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Abstract. We investigate the relation between the Lee-Yang circle theorem
and the correlation inequalities. These results are general and independent of
models. General properties of the partition functions which belong to the
Lee-Yang class are given.

1. Introduction

Recently several authors have investigated the Euclidean boson quantum field
models [the so-called P(φ)d-modds] as a classical statistical mechanics [1, 2]. In
these articles we see that the Lee-Yang circle theorem and the correlation in-
equalities play a central role in the study. On the other hand, Griffiths et al.
conjectured that a set of correlation inequalities determine the forms of the
interactions [3, 4]. From the points of view of these applications and conjectures,
it is an interesting problem to decide the partition functions which satisfy the
Lee-Yang circle theorem or the desired correlation inequalities.

Moreover, Newman recently proved that the Lee-Yang circle theorem leads
to some correlation inequalities [5]. Therefore it is also an interesting problem to
discuss the relation between the Lee-Yang circle theorem and the correlation
inequalities. Finally we investigate the general properties of partition functions
which satisfy the Lee-Yang circle theorem, as they have not appeared elsewhere.

We organize the paper as follows: In Section 2, we define classes of the partition
functions ^ e , jSf, 3), J>, and summarize the relevant correlation inequalities without
proof. In Section 3, we investigate the Griffiths first (G-l) and the second (G-2)
inequalities and discuss the relation between these inequalities and the Lee-Yang
circle theorem. In Sections 4 and 5, we investigate the Griffiths-Hurst-Sherman
inequality (GHS inequality) and the Lebowitz inequality. In Section 6, general
properties of the partition functions which belong to the Lee-Yang class are given.
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2. Classes 0>, S£, / , Q)

We summarize notations and definitions used below following [6]:

D: unit disk ={zeC;\z\^ί}
δD: boundary of D = {ze C; \z\ = 1}
D°: interior of D-D\dD={ze C; |z |< 1}
D c: exterior of D= C\D = {ze C; |z| > 1}
^n) or ̂ e : polynomials of rc-variables z l 5 ...,zπ which are linear with respect

to each zf, and satisfy the evenness condition P(z[" \ ..., z~*) = P(z 1 ? . . . , zn) f | Zj~1

withP(0,. . . ,0)=l.
For the sake of the brevity, we restrict ourselves to the case in which all the

coefficients are real. Thus Pe SPe is typically given by

Z ^ ( ^ + ̂ i . . . ^ - . . ^ . . . ^ ) + . . . (2-1)

with

Here z f(or /) means that the variable zf is omitted. 5£{n) or if; The Lee-Yang class
included in &e. We say that a polynomial P e ^ e belongs to if provided that any
root ZiiZj'J+i) of P(z l 9 ...5zπ) = 0 satisfies Z ^ J Φ O G D 0 as a function of z^'Φz)
when ZjG £(/φ 0 and zke D° for some fc.

Since Peέ?e, we see Z ^ J ' Φ O G D 0 when ZjeDc(jφi) and zkeDc. Obviously
all the roots of P(z,..., z) = 0 lie on δD if Pe if. This is the famous Lee-Yang circle
theorem.
J\ Set of P e ^ e such that all the roots of P(z,..., z) = 0 lie on the unit circle δD.

These definitions are general and independent of models. In order to define
class 2), we use the Ising model of spin 1/2 where there are only ferromagnetic
pair interactions:

HΛ = ~ Σi < j J i M -1)/2 - Σ Aι(st +1)/2 (2-2)

where 0 ^ J / 7 ̂ oo and Si(ieΛ) is a random variable at the lattice site ieA which
takes the values ± 1. Let P be the relevant partition function;

P=Σ^± !)<*?(-HΛ) (2.3)

with

Therefore P is given by the coefficients

with

Then obviously O ^ y ^ l , however we extend this as — l r g y ^ l , and denote
the resultant set by 3).
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For P e ^ e , we identify P with its coefficients {β^i2...iι}eRd(d = 2n~1 -1), and
consider the sets of functions έ?e and if as the sets of the coefficients. In this sense,
we denote the convex hulls of if, 2 by <£ and 9) respectively, and the closure of
if by 3.

Finally in order to study the correlation inequalities, we sometimes restrict
ourselves to the subsets where all the coefficients are real non-negative. We denote
these by ^ e

+ , if+, and Θ+ respectively.
Now we define the so-called Ursell functions: for Pe^ e

+ , we define

1 ^ 2 1
ϊ) = zid/dzίlogP-l/2. J { ' }

As is well known @CJ?{@+ Cif+), and for Pe@+ we see [3, 4, 7-9]:

Griffiths first inequality; w(1)(i)^0 for z}^\(jeA)

Griffiths second inequality; u{2\iJ)7^0 for z->. ί(jeA)

GHS inequality; ui3\il9 i2, i 3)^0 for z^ \(jeA)

Lebowitz inequality; w(4)(/1? i2,1*3, U) = ® f°r zj= l(/'e ^)

Sylvester inequality; w(6)(ι'i? •••> ^) = ̂  f°r z j = lί/'6^)

where yl= {1,2, ...,n}.
The following inequalities are conjectured by Newman for Pe3J+ [5, 8]:

(-l)/-1M ( 2 I )(i1,...,i2 l)^0 for Zj=l(jeΛ)

with/= 1,2,....
Then we define the following classes of partition functions :
Cf: The set of the partition functions Pe 0>* which satisfy the expected inequality

for the i'th Ursell function.

Lemma 1. Let Pe& + , then ua\ί)^0 provided Zjt

Proof. Let P be given by

where A, B are linear functions of zί9 ...,zπ_1 with positive coefficients.
implies

\B/A\^1 provided |z f |^ l i=l,2, . . . , n - l .

On the other hand,

Lemma 2. For P e ^ e , (i) and (ii) fto/d:
(i) Ifu{1\ι)^0for zk^l(keA% then ui2\iJ)lz=ί^0.

(ii) Ifui2\ίj)^0for zk^ l(/ce/ί), ίfeπ w(1)(0^O/or z k ^ ί(keΛ).

Proof, (i) Let all zk except ẑ  be equal to 1. Since Pe0>

e,u
aXή = (zj-

where the G - 1 inequality ensures /(z/)^0 for z ^ 1. Thus M(2)(Ϊ,</)|Z = 1 = /

(ii) Since Pe^e,w(1)(0|z== i = 0. •



146 Keiichi R. Ito

However, unfortunately PeJg+ does not necessarily imply the second Grif-
fiths inequality with positive external fields, i.e., P e i f + does not imply

u{2\hJ2)^0 with Zj^KjeΛ).

An explicit counterexample is given in the next section.
Finally for Pe =£?+, we can show the correlation inequalities which correspond

to (sίs2 ... Sj> ̂  0 provided h{ ^ 0(ie A). This is the G — 1 inequality in usual sense.

Theorem 1. Let P(zi9..., zn)e i f + , then

JJίeS(zid/dzi)ίP(z1,...,zn)(Yltl=ιziy
1/2^0 (3.1)

provided z->, l(ίeA) where ScA denotes the set of indices.

Proof. It is sufficient to consider the case that all the indices are different. Let
P be given by

P = Δ^iii, ii i ; } C S a i i , i 2 . . hZiiZi2 ' " Z h

where {aiui2!_^iι} are linear functions of ZJEA\S with positive coefficients. Then

Π i e s (Ziδ/dzdίP Π"= i z f 1 / 2 ] = [ 2 | s | Π7= i z\t2TιQ.

where

= Σ ( i l . ( ϊ . . . . . i l ) = / c S ( - l ) | s M V (3-2)
with

Let ZjGyl\S be fixed and ^ 1, thus we study the necessary and sufficient condition
that ensures β ^ O provided that z{^ l(ίeS). Following Lemma 4, which is proved
below, this is

(1) « i , 2 , . . , ^ 0

(2) 0 1 ( 2 , . . . , Z - 0 1 , 2 , . . . , £ / ^ o O ' e S ) ,

(3) Λ l f 2 , . . . > i - f l i > . . . , r , . . . , z - α i , . . . , ; , . . . , i + α i , . . . , i f . . . , / f . . .

i , 2 , . . . , z - Σ f e s α i , 2 , .

Here without loss of generality, we put S= {1,2, 3,..., 1}CA.
These conditions are equivalent to

for any subset ICS. Since P e i f + , all the roots of PI(Zj = z;jeS\I) = 0 lie in the
unit disk D. Now we investigate the sign of Pj(— 1).
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where {ωi9ώi\ω\^ί} are the complex roots, and {C7;|C|̂ 1} are the real roots of
P, = 0. Since as>0,(-l-ωi)(-l-ώi)>0 and s g n Π ^ i ' " 2 r ( - l - Q =
sgn(— l) | 5 V r |, we see

This completes the proof. Q

Finally we would like to point out that if Pe if, u{ί)(ΐ) or
<SiS2 ... s^ccYli^z^/dz^PYlzJ112^ also satisfy the definition of if except the
evenness condition P(zJ~\ ...,z~i) = P(zί,..., zjj^jz^1. This is obvious because
if P(zu ..., zΛ)e cSf, Pίexpίiθ^Zi,..., exp(zf3n)zπ) with θ^eR again satisfies the de-
finition of 5£ except the evenness condition, and these correlation functions are
essentially given by (3.2). However, this is not true for the higher order Ursell
functions. In fact if it were true, the higher order Ursell functions would have
definite signs in \Z{^L\\\EA\.

In the cases of n= 1, 2, g = 3) (J?+=β+\ and C—9+ = J^+, (i= 1, 2, 3,4). In the
case of n = 3, we will easily see that if = ̂ ( i f + = 2 +), and PeJ£+ does not imply
the desired inequality.

Lemma 3. Lei Pe^ebe given

P=l + z1z2z3 + Σΐ=1βi(zi+d/dzi(zίz2z3)). (4.1)

Then Pe^ if and only if

\l±βι\>\βj±βk\.

Proof. It is necessary and sufficient that

provided zl9 z2eD and some of them e £>°. Remark that the Shilov boundary of
the poly disk D®D® ... ®D is δD(x) ... ®δD. Since z3e 3D provided
(z1? z2)e δD(x) δD, the problem reduces to obtain a condition which is equivalent to

P(zi,z2,z3 = 0) = l+β1z1 +β2z2 + β3z1z2 Φ0

provided (z l5 z2)eD®D.

Therefore,

Case (i) β2 = β3 = 0:

I A I < 1 -
Case(ii) /J2φ0 or ^53φ0:

I ^ Γ ^ K ^ + ̂ J A l + ̂ z J K l provided z . e D .

This completes the proof. •
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Now we investigate the correlation inequalities for PeJ£ + given in the previous
Lemma 3. When all the arguments are different with each other, we have

«<3>(1,2,3)=Zlz2z3 Π d/dzt l o g P = z 1 z 2 z 3 / 3 / P 3

where

with

S3 = / ? 3 ( l + # +

Lemma 4. Let

the necessary and sufficient condition so that / ^ 0 provided zt^:l(ίeΛ) is

Proof. Remark that / is a linear function with respect to each variable. There-
fore the necessary and sufficient condition so that / ^ 0 for zt^:l(ieΛ) is

d/dznf(zl9...9zJ=d/ezHf(zl9...,zn)lXnSSl^O

provided zf ̂  1 (ιe A). This discussion leads to the following condition:

for any IcΛ9 (ΠU d/dZi)flz=1^O. Q

Theorems For P G ^ +

(i) w(3)(l,2, 3)^0 provided z 1 ? z 2 , z 3 ^ l and z4 = z 5 = ... = z n = l .
(ii) w(2)(l, 2) is πoί necessarily positive for z{ ̂  1 (ie /t).

However w ( 2 )(l,2)^0 provided z 1 ? z 2 ^ l aπdz 3 = z 4 = ... = z M = l
(iii) For PG^ e

+ , feί P = P|Zjι= = z =i, ̂ ^ /or P if w(1)(0^O /or

Proof, (i) It is sufficient to consider P given by (4.1). Thus following Lemma 4
and (4.3), we must prove

Sj-s^O, (U,fc) = (l,2,3)

O, 0=1,2,3)

provided (βί9 β2, β3)eJ£ + . It is a straightforward calculation.
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(ii) We present an example. For P given by (4.1),

Thus obviously w ( 2 )^0 provided PeS£ + and z 3 = l. However consider the point
(1/3, l/3,0)ei? + . At this point, β3-βίβ2= -1/9. Hence u ( 2 ) < 0 if z 3 is large
enough.

(iii) By Lemma 4, the necessary and sufficient condition so that w(1)(ί)^0 for
z^l(i, ;=l,2,3)is

1 + β^βj + βt (ij,fc) = (l,2,3). D

Finally we investigate the fourth Ursell function [7, 8]:

As is well known, even if PeS>+, u{4) is not necessarily negative when z->. 1, but is
negative when zf = l(ϊeΛ) (the so-called Lebowitz inequality). Contrary to the
case of u{2\ u ( 4 ) is not necessarily negative even if Pe i f + and zi = 1 (ie /I). In fact let

= const [(l + z 1 . . . z 4 ) + Xj8 i(z i+3/& ι<z1...z4))

& / z 1 . . . z 4 ) ) ] . (4.4)
Thus

M<4>(1,2,3,4) = z l Z 2 z 3 z 4 [ F 3 P 1 , 2 , 3 , 4 - P 2 Σ ^ A

- P2 Σ Λ ^ H + 2P Σ Λ/fcPί - 6 P t F z P s ^ J / ^ 4 (4-5)

and

^ ( 1 , 2 , 3,4) |z = 1 = C[{(Σ A)72 -

/ Σ ^ Σ ] with C>0. (4.6)

The point (βi = 0,βij=l/3)eRΊ is e i ? + , but at this point [ ] = 2/3>0. Thus we
see that PeJ£+ implies neither w ( 4 )^0 with zero external fields nor w ( 3 )^0 with
positive external fields (see the next section).

5. Some Remarks on the Correlation Inequalities

We have seen that the partition functions which belong to i f + do not necessarily
satisfy the correlation inequalities expected from the results seen in PeΘ +. The
reason is obvious, in fact Pe <£ + is a property which is derived from the behavior
of P on D®D(g)... (χ)DcC", and on the other hand correlation inequalities
crucially depend on the behavior of P on [1, oo)"C.R". Our examples suggest

Q

^ + C Π Q c J ^ . (5.1)

On the other hand, Newman showed [5]

(-l)ι-1(zd/dz)2llogP(z,z,...,z)lz = 1^0 provided P e / . (5.2)

This is not unexpected since these are linear combinations of the Ursell functions.
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Our analysis implies that f̂+ -class is too wide to satisfy all the correlation
inequalities. Finally we show that the even correlation inequalities with zero
external fields follows from the odd correlation inequalities with positive external
fields (see also the note-added in [9]).

Theorem 3. For Pe^e, if u{3\Uj,k)^0 with positive external fields holds,

Proof. u^(ij, fc, l) = zιd/dzιu^(ij, fe)|z = 1 .

Since we can put all z except zι equal to 1 in w(3) and Pe @>e, then we have

n<3)(ί,j,fc) = (l-z / )/(z / ) (5.3)

where the GHS inequality ensures f(zt) ^ 0 for z{^ 1. This completes the proof. •

Remark. As is well known, the higher order Ursell functions do not satisfy
the expected inequality for z{^.\ even for Pe@ +. However, if they satisfy the con-
jectured inequalities (including odd Ursell functions) for l ^ z ^ l + ε with ε>0,
ieΛ, we see that ( - l y - H ^ ϋ i ^ O can be derived from (- iy" 1 w ( 2 Z ~ 1 ) ^0 with
1 ^ Zj < 1 + ε. If this is true, u{2l) and u{21 ~1} should be considered as a pair. See also
the discussions in Lemma 2, and by the same discussions, we see that the converse
is true.

Corollary 1. For Pe& + ,ui4)(iJ9k,l)lz = 1^0 provided that at least two of
(i,j,k, I) are equal.

Proof. Case (i) Two arguments are equal: The inequality follows from Theorems
2 and 3 for the case.

Case (ii) Three arguments are equal: Without loss of generality, let (i,j, k, /) =
(1,2,2,2). Thus u ( 4 )

| z = ί = {PPίt2 - PiP2)(P2 +^P\ - 6 P P 2 ) / P 4

| z = 1. This is negative
since Pe£? + .

Case (iii) All the arguments are equal: The problem reduces to
P = const (1+z). •

6. Structure of <£, {G—1}

Before studying the topological structure of if, we would like to point out that
a product can be defined on i f [6, 10, 11]. We call this product the Asano product.

Theorem 4. Let {α» JeJ?"', ί^,...,^^ then {<,...,^ h}e^"\

This is a very well known theorem, and we do not repeat the proof. Details
are shown in [6, 10, 11]. Therefore S£ has a semi-group structure by this product.
Remark that 3) is also closed under the product. We denote this product by {aβ}

The Lee-Yang class i f is a complicated set in the space of the d-coefficients
(d = 2n~1 - 1). Let P be given by (2.1), then we identify P with {β[1],..., β[2?2, ...}eRd

as before. We can easily prove that i f is a bounded set in Rd. The proof is left to
the reader as an exercise. The following theorem is an extention of a Ruelle's
result on the openness of ^£ [6].

Theorem 5. (i) ^£ is open, arcwίse connected.
(ii) ^£ is homeomorphic to d-dimensional open disk D{d\
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Proof, (i) The openness of i f follows from the definition (see, for example,
Ref. [6]). Let Pte2 be given by putting independent of ij yίi7 = ίe[0,1]. Then
Pγe<£ and Pxeϊ£ for ίe[0 5 1). Pt is a continuous line connecting [^(1+z^e i f
and 1 + Π ^ e i f , and lies in S£'. For any PeJSf, Pt = AlPtP~\e^ is continuous
with respect to ίe[0,1], and P1=Pe^?, P0 = l+Y[zie&. Thus i f is arcwise
connected.

(ii) From the above discussions, we see, by operating A[Pt...], that any subset
of i f can be continuously contracted to the origin 1 + Y[ zt. In other words, i f is
contractible. Note that 5£ is open, bounded. Furthermore, since the mapping
A\_Pt...] is given by

we see that 5£ is homeomorphic to an open, bounded star-like set. Therefore it is
sufficient to show that an open, bounded star-like set UcRd is homeomorphic
to an open disk D{d\ Denote by U the closure of U with boundary dU = U —U,
and let Br be an open ball of radius r such that

For any xe dBr, there is a unique point λ(x)e dU such that the open line segment
(0, λ(x)) is in U. Let Vx be an_open star-like neighborhood of (0, λ(x)) in U which
itself is a cell. Note_that dU is compact. Let NEn(dU) be an open εM-bounded
neighborhood of dϋ in U, and limεn = 0. Thus dϋ =nnNEn(dU)._Since dU is
compact, we can choose the following type of finite covering of U for each n:

^ ε n ( ) { x ^ l ) x ^ 2 ) X ί n k J

Let π->oo, then we have a countable covering of ΰ\

U U
Therefore U is a countable union of open star-like cells, and we can conclude
that U itself is homeomorphic to an open disk. This completes the proof. •

Remarks, (i) If the coefficients are complex, these statements can be extended
by suitable redefinitions [6].

(ii) Even if U is open, bounded and contractible, U may not be necessarily
homeomorphic to an open disk.

The main theorem in this section is:

Theorem 6. ( ^
( i i ) ^ - i f .

Proof, (i) ̂ C i f is well known. Consider the following (d +1) functions:

where the number of (—) signs is even, and which ensures that these functions
belong to 0>e. We denote these functions by Pi(i=l, . . . , d + l ) , and remark that
PieQ)(Pie^') and d-tuple of P's are linearly independent. Then P=YjociPί with
α ^ O , Σ oct= 1 becomes a d-dimensional convex cell in the d-dimensional space of
the coefficients. Thus, denoting this convex cell by 2\ we show d
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Once this is proved, (i) follows from Theorem 5 and the fact 1 + Y\ z{ = (d +1)~* ]Γ P f

eΦr\J£. Each hypersurface of d2' is a (d— l)-dimensional convex cell. We re-
write P as

Since P e i ? is equivalent to \Λ/B\ < 1 provided zteD and some ZJED0, it is neces-
sarily £#=0 when (z l 9 ..., zn_1)e (g)n~1D. B is given by ]ζ o^P*|Zn = o> a n d consider
the point (z l9 ...,z ϊ l_1) = ( ± l , ± 1 , . . . , ±1). There are 2n~1 = d+l points. For the
given point the function which does not vanish at the point is one of the following
two possible functions:

and only one of these functions belong to SPe. Thus any d-tuple of P's vanish
simultaneously at one point of these points. Therefore δΦ'ng* = φ, and (i) follows,

(ii) This is obvious from the above discussions. •

Corollary 2. (i) Let {G-1} be a set of P in 0>e which obeys the Griffiths first
inequality including the cases such that the relevant correlation functions become
+ oo. Then

(ii) Let {G— 1}+ be a set of P in ^ e

+ which obeys the Griffiths first inequality.
Then

Proof (i) Let P^e J2? and note that P;(0,..., 0)= 1 by definition. Then Pt>0 for
zk^l(keΛ). Furthermore, by Theorem 1, for any subset ScΛ

usΛ Z; 1 / 2 ] = ftp*" UksΛ zψ~\ " 1 ^ 0

for zk^l(keΛ). Therefore for P = X α ί P ί e ( ^ ) ° with ^ α

Thus
oo>w^0 provided zk^l(fceΛ) and P£eJSf (i= 1,2,...).

(ii) This is obvious from the above discussions. •

Conjecture. @+CJ?+C@ + ,@+=£> + .

Remark. One may define the vertices of 3), if. In order to define the vertices,
however, we must use the terminologies of algebraic geometry. Since Q) and 5£
are semi-analytic sets, we can define the vertices as the zero-dimensional singu-
larities of d@, d<£. This is usually done through the stratification of the singularity.
We conjecture

(i) i

(ii)

These can be confirmed easily for n= 1, 2, 3.
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Finally we comment on some interesting properties of «/. Let P(z, ...,z) =
(l + zn) + aί(z + z"~1) + a2{z2+zn~2) + . . . e i Recently Millard et al have obtained
a generalization of the Ruelle's lemma [6, 12]:

Theorem 7. Let A and B be closed circular regions (see [12]j not containing the
origin. If f=YjΊ=obiz

ι vanishes only in ΛcC, and g = Yj = oCiz
i vanishes only in

BcQ then A\_fg~]=Yj=0nC^bfiZ1 vanishes only in AB={zeC;z = —z1z2,z1eA,
z2eB}.

Therefore, using the same techniques in Theorem 5, we have:

Theorem 8. (i)«/ is a closed, contractible set.
(ii) Let &r

s={zn + an_1z
n~ί+ ... + axz + l; (an-l9 . . .^αJeK"" 1 } be functions

whose roots are all in an open region ScC which is invariant under the rotation
around the origin. Then έFs is homeomorphic to (n — l)-dimensional open disk D ( w"1 ).
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