) (b)

= J π(dOί^ω)/Λ,iv(ί|ω) ί π(dα)

V) x B) =

Hence μe(£. The second property is trivial if z = 0 and easily verified if z>0.
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Assume now that μe(£ has the stated property. In order to show that μe©(z)
it suffices to prove that if z>0 then for any ΛeJ£σ, N^.0, and π(x)μ — a.a. (£ ω)e

e "

where

This is done by induction on N. N = 0 holds by definition. For the step JV-»iV +
observe that a.s. on ΩΛtΉ+1 x Ωr the left hand side equals

=mθ\ω)zN+ίfΛtN+1(ζ\ω)ZA>N+1(ω)

The last equality holds a.s. since if ωS\ΛeΩr then ZΛN+1(ω) = 0 if and only if

(4.7) Theorem. μe(£ fs extremal in (£ if α/ιrf on/y if μ(Λ) = 0 or 1 /or any
Any μe(£ /ίαs a unique representation

μ= j vPμ(rfv)
ex(£

foj β probability measure Pμ on ex(£.

Proof. This statement fits into the setting of [5] just as Theorem (2.7). The
probability kernels PΛ(ω, A) from (ί2, ̂ ) to (ί2, #") are defined by

PA(ω, AnB) = \B{ω)\n{dζ)fΛiω{Λ){ζ\ω) (Ae^Λ, Be^Λ)
A

and iϊAcAeJ^, σ(A) > 0, it is easy to deduce from (4.2) (a) the consistency property

PΔPΛ = PΔ or> more explicitly,

PΔ{ω, AnBnC)=\PΔ{ω, dζ)PΛ(ζ, AnBnC)

whenever ωeΩ, AeέFΛ, Be^Δ\Λ, Ce^S\A. Thus (4.7) follows from [5] just as
(2.7). D

If VcAe^σlQt

(4.8) fvΔ,ω{Δ){ί\^) = \<da)fΔiω{Δlζvasχv\ω)

be the probability density with respect to π\3Fv of the restriction to $FV of the
canonical Gibbs distribution in A with boundary condition ω and particle number
ω(A).

(4.9) Corollary. If μeex(£ then for any sequence A^S in ζ£a and any
the following statement holds: For μ — a.a. ω the sequence fVA,ω(A)('\ω) converges
to fp = dμ/dπ\^v π — a.s. and in Lγ{πynorm.
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In other words: Any extremal canonical Gibbs state is the limit of canonical
Gibbs distributions in A with pure boundary condition ω and particle number
ω(A) in the sense of the total variation norm on any #~F, V e^£. ω can be chosen
from a set of measure one.

Proof. Obviously,

fvΔ,ωUC\<») = dβ/d(π ® μ)\Fv ® #Δ(ζ, ω)

so that the same arguments apply as in the proof of (2.9). •
In the shift invariant case one obtains from [5] that the extremal points of

the set dθ of all shift invariant canonical Gibbs states are just the ergodic states
in (£θ, and these are limits of averaged canonical Gibbs distributions in bounded
volumes.

5. The Activity Indicating Function

Let σ be an atomless Radon measure on (S,£f) and U an interaction energy
satisfying the following condition.
(A) σ is infinite5, and one of the following assumptions holds.
(Al) Either U=0 or U is of type (WR). In the latter case, σ^cλ for some c>0.
(A2) U has the form (PP) or (DP), and σ has property (S) and satisfies the inequality

σ^cλ for some c>0.
(A3) U is given by (CP), and there is a nice subset So of S (e.g., S0 = S or a half-

space) and constants c,c'>0 such that c'λ^σ^cλ on So and σ(S\So) = 06.
Furthermore, we introduce a certain temperedness condition for states7. Let

t(ω) = lim supω(A)/σ(A)
A±S

be the (upper) particle density of ω, t0 = oo, and for r > 0 ίl. = sup{ί(ω):ωGΩl.,
ω(S\S o) = 0}. Define

T={ωeΩr:t(ω)<tr}

where r is chosen according to property (U2). We call a state tempered and write

We are going to identify any μe&nX as a mixture of Gibbs states. Obviously,
we have

(5.1) Remark. ex(<£nX) = (Qx£)nX.
If E/ = 0 then E c J , see [11]. For any ζ,ωeΩ and FeJSf let

m s u p ZΛ\K,ω(Λ)-ζ(K)

C5 2) Z (71 ) = < A±S ZAW,ω(Δ)-ζ(V)(CvωS\v)

if ζveΩr and eventually ωS\ΔeΩr, ω{A)>ζ(V) and the
denominator > 0

0 otherwise

5 See [7] for a discussion why this is necessary.
6 This implies condition (S).
7 A similar condition has been used in [14].
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and

(5.3) z(ω) = lim supzF(ω|ω)e[0, oo] .

Since U has finite range, the function z(.) is measurable with respect to the σ-field
generated by J*^ and the set Ωr We shall see that for any tempered canonical
Gibbs state the activity distribution is given by the distribution of z(.). In view
of the Legendre relation between the canonical and the grand canonical pressure
the following remark illustrates why z(.) is a good candidate for the activity.

(5.4) Remark. Let σ = λ and U = 0 or of type (DP), or (CP),. Then for any
ωeTwe have

-logz(ω) = —0(t(ω), 17)

where g(ρ, U) is the specific Helmholtz free energy per volume. In particular,
z(.)|T is shift invariant.

Proof. A theorem by Dobrushin and Minlos [4] asserts that in the cases
(DP), and (CP)β for any

l 0 ^

whenever Δ runs through a subsequence of $ such that ω(A)/λ(A)-+ρ. Actually,
they do not include a boundary condition, but to do so is no problem in the case
(OP),, and for the case (DP), cf. Lemma (6.6) below. If U = 0, this result is an easy
computation. Now the remark follows from the concavity of the function #(., U). •

Sections 6 and 7 are devoted to the proof of the following key result.

(5.5) Proposition. Let μeexCLnϊ. Then there is an activity ze[0, oo[ such that
μ[z(.) = z] = l and μeex©(z)nϊ .

Now the same argument as in [7] shows

(5.6) Theorem, ex&n%= [j ex©(z)n2.
0<Z<00

If L/ΞΞO we can forget about the temperedness, and (£ is the set of all states
with the property that if you know that N particles are in some ΛeJ£σ then these
particles are independently distributed according to σ(.\Λ). Furthermore, ®(z)
then consists just of the Poisson point process with intensity measure zσ. Thus
Theorem (5.6) yields a characterization of the mixed Poisson point processes for σ
by the property defining (L This is a continuum analogue of de Finetti's theorem.

A convenient special formulation of Theorem (5.6) is given in
(5.7) Remark. If &(z)n%= {vz} for all z^O then any μe&nX has a representa-

tion

μ= j vzPμ{dz)
[O,oo[

where Pμ is the distribution of z(.) under μ.
As in [7] now one derives the following characterization of tempered Gibbs

states in the class of tempered canonical Gibbs states.
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(5.8) Theorem. For any z^O, μe®(z)r\X if and only if μedr\X and μ[z(.) =

z] = l.

Theorem (5.8) expresses in a certain sense the equivalence of ensembles.
This becomes more clear in part (a) of the following corollary concerning the
shift invariant case.

(5.9) Corollary, (a) In the situation of remark (5.4) the following statement holds

for any z ^ 0 : μ e © ( z ) n ϊ if and only if μe(£ and —g(t(.),U)=—logzμ — a.s.
dρ

(b) Whenever z(.)\T is shift invariant, in particular, if the statement of (5.4) is
valid, we have

ex<£θnZ = (J ex@θ(z)n2:.

d
Proof, (a) follows from (5.8) and (5.4) since — g(ρ, U) > — oo only if ρ < tr

(b) follows from (5.8) because any μeexG^ is ergodic. •
It is an interesting consequence of Theorem (5.6) that tempered canonical

Gibbs states are Gibbs states in a certain sense.

(5.10) Proposition. A state μe% belongs to (£ if and only if for all

Λ(ζ, ω)=fz/ω\ζ\ω) a.s.

Proof. Denote by ϊ) the convex set of all states μ with this property. Then
by the same argument as in the first part of the proof of (4.6). On the other

hand, it follows from (5.5) that e x K n ^ c D , hence by (4.7) (£nϊc£>. •
As in [7] we now obtain

(5.11) Theorem. For any μedn% (^aD = ̂ 'O0 μ-a.s.

6. Some Estimates

In this section we prepare the proof of Proposition (5.5) by some estimates most
of which are modifications of results of Dobrushin and Minlos [4] 8 . We shall
assume throughout that condition (A) is satisfied.

We consider the non-normalized partition functions

(6.1) QAtN(ω)

j j)... σ{dxN) exp [ - U(x x . . . xNωdΔ)\

where Δ e Jδf, ωS\Δ e Ωn and N ^ 0.

8 Our estimates here probably are not the best possible. An extension to a larger class of inter-
actions automatically extends the range of validity of Theorem (5.6).
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(6.2) Lemma. For all t<tr there is a constant K(t)>0 such that for any sequence
(Nk)k^1 with the property lim sup Nk/σ(A(k))^t, any sequence (ωk)k^1 in Ωr, all

2, and sufficiently large Ak = A(k)\V

^ K(t)σ(Δk).

Proof Just as in [4] we have only to show that if k is large, £eί2°k>Nk, ζcoS\ΛkeΩr,
and ζ(S\So) = 0

(6.3) J σ(dx) exp[ - U(x \ ζωdΔJ] ^ K(t) σ(A k)

for some K(t)>0. In case (Al) this is trivial since then U(x\.)^0.
Consider now the case (A3). Choose some δ<tr — t. Write A instead of AknS0

and let

A{ζ)={xEA:\\x-y\\>r for all yeζ}

and M = m&xN(A)(Ωr) — Nk. Then there is some (xeΩ^MnΩr such that

{yeA:\\y-x\\^r}\.

j\xsa j

Hence, if A is large enough,

σ(A(ζ))/σ(A) ^ c'υrκM/σ(Δ)^ c'vrκδ = AD

where vr = λ[yeS: ||y|| rgr] and K is the minimal fraction of this volume within a
large cube containing the origin. Now choose a > r so small that (t + δ) c(va — vr)<D
and k so large that NJσ{A)<t + δ and σ({A\A(\_k-K\))vdV)^Dσ{A). Then the
set

Aa(ζ)={xeA([_k-K])\V:\\x-y\\^a for all yeζ}

satisfies the inequality

(6.4) σ(Aa(ζ))^2Dσ(A).

Furthermore, we have due to (P2), (PI), and (U3)

J σ(dx)\U(x\ζωsχAk)\ί X j σ(dx)\Φ(x9y)\

Thus we obtain from (6.4) and Cebyshev's inequality

^σ(Aa(ζ))-σlxeAa(ζ):U(x\ζωsχAk)>E/D^Dσ(A)

proving (6.3) with K(t) = D exp [-£/£>].
In the case (A2) the same argument simplifies since we can choose D = 1/4. •

(6.5) Corollary. For any ωeTand ζeΩ,
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Proof. We can assume that ζeΩr and ω(S)>ζ(V) for any VeS. Fix some V
and let iVfc = max(0, ω(A(k))~ζ(V)-1) and ω f c = ζ κ ω s v l ( k ) . Then

lim sup NJσ(Δ (k)) = ί(ω) < ίr,
fc^oo

and

zv(ζ\ω)= limsup(Nk+l) 6 W ^ * )
Δk,Nk+ l\ωk)

(6.6) Lemma. // [/ is o/ ίype (DP) ί/zerc /or all ωeT and v>0 there are con-
stants D<_co, δ<0 such that for any cube A with λ(Λ) = v, all 1^0, and sufficiently
large

ί π{dζ)fΔMΔ)(ζ\ω)^De~δ>\

Proof Essentially this is Theorem 3 in [4]. We indicate some modifications
of the proof.

1. Let C be as in (PI) and H = C2R+12d{R+l)d. Determine some αe]0, l [
such that I/a is an integer and

if r^

Then if x, y belong to a cube of vertex length a,

where v = ad is the volume of the cube.
2. Divide S in cubic cells of vertex length a. We denote cells as well as their

center by γ. Let Γ be the set of cells in A. If x = (x l 5 . . . , xd)eS let |x |= max |xf|.
1 ^i^d

Define

Φ(y,Y)= inf Φ_(x,x').
xey,x'ey'

Then since Φ has range JR we have for any cell γ

3. Choose ΛeΓ. Then lo= supω(/y)2~ |y"yl|<oo. Indeed, suppose that there
y

is a sequence γt such that lyjt 0 0 a n d ω ^ ^ " 1 ^ 1 ^ ! . Let k{ be the smallest integer

ω(A(ki))/σ(A(ki))^.CD(yi)/(cλ(A(ki)))^. — 2'rί'(2fc;)~ίi—>oo
c

in contradiction to the assumption t(ω)< oo.

4. Fix some /^/ 0 . For any GcΓ let (G)= (J 7,

and y e G

if yeG,C(y)</2^-Λ" if yφG}
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Then the event {N(Λ)^l} is the disjoint union of the events A(G,n\ ΛeGcΓ,
neJf(G).

5. In order to estimate

(6.7) I n{dζ)fΔMΔ){ζ\ω)
A(G,n)

we write for any ζeΩAMA) with ζS\A =

Σ _
γeG γeG,γ'cΛ

The last sum has the lower bound

2H y 2

yeGv

This follows from 2. and 3. by similar estimates as in [4]. Combined with 1.
and Lemma (6.2) we then obtain by the arguments in [4] for (6.7) an upper bound
of the form

δ X n(yf

where δ>0. This proves the Lemma via the same reasoning as in [4]. •
Now we show that extremal tempered canonical Gibbs states are of first

order. It is clear that extremality is necessary. As an example take the canonical
00

Gibbs state J πzv(dz) for the potential U = 0 where v is a probability measure with
o

infinite expectation and πz the Poisson state with intensity measure zσ.

(6.8) Proposition. Any μ e e x £ n £ is of first order, i.e., its intensity measure

ρ(A)= \μ{dω)ω{A) (ΛeS?)

is finite if Ae^£.

Proof The assertion is trivial in the case (A3). Consider now the cases (Al)
and (A2) (PP) in which the potential is strongly stable. Then for any Ae&9 suf-
ficiently large Ae&, and ω e T w e have with the abbreviation N = ω(A)

lπ{dQζ{Λ)fAMA)(ζ\ω)

\) J σ(dx1)...σ(dxN)
i=ί

"1iVr J σ(dx1)...σ{dxN_1)exp[-U(xί...xN_ίωdA)]
AN-ί

- j σ(dx) e x p [ - U(x\x1...xN_1ωdA)']
Λ

^ σ{Λ) eBK(t{ω)) ~J ω(A)/σ(A)
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the last inequality being a consequence of (6.2). In the case (A2) (DP) it follows from
(6.6) that

1 = 1

Now we see from (4.9) and Fatou's lemma that for some ωe T

J μ(dζ)ζ(Λ)= J π(dζ)ζ(Λ) \imfAMA)(ζ\ω)

S ]h^mί^π(dζ)ζ(Λ)fΔMA)(ζ\ω)<co . D

7. Investigation of Extremal Tempered Canonical Gibbs States

Suppose that condition (A) holds, and fix some μeexdtnϊ . Consider its intensity
measure ρ on (S, £f) which is a Radon measure due to (6.8). Furthermore, remind
that for any VeJ£σ μ<ζπ on JV with density (4.5). Then it is seen just as in (3.5)
that ρ<ζσ. We denote the density which is the first correlation function of μ
by r(.). In order to be complete and to simplify the reasoning below we show

(7.1) Proposition. Either ρ = 0 or ρ~σ.

Proof. Suppose that ρ(S)>0. Then lim μ(Ω\ΩAO) = μ[ω: ω(S)^ l ] = 2α>0.
^ is

Choose Ao such that if A DA0 then μ(Ω\ΩA0)^a. Then in the case (A3) the tem-
peredness of μ guarantees that there i_s some δ>0 and AίDA0 such that μ[_N(A)/
σ(A)S(tr-_δ)(l-δ) for all A^cΔe&^l-aβ. Thus we can find arbitrarily
large AeS£ such that μ(AΔ)^a/2>0, where

AΔ = (Ω\ΩΔt0)n{N(Δ)£(ί-δ)maxN(AnS0)(Ωr)}e&A.

Now for any Deίf, DcΔ we have

μ[N(D)>0]^ J μ(dω) J π(dζ) fAMA)(C\ω).
A A {N(D)>0}

But for sufficiently large A and ωeΛA the ω(Δ) hard balls in A can move rather
freely, that is, if σ(D) > 0 at least one of them will be able to occupy D, i.e., the inner
integral on the right is positive. Since μ(AΔ) > 0 this proves that ρ(D) > 0. In the cases
(Al) and (A2) the integral on the right is trivially positive for all A DA0 . •

If ρ = 0 then μ = ε0. Furthermore, z(.) = 0 ε0 — a.s. Thus Proposition (5.5) is
true in this case. Hence we shall suppose now that μ φ ε 0 . Then 0<φc)<oo
for σ — a.a.xeS.

(7.2) Proposition. μ\_ωeΩ : ω(S)= oo] = 1.

Proof. Since {N(S)=oo}e@ao this event has measure 0 or 1. Assume that
μ[N(S)< oo] = 1. Then there is some integer N such that μ[N(S) = NJ

] = 1 because
these events are symmetric, too. μ # ε 0 implies iV^l. Fix some FeJδfσ. Then
obviously μ[iV(F)> JV] = 0. Fix some ω for which ω(S) = N and HTΆ fVAMA)(.\ω) =

P π —a.s. In particular, fv(0)= limfVAω(A)(0\ώ). Thus for any 0 ^ n < N and
Δά:S '
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π —a.a. £eί2F N _ n we have

= ττrlim^
N\Δ±S J

(Δ\V)n

The infimum is positive, and according to (6.2) the lim inf is infinite. Hence
fP = O a.s. on {iV(F)>0} for any V and thereby μ = ε 0. •

In order to show that μe(5(z) for some z > 0 we intend to apply Theorem (3.5).
Thus we have to identify the function z(.)e~U(χ\')/r(x) as the Radon-Nikodym
derivative dμ®/dμ.

Fix some Λe£Pσ.zv(.\.) is defined by (5.2).

(7.3) Lemma. Let Ve&σ, VDΛ.
(a) For σ®π®μ-almost all (x, ζ,ω)eΛ xΩxΩ

zv(ζ\ω) e x p [ - U{x\ζvy] /

(b) For σ®μ-almost all (x, ω)eΛ x Ω

Proof, "(a)" Observe that due to (4.9), (6.5), and (7.2) the right-hand side for
all XEΛ and π®μ-a.a. (ζ, ω)eΩ x T is the limit of

ZA\VMA)-ζ(V)-l(ζvωS\v) -U(x\M f ( Π \

if ζveΩr and vanishes otherwise. But if ωeT then for sufficiently large A the first
case in (4.1) occurs, and if AD VDΛ then there is no interaction between A and
A\V. Thus the expression above equals

for large A and xφζ which happens for π —a.a. ζ. But this expression converges
σ(χ)π®μ-almost surely to the lefthand side of (a). Indeed, from (3.3) and Fubini's
theorem we deduce

f σ(dx)π®μl(ζ, ω): fVΔMΔ)(ζx\ω)-+fP(ζx)]
Λ

= J σ(dx) Jμ{dω)nxlfvΔMΔ)( \ω)^ fv]
A

= J μ(dω) j π(dζ)ί(frA,ω(Δil.

"(b)" Since μ<ζπ®μ on J V ® ^ F by definition of canonical Gibbs states, we may
replace in (a) π®μ by μ. But due to (2.3) this is nothing else than (b). Note that

μ-a.s. •
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(7.4) Lemma. Let Fe J?σ, VjA.Thenfor σ—a.a. xeΛ μx<ζμonάFv with density

/χ(!v(0 = r ( ^ ) " 1 M ί | ω ) e x p [ - U(x\ζv)]

where ωeTis a fixed configuration.

Proof. For all ΰ e ^ , DC V, and all A belonging to a countable generator of JV
we obtain from (3.1) and (3.3)

J σ(dx)r(x)μ°x(A)=

= j π(dζ) ί «dx)UC\{x})/«0 = ί σ(rfx) f π(dζ)f$(ζx).

Thus for σ —a.a. x we have μ°x<n on <FV with density fv(ζx)/r(x). But (6.5) and
(7.3) (a) imply that f$(ζx) = 0 for π - a.a. ζe{f$ = 0}. This proves that μ ^ μ on ̂ κ

with density f$(ζx)l{f${ζ)r{x)\ Now apply again (7.3) (a) and the fact that
μ(T)=l. D

The proof of Proposition (5.5) is completed by (3.5), (7.1), and

(7.5) Proposition. For σ-a.a. xeS, μx<μ with density

where the constant z>0 is determined by the property μ[z(.) = z] = l.

Proof. We have to extend the local absolute continuity established in (7.4)
to a global one. A simple argument (see [9], Lemma 2.1) shows that a sufficient
condition is

lim sup dμx/dμ\έFv< oo μx — a.s.
v±s

Thus we have to show that for any given ΛeJ£σ and σ — a.a.xe/L

lim sup fxy < oo μx — a.s.

Note that for σ — a.a. xeΛ μx[ζeΩ:ζxeΩr~] = 1 since

ρ(Λ)= j μ{dω)ω{A)=\Q{dx)\μ0M)\Ωr{ζx).
Ωr Λ

Thus for μ°x — a.a. ζ the factor exp[— U(x\ζJ] is well-defined and finite and equals
εxpl-U(x\ζvy] if VDA. Thus it follows from (6.5) that μ°x<μ for σ-a.a. xeS.

Now recall (7.4) and (7.3) (b) and use the martingale convergence theorem in
order to see that

(dμ°Jdμ) (ω) = lim r(x)"1 zv(ω\ω)e~U{xlω)

= r(x)~1z(ω)e~U{xlω)

for μ —a.a. ωeΩ. But now (4.7) implies that z(.) = z μ — a.s. for somez^O. But z = 0
would imply that μ = ε o •



Canonical Gibbs States 51

References

1. Bauer,H.: Wahrscheinlichkeitstheorie und Grundzϋge der MaBtheorie. Berlin: de Gruyter 1968
2. Dobrushin,R,L.: Theory Probability Appl. 13, 197—224 (1968)
3. Dobrushin,R.L.: Theor. math. Physics 4, 705—719 (1970)
4. Dobrushin,R.L., Minlos,R.A.: Theory Probability Appl. 12, 535—559 (1967)
5. Fδllmer,H.: In: Seminaire de Probabilites IX, Lecture Notes in Mathematics 465, Berlin-Heidel-

berg-New York: Springer 1975
6. Georgii,H.O.: Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 277—300 (1975)
7. Georgii,H.O.: Z. Wahrscheinlichkeitstheorie verw. Gebiete 33, 331—341 (1976)
8. Krickeberg,K.: Fundamentos del analisis estadistico de procesos puntuales, Lecture Notes,

Santiago de Chile 1973
9. Liggett,Th.M.: Trans. Amer. Math. Soc. 179, 433—453 (1973)

10. Nguyen,X.X., Zessin,H.: Punktprozesse mit Wechselwirkung, Thesis, Bielefeld 1975
11. Nguyen,X.X., Zessin,H.: Martin-Dynkin boundary of mixed Poisson processes and phase

transition, preprint 1975
12. Preston, C.J.: Random fields, Lecture Notes, Oxford 1975
13. Ruelle,D.: Statistical Mechanics. New York-Amsterdam: Benjamin 1969
14. Ruelle,D.: Commun. math. Phys. 18, 127^159 (1970)
15. Shiga,T.: Some problems related to Gibbs states, canonical Gibbs states and Markovian time

evolutions, preprint 1975
16. Widom,B., Rowlinson,J.S.: J. Chem. Phys. 52, 1670—1684 (1970)

Communicated by G. Gallavotti

Received December 13, 1975






