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Abstract. We investigate the relation between the Lee-Yang circle theorem
and the correlation inequalities. These results are general and independent of
models. General properties of the partition functions which belong to the
Lee-Yang class are given.

1. Introduction

Recently several authors have investigated the Euclidean boson quantum field
models [the so-called P(¢);-models] as a classical statistical mechanics [1, 2]. In
these articles we see that the Lee-Yang circle theorem and the correlation in-
equalities play a central role in the study. On the other hand, Griffiths et al.
conjectured that a set of correlation inequalities determine the forms of the
interactions [ 3, 4]. From the points of view of these applications and conjectures,
it is an interesting problem to decide the partition functions which satisfy the
Lee-Yang circle theorem or the desired correlation inequalities.

Moreover, Newman recently proved that the Lee-Yang circle theorem leads
to some correlation inequalities [5]. Therefore it is also an interesting problem to
discuss the relation between the Lee-Yang circle theorem and the correlation
inequalities. Finally we investigate the general properties of partition functions
which satisfy the Lee-Yang circle theorem, as they have not appeared elsewhere.

We organize the paper as follows: In Section 2, we define classes of the partition
functions 2,, ¥, 9, #, and summarize the relevant correlation inequalities without
proof. In Section 3, we investigate the Griffiths first (G-1) and the second (G-2)
inequalities and discuss the relation between these inequalities and the Lee-Yang
circle theorem. In Sections 4 and 5, we investigate the Griffiths-Hurst-Sherman
inequality (GHS inequality) and the Lebowitz inequality. In Section 6, general
properties of the partition functions which belong to the Lee-Yang class are given.
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2.Classes #, L, ¥, 9
We summarize notations and definitions used below following [6]:

D: unit disk = {ze C;|z| £ 1}

dD: boundary of D= {ze C;|z|=1}

D°: interior of D=D\dD={ze C;|z| <1}

D¢: exterior of D= C\D={ze C;|z|>1}

2" or 2,: polynomials of n-variables z, ..., z, which are linear with respect
to each z;, and satisfy the evenness condition P(z; ', ...,z, )=P(zy,...,z,) [ [z "
with P, ...,0)=1.

For the sake of the brevity, we restrict ourselves to the case in which all the
coefficients are real. Thus Pe 2, is typically given by

P(zy,..,z)=(14zy, ..,z)+ ) Bz 4212, ... 2 ... 2,)
+3 B2z 4z, . By z)+ 2.1

with

B,
Here Z; (or z) means that the variable z; is omitted. ™ or #; The Lee-Yang class
included in 2,. We say that a polynomial Pe 2, belongs to .# provided that any
root z,(z;;j#1) of P(z,,...,2,)=0 satisfies z(z;;j+i)e D° as a function of zj=1)
when z;e D(j+1) and z,¢e D° for some k.

S1nce Pe?,, we see z{z;;j+i)eD® when z; eD(j=i) and z,e D*. Obviously

all the roots of P(z, ..., z)=0 lie on 0D if Pe &¥. ThlS is the famous Lee-Yang circle

theorem.

4 Set of PeZ, such that all the roots of P(z, ...,z)=0 lie on the unit circle JD.
These definitions are general and independent of models. In order to define

class 2, we use the Ising model of spin 1/2 where there are only ferromagnetic

pair interactions:

= _Zi<jJij(SiSj_1)/2_Zhi(si+1)/2 (2.2)

where O<JUS oo and s,(ie A) is a random variable at the lattice site ie 4 which

takes the values + 1. Let P be the relevant partition function;

P=Y-snexp(—H,) 2.3)
with
zy=exp(h;).
Therefore P is given by the coefficients
fl,)zz Hl iy njeA; J#tivia. .. i) Vij (24)
with
yiy=exp(—Jy).

Then obviously 0=7;;=1, however we extend this as —1=y;;<1, and denote
the resultant set by 2.
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For Pe Z,, we identify P with its coefficients {f?,, ;}eRYd=2""'-1), and
consider the sets of functions £, and .& as the sets of the coefficients. In this sense,
we denote the convex hulls of &, 2 by & and & respectively, and the closure of
L by 2.

Finally in order to study the correlation inequalities, we sometimes restrict
ourselves to the subsets where all the coefficients are real non-negative. We denote
these by 2}, #*, and 2 respectively.

Now we define the so-called Ursell functions: for Pe 2, we define

uGy, ..., i)=(]iL,, z:0/0z)log P 122} 25)
ui)=z,0/0z,logP—1/2. '
As is well known 2C Z(2% "), and for Pe 2" we see [3, 4, 7-9]:
Griffiths first inequality; u)(i) 2 0 for z; 2 1(je A)
Griffiths second inequality; u'®)(j, /)20 for z;= 1(je A)
GHS inequality; u®(i, i,, i3) <0 for z; > 1(je A)
Lebowitz inequality; u®(iy, i, i3, i) <0 for z;=1(je A)
Sylvester inequality; u'®(iy, ..., is) 20 for z;= 1(je A)
where A={1,2,...,n}.
The following inequalities are conjectured by Newman for Pe 2™ [35, 8]:
(_l)lhlu(ZZ)(il,...,izl)go fOI' Z]=1(j€/1)

with [=1,2,....

Then we define the following classes of partition functions:

C,: The set of the partition functions Pe 2} which satisfy the expected inequality
for the ’th Ursell function.

3. Z*and u®, u»

Lemma 1. Let Pe £, then u'"(i) 2 0 provided z;Z 1(je A).
Proof. Let P be given by
P=B(zy,....2,_ 1)+ A(Z15 o..s Zy_ 1)Z,

where A, B are linear functions of z,,...,z,_, with positive coefficients. Pe ¥
implies

IB/A|<1 provided |z=1 i=1,2,...,n—1.
On the other hand,

uM(n)=(Az,—B)/2P. [

Lemma 2. For PeZ,, (i) and (ii) hold:

() If u(@)=0 for z, = 1(ke A), then u'*)(i, j)|, -, 20.

(i) If u®(, j)=0 for z, = (ke A), then u(@) =0 for z,= 1(ke A).

Proof. (i) Let all z, except z; be equal to 1. Since Pe Z,, u(i)=(z;—1)f(z;)
where the G— 1 inequality ensures f(z;) 20 for z;= 1. Thus u'*(i, j)|,-; =f(1)=0.

(i) Since Pe Z,,u™ (i) ,-,=0. O
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However, unfortunately Pe #* does not necessarily imply the second Grif-
fiths inequality with positive external fields, i.e., Pe £ does not imply

u®(iy,i,)=20 with z;21(jed).

An explicit counterexample is given in the next section.
Finally for Pe #*, we can show the correlation inequalities which correspond
to (5,8, ... s;» 20 provided h; =0(ie A). This is the G —1 inequality in usual sense.

Theorem 1. Let P(z,,...,z,)e £ 7, then

nies (2;0/0z)[P(zys s Zn)(H'il= 1 2) 71?120 (3.1)
provided z; = 1(ie A) where S C A denotes the set of indices.

Proof. 1t is sufficient to consider the case that all the indices are different. Let
P be given by

P= Z(u iz, iyc S Qiyyin. . iyZiiZip o Ziy

where {a;, ;, ;) are linear functions of z;e A\S with positive coefficients. Then
l_[ies (2;0/0z;)[ P H?=1 Z; 1/2] =[2|S| H'il=1 Zil/z]—lQ >
where
Q=28175P5— 217§, 2Py 4215172 3 o 2 IPG . (= 1) TP
=Y tininr..oip=res (— )17 Mayz! (3.2
with

_ . I_ . —
ar=4a;,,i,,..., s 2 _niel Zis PI—‘l—[ieI a/aziP'

Let z;€ A\S be fixed and =1, thus we study the necessary and sufficient condition
that ensures Q =0 provided that z;, > 1(ie S). Following Lemma 4, which is proved
below, this is

1) a1,2,...,1§0

(2 ay,2,..., 1—‘11,2,...,5,.,.,zgo(ies),
Q) a0 ar, i a—an G tag g 120G, jes),
(I+1) a5, 4 Zzesal R jes A1, i, N

(= 1ag s, 120,

Here without loss of generality, we put S={1,2,3,...,} CA.
These conditions are equivalent to

(=1 lS\IlPI(Zj': —1;je S\I)=(—I)IS\I|(1—[isI 0/azi)P]z,——l JES\I—O

for any subset ICS. Since Pe £, all the roots of Py(z;=z;je S\I)=0 lie in the
unit disk D. Now we investigate the sign of P,(—1).

Plg)=agz™! 1+ ... +ar=3 1cqcs asz”V!

=as[[i=1 [e= )=o) [T21 % (z—{))
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where {w;, ;|| <1} are the complex roots, and {{;;|{|<1} are the real roots of
P;=0. Since ag>0,(—1—w)(—1—a)>0 and sgn[[) 2" (—1-()=
sgn(— 1)1\ we see

(= D)PVIP(=1)20.

This completes the proof. []

Finally we would like to point out that if Pe?, u®() or
(8183 ... 8,90 Jies 2:0/0z[P [ | z; ¥/*] also satisfy the definition of & except the
evenness condition P(z!, ...,z 1)=P(zy, ..., z,) [ | z; *. This is obvious because
if P(zy,...,z,)e &, Plexp(if,)z,, ..., exp(if,)z,) with 6,eR again satisfies the de-
finition of % except the evenness condition, and these correlation functions are
essentially given by (3.2). However, this is not true for the higher order Ursell
functions. In fact if it were true, the higher order Ursell functions would have
definite signs in {z;=1;ie A}.

4.2 " and u®, u®

In the cases of n=1,2, =2 (Z* =2%),and C;=2" =2",(i=1,2,3,4). In the
case of n=3, we will easily see that  =%(L*=27), and Pe £* does not imply
the desired inequality.

Lemma 3. Let Pe 2, be given

P=1+zz,25+ Y, Bizi+ 0/0z(z,2,23)) . 4.1)
Then Pe & if and only if

L Bil > 1B % Bl - 4.2)

Proof. 1t is necessary and sufficient that

(z3) "' =~ [Bs+Bazs + 122 +2,2,)/[1 + P12, + B2z, + B32,2,]€ D°

provided z,, z,e D and some of them e D°. Remark that the Shilov boundary of
the polydisk D®D® ... ®D is 0D® ... ®3ID. Since z;e oD provided
(z1, z,)e D@ 0D, the problem reduces to obtain a condition which is equivalent to

P(zy,25,23=0)=1+4 B,z + 52, + 32,2, 0
provided (z,,2,)e D®D.
Therefore,

Case (i) B,=p5=0:
IBil<1.
Case (i) f,+0 or p;=+0:

lzzl—l=|(52+ﬁ321)/(1+ﬁ121)l<1 provided z;eD.

This completes the proof. [
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Now we investigate the correlation inequalities for Pe & given in the previous
Lemma 3. When all the arguments are different with each other, we have

u¥(1,2,3)=z,2,z5 || 0/0z;log P=z,z,z5 f3/P?

where
f3=P2P1,2,3_PZPin,k+2P1P2P3

=580(1—212,23) +51(21 — 2223) +52(2, — 2321) +53(23— 21 22)

with
so=1—p1— B3 — B3 +2B1 8.5,
s1=B1(1—= BT+ B3+ $3)—2B.P5 4.3)

s2=Bo(1+ B3 = B3+ B3 —2B31 »

s3=P3(1+ 1+ 37— B3)—2p:B, .

Lemma 4. Let

f=00212y ... 2+ Y4212y . By 2+ Y Q2120 o By B

Then the necessary and sufficient condition so that f=0 provided z;=1(ic A) is

Zn+...+a1,2 ’’’’’ ne

ay,=0
ag+a;20(ie 1),
ap+a;+a;+a; ;200 je ),

a0+zal+zal,J+ e +a1,2,m’n20 .
Proof. Remark that f is a linear function with respect to each variable. There-
fore the necessary and sufficient condition so that =0 for z; = 1(ie 4) is

fzy, 25,002,241, 1) 20,
0/32,f 21y oor 2= 02 f (215 1v0s 20) 21 20
provided z;=1(ie A). This discussion leads to the following condition:
forany IcA, ([[w 8/02)fi-20. O
Theorem 2. For Pe #*

i) u(1,2,3)<0 provided z,,2,,z3=1 and z,=z5= ... =z,=1.
(i) u'®(1,2) is not necessarily positive for z; = 1(ic A).
However, u*(1,2) =0 provided z,,z,=1 and z3=z,= ... =z,=1.

(i) For Pe 2/, let 1~’=~P|24= . —a=1> then for P if uV()=0 for
z;21(,j=1,2,3), Pe .

Proof. (i) It is sufficient to consider P given by (4.1). Thus following Lemma 4
and (4.3), we must prove

SO+Si+Sj_Skgoa (i>j9 k)=(1’ 25 3)

So+s;20, (i=1,2,3)

So = 0
provided (B, B, B3)e £ . It is a straightforward calculation.
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(ii) We present an example. For P given by (4.1),
UP(1,2)=z,2,[(B3— B1B2)(1 +23) +(1 = BT — 5 + B3)z31/P? .

Thus obviously u* =0 provided Pe #* and z;=1. However consider the point
(1/3,1/3,0)e £ *. At this point, f3—B,8,=—1/9. Hence u® <0 if z; is large
enough.

(iii) By Lemma 4, the necessary and sufficient condition so that u*)(i)=0 for
2,210 j=1,2,3) s

L+ B2+ B () k=(1,2,3). O
Finally we investigate the fourth Ursell function [7, 8]:
u®(1,2,3,4)=[] (z;0/0z) log P

As is well known, even if Pe 27, u® is not necessarily negative when z;> 1, but is
negative when z,=1(ie A) (the so-called Lebowitz inequality). Contrary to the
case of u'®, u® is not necessarily negative even if Pe " and z,= 1(ic A). In fact let

P(ZD 22523, Z4)=P|25= co=zp=1
=const[(1+z ... zg)+ Y Bz + 8/ 0z(z; ... 2,))
+ Bifzizj+ 0%/ 02,0z (z, ... z,))] . 4.4
Thus
UM (1,2,3,4)=2,2,232,[P’P; , 3. ,— P*) P;;Py
—pP? Z Pinkl +2P Z P,-ijPl — 6P1P2P3P4:|/P4 4.5
and
u(1,2,3,4) .., =C[{(Y B2 -2 B:B;i—1/2}
+{> ﬁij)2/2—2ﬁi2j+z,8,-j}] with C>0. (4.6)

The point (8;=0, §;;=1/3)eR” is e £, but at this point [ ]=2/3>0. Thus we
see that Pe £ implies neither u® <0 with zero external fields nor u® <0 with
positive external fields (see the next section).

5. Some Remarks on the Correlation Inequalities

We have seen that the partition functions which belong to #* do not necessarily
satisfy the correlation inequalities expected from the results seen in Pe 2. The
reason is obvious, in fact Pe ™ is a property which is derived from the behavior
of P on D®D® ... ®DCC", and on the other hand correlation inequalities
crucially depend on the behavior of P on [1, 00)"CR". Our examples suggest

G
U —

P9TCn,CCLT. (5.1)

On the other hand, Newman showed [5]

(—1)'"Y(z0/02)"" logP(z, 2, ..., 2),-, 20 provided PeJ. (5.2)

This is not unexpected since these are linear combinations of the Ursell functions.
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Our analysis implies that % *-class is too wide to satisfy all the correlation
inequalities. Finally we show that the even correlation inequalities with zero
external fields follows from the odd correlation inequalities with positive external
fields (see also the note-added in [9]).

Theorem 3. For Pe?,, if u®(i,j,k)<0 with positive external fields holds,
Ui, j, k, ;=1 0.

Proof. u™®(i, j, k, 1) =z2,0/ 0z (i, j, k), = -
Since we can put all z except z, equal to 1 in u® and Pe 2,, then we have

ud(i, , k)=(1~2)f(z) (5.3)
where the GHS inequality ensures f(z;) =0 for z, = 1. This completes the proof. []

Remark. As is well known, the higher order Ursell functions do not satisfy
the expected inequality for z;> 1 even for Pe 2 *. However, if they satisfy the con-
jectured inequalities (including odd Ursell functions) for 1 <z;<1+¢ with ¢>0,
ie A, we see that (—1)'"'uf2?, >0 can be derived from (—1)'"'u*'"P20 with
1<z,<1+e If this is true, u®" and u?'~ ¥ should be considered as a pair. See also
the discussions in Lemma 2, and by the same discussions, we see that the converse
is true.

Corollary 1. For Pe %", u®(i,j, k1),-, <0 provided that at least two of
@i, J, k, I) are equal.

Proof. Case (i) Two arguments are equal: The inequality follows from Theorems
2 and 3 for the case.

Case (ii) Three arguments are equal: Without loss of generality, let (i, j, k, [)=
(1,2,2,2). Thusu® ,_, =(PP, , — P, P,)(P>+6P5—6PP,)/P* ._,. Thisisnegative
since Pe # 7.

Case (iii) All the arguments are equal: The problem reduces to
P=const(14+z). O

6. Structure of &£, {G—1} and ¢

Before studying the topological structure of .#, we would like to point out that
a product can be defined on & [6, 10, 11]. We call this product the Asano product.

Theorem 4. Let {o’  ,}e L™, {BP . 1eZL"™ then {0 Do egn.

| ST Igyenes Hig,...,

This is a very well known theorem, and we do not repeat the proof. Details
are shown in [6, 10, 11]. Therefore % has a semi-group structure by this product.
Remark that 9 is also closed under the product. We denote this product by {«f}
or A[P,Py].

The Lee-Yang class £ is a complicated set in the space of the d-coefficients
(d=2""1—1).Let P be given by (2.1), then we identify P with {B{", ..., B?,,...}e R?
as before. We can easily prove that % is a bounded set in R%. The proof is left to
the reader as an exercise. The following theorem is an extention of a Ruelle’s
result on the openness of & [6].

.....

Theorem S. (1) £ is open, arcwise connected.
(i) & is homeomorphic to d-dimensional open disk D?.
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Proof. (1) The openness of & follows from the definition (see, for example,
Ref. [6]). Let P,eZ be given by puttmg independent of i, j Vij=te [0, 1]. Then
P,e Z and Pe ¥ for te[0, 1). P, is a continuous line connecting H(1+z )e Z
and 1+ﬂze£’ and lies in . For any Pe %, P A[P,Ple & is continuous
with respect to te[0,1], and P,=Pe %, P0—1+]_[z e %. Thus ¥ is arcwise
connected.

(il) From the above discussions, we see, by operating A[ P, ...], that any subset
of £ can be continuously contracted to the origin 1+1_[ z;. In other words, % is
contractible. Note that % is open, bounded. Furthermore, since the mapping
A[P,...]is given by

AP DB, 3= 0B, )

we see that . is homeomorphic to an open, bounded star-like set. Therefore it is
sufficient to show that an open, bounded star-like set UCR? is homeomorphlc
to an open disk D®. Denote by U the closure of U with boundary 6U=U —U,
and let B, be an open ball of radius r such that

UDB,>B,>{0}.

For any xe 0B,, there is a unique point A(x)e oU such that the open line segment
0, A(x)) is in U. Let V, be an _open star-like neighborhood of (0, A(x)) in U which
itself is a cell. Note that 0U is compact. Let N, (6U) be an open ¢,-bounded
neighborhood of 6U in U, and lime,=0. Thus 00 = N, N, (6U) Since oU is
compact, we can choose the followmg type of finite covering of U for each n:

U :B,uNgn(ﬁU)u{Vx )%

(n, 1) X(n,2) """ Vx(n,kn)} !

Let n— o0, then we have a countable covering of U

U=B,uoUu{V, UV,

xa, ™ e x(x k) T X2, }

Therefore U is a countable union of open star-like cells, and we can conclude
that U itself is homeomorphic to an open disk. This completes the proof. [

Remarks. (i) If the coefficients are complex, these statements can be extended
by suitable redefinitions [6].

(i) Even if U is open, bounded and contractible, U may not be necessarily
homeomorphic to an open disk.

The main theorem in this section is:

Theorem 6. () 2 C.Z CY.

(i) 2=2.

Proof. (i) 2 C Z is well known. Consider the following (d + 1) functions:
l—[n (1+z)

where the number of (—) signs is even, and which ensures that these functions
belong to #,. We denote these functions by P;(i=1,...,d+1), and remark that
P €9 (P,e %) and d-tuple of P’s are linearly independent. Then P= Y a;P; with

20, o;=1 becomes a d-dimensional convex cell in the d-dimensional space of
the coefﬁ01ents Thus, denoting this convex cell by &', we show 0D NL = Q.
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Once this is proved, (i) follows from Theorem 5 and the fact 1+ [ z;=(d+1)"' ) P;
e 9. Each hypersurface of 0% is a (d— 1)-dimensional convex cell. We re-
write P as

P=P, _o+2,0/0z,P=B(zy, ..., 2,_ 1)+ 2,4z, ..., Z,_1) -

Since Pe % is equivalent to |4/B| <1 provided z,e D and some z;e D, it is neces-

sarily B+0 when (z, ..., z,_,)e ®"~'D. B is given by ) a,P;, _o, and consider
the point (zy, ..., 2, 1)=(+1, +1, ..., +1). There are 2"~ *=d +1 points. For the
given point the function which does not vanish at the point is one of the following
two possible functions:

[T= Atz)1+2,),
[[=i ' Axz)1-2z,),

and only one of these functions belong to #,. Thus any d-tuple of P’s vanish
simultaneously at one point of these points. Therefore 09'NY = ¢, and (i) follows.
(i1) This is obvious from the above discussions. []

Corollary 2. (i) Let {G—1} be a set of P in P, which obeys the Griffiths first
inequality including the cases such that the relevant correlation functions become
+00. Then

DCPChH=LC{G-1}.

(ii) Let {G—1}" be a set of P in ) which obeys the Griffiths first inequality.
Then

FrcPrc{G-1}"cqy.

Proof. (i) Let P,e ¥ and note that P,(0,...,0)=1 by definition. Then P;>0 for

«= 1 (ke A). Furthermore, by Theorem 1, for any subset SCA

(I_Les 5/62 JLP; HkEA 1/2] 0; [2'S| ]_—[ksA Z /2] >0
for z;=1(ke A). Therefore for P=Y o;P;e(£)° with Y a;=1, 4,20,

u= {(njES Zja/azj)[P nkeA Zy 1/2]}[13 ]_—_[keA z, 1/2] = Z “iQi)/(2|SIP) .
Thus

oo>u=0 provided z,=1(ked) and P,e¥(i=12,..).

(ii) This is obvious from the above discussions. []

Conjecture. 9" C L+ G+, =P

Remark. One may define the vertices of 2, . In order to define the vertices,
however, we must use the terminologies of algebraic geometry. Since 2 and ¥
are semi-analytic sets, we can define the vertices as the zero-dimensional singu-

larities of 02, 6.%Z. This is usually done through the stratification of the singularity.
We conjecture

(i) Ver@=VerZ,
(i) Ver@*=VerZ ™.

These can be confirmed easily for n=1, 2, 3.
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Finally we comment on some interesting properties of .#. Let P(z, ...,z)=
(1+2"4a,(z+2"" Y +ay(z* +2"" %)+ ... €.# Recently Millard et al. have obtained
a generalization of the Ruelle’s lemma [6, 12]:

Theorem 7. Let A and B be closed circular regions (see [12]) not containing the
origin. If f=Y"_, b;z" vanishes only in ACC, and g=Y7_, c;z" vanishes only in
BCC, then A[ fg]=)7_¢ ,Ci 'bic;z vanishes only in AB={ze C;z=—z,z,,2,€ A,
z,eB}.

Therefore, using the same techniques in Theorem 5, we have:

Theorem 8. (i) .# is a closed, contractible set.

(i) Let Fy={z"+a, ;2" '+...+a;z+1; (a,_4,...,a;)e R* "'} be functions
whose roots are all in an open region SCC which is invariant under the rotation
around the origin. Then Fg is homeomorphic to (n— 1)-dimensional open disk D"~ ).
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