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Abstract. A general momentum-space subtraction procedure is proposed for
the removal of both ultraviolet and infrared divergences of Feynman integrals.
Convergence theorems are proved which allow one to define time-ordered
Green functions, as tempered distributions, for a wide class of theories with
zero-mass propagators.

I. Introduction

Until recently, the applicability of Zimmermann's momentum-space subtraction
procedure [1,2] for Feynman integrals was limited to cases with no vanishing
masses. To be sure, zero-mass theories could be discussed, but only as limits of
corresponding massive theories, and even then only the limits for non-exceptional
Euclidean momenta could be taken legitimately. The aim of the present work is
to extend the convergence theorems of Zimmermann to a very general class of
momentum-space Feynman integrals with arbitrary non-negative mass param-
eters.

The subtraction scheme adopted below evolved from one used by the author
and Zimmermann [3] to formulate the massless A4 model (see also [4]). The
essential idea is the following: all subtractions are made at vanishing momentum,
but some of them, including the ones otherwise expected to give rise to infrared
divergences (mass singularities) by naive power counting, are made at a non-zero
value of the mass. The absolute convergence of the subtracted Feynman integrals
in the massless A4' model has been proved [5] for non-exceptional (in the
Euclidean sense) external momenta and non-zero ε in the denominator factors.
Similar treatments have been given for the Goldstone model and Abelian Higgs
model [3, 6]. Unfortunately the methods of these references are not sufficient to
treat models with renormalization parts with three external boson lines (e.g.
massless scalar QED, non-Abelian Yang-Mills models). If one gives the three-
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vertices extra subtractions at zero mass, as one must to satisfy the hypothesis of
the general power-counting theorem [7], one runs into the problem of overlaps.
As we shall see, this problem can be handled in a manner very similar to that
used by Zimmermann [1] to verify the ultraviolet power-counting criterion.

The main convergence theorems presented below (Section III) provide rela-
tively simple criteria for the absolute convergence of the following two integrals
involving RΓε(p, k) the Feynman integrand for a diagram Γ9 subtracted according
to our new prescription (specified in Section II):

μ4mkd4npf(p)RΓε(p,k)

Γ connected

ε>0 (1.1)

and

Γ one-particle irreducible

ε>0

{pt} non-exceptional (Euclidean sense). (1.2)

The usefulness of these theorems lies in their applicability to the definition, as
tempered distributions, of the time-ordered Green functions of a wide class of
quantum fields and their normal products. The absolute convergence of each
Feynman integral contributing to such a Green function is shown in Section IV
below; the final distributional limit and the proof of Lorentz invariance are
presented elsewhere [8]. It can be shown [9] that the normal products defined
by this procedure have all of the convenient properties needed for the systematic
derivation of Ward identities and other structural relations of perturbative
Lagrangian field theory. Already these normal products have proven extremely
useful in the formulation, with the Bogoliubov-Parasiuk-Hepp-Zimmermann
framework, of the massless Yang-Mills model [10,11] and the Georgi-Glashow
model [12].

II. Preliminary Considerations

The momentum-space integrand (without subtractions) for a connected Feynman
diagram Γ is assumed to be of the form

IrJlP> M = Π PF({W, s) Π ΛL(lL, s) (2.1)
VeΓ LeΓ
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where

P = {PuP2>- '>Pn}= basis for external momenta of Γ

k= {fc1? /c2?...,fen}= basis for internal momenta of Γ

Y\ — product over vertices V of Γ
VeΓ

Y[ = product over lines L of Γ
LeΓ

{lVi}= set of momenta flowing into vertex V

lL= momentum flowing through line L

FLi{lL, s) = ll-{s- l)2M2

Li - s2μ2

Li - m2

Li + is (I2 + (s- l)2M2

Li + s2μ2

Lί + m2

Lί)

m2

Lί + M2

Li>0

PL = polynomial in lL and s

vt = positive integer .

Of particular importance in any subtraction procedure for Feynman integrals
are the one-particle irreducible (1PI) sub-diagrams of a diagram Γ. With each
1 PI y we associate ultraviolet (UV) and infrared (IR) superficial divergences,
suitably generalized to incorporate the parameter s, given by

(2.2)

Veγ Leγ

where

= dogpsΆL, DL= deg p ( s -

and m(γ) is the number of independent lL, Ley, for fixed external momenta of y.
The upper degree degps gives the asymptotic power for p and 5 tending to infinity;
the lower degree degp ( s_1 } gives the asymptotic power for p and s—1 tending to
zero [see (2.15-16 below].

Using the identity

m(y) = (no. of Le y) — (no. of Ve y) + 1 ,

equations (2.2) may be rewritten as

Vey Ley

Veγ Leγ



56 J. H. Lowenstein

A reduced subdίagram Ajλγ ...λn is obtained from A by contracting mutually
disjoint, non-trivial 1PI subgraphs λt to points [reduced vertices V(λJ]. Assigning
the unit polynomial to each V(λt), we see that for 1PI y and disjoint λtCy,

d(y) = d(γβί...λn)+Σd(λi)

(2.4)

«y)=r(y/λι...λn)+ £ r(λ,).

Although the UV and IR degrees are applied only to 1PI diagrams in the
subtraction procedure, it is- obvious that the concepts can be generalized to con-
nected diagrams, with formulae (2.2-4) remaining valid. This generalization will
be employed in stating sufficient conditions for infrared convergence in Theorems
3.1 and 3.2.

More generally, one assigns to each 1 PI y Q Γ ultraviolet and infrared subtraction
degrees, δ(y) and ρ(y), defined respectively by

ρ{y)=r(y)-c(γ)

where b(y) and c(y) are non-negative integers constrained by the inequalities

(2.6)

for arbitrary reduced 1PI subdiagram y/{λt} of Γ.
The subtracted integrand for Γ is defined by a modified version of Zimmer-

mann's "forest formula" [13],

RΓe{p,k,s) = SΓ Σ Ui-hWrJiU), ( 2 7 )

where $FT is the set of Γ-forests (families of non-trivial, non-overlapping 1PI
subgraphs of Γ);

7Γε(l7) is the unsubtracted integrand (2.1) in which lVi and lL are written

where τ is the smallest element of l/u{Γ} containing V (resp. L). Here qτ

vi (resp.
qτ

L) is a linear function of the external momenta p) of τ, considered as independent
variables, and kτ

Vi (resp. kτ

L) is a linear function of the internal momenta of Γ.
Similarly, the variable s appearing in Pv or ΔL is replaced by sτ;

Sy is a substitution operator, shifting from the variables of λe U to those of

τγ is the subtraction operator defined by

(1 - τy) = (1 - 1 % ~ } υ ) (1 - 1 % ) (2.9)
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where, in general,

ITaylor series about xt = 0 to order

d if dZO;

0 .if d<0.

The above description of unsubtracted and subtracted Feynman integrands
assumes some familiarity on the part of the reader with Zimmermann's formalism.
A more complete explanation of the nomenclature may be found in Ref. [1].

Having specified the subtraction rules for constructing renormalized inte-
grands, we now want to lay the groundwork for the absolute convergence theo-
rems of Section III. We first observe that the absolute convergence of the integral
(1.1) is implied by that of

{pXs) (2.10)

where Rfε is the subtracted integrand for the augmented diagram f obtained
from Γ by drawing special lines (g-lines) which carry the external momenta qj(p)
and which meet in a new internal vertex Vo. In computing Rf& each g-line of f
is assigned a propagator

with μ2 > 0 and v chosen sufficiently large that both ρ(γ) and δ(y) may be taken
to be negative [and consistent with (2.6)] for every 1PI subgraph y of f which
contains Vo. The foregoing construction of f is of course not applicable to a case
where Γ has only one external line (tadpole) or no external lines (vacuum bubble).
In the former case we define f to be Γ with its external line amputated; in the
latter case we simple set f = Γ. Thus in all cases f is a connected diagram with
only internal vertices.

We now restate the main theorem of Ref. [7] with a somewhat stronger (but
simpler) hypothesis:

Theorem 2.[7]. Let R(p,k) be a function of four-vector variables p = Pi--pn

and k—kγ...kmof the form

R(p, k) = P(p, /c)/Π (lf-mf + ίε(lf+mf)) (2.12)
I

where P(p9 k) is a polynomial in the components ofp and k and each Zf is an element
of Jδf, the space of linear forms

Σ Σ

The integral

ί d*mkR{p, k)
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converges absolutely if for every choice of ute if, i=l,2,...,a and VjE J£,
j=ί,2,...m — a such that the Jacobian d(u,υ)/d(k) is non-vanishing, the following
UV and IR convergence conditions are satisfied:

{P> k(u,v,p)) + 4a<0 (2.13)

degtt|wli(p, k(u, v, p)) + 4a > 0. (2.14)

The upper and lower degrees are defined as in [7]. For a function F(x, y) of
variables x1...xb,y1...yc we have

degx]vF = h
* φ (2.15)

άogxlyF = k

if, for almost all x1...xb, yί...yc,

\imλ~hF{λx,y)φO,oo

(2.16){,y) + 0, oo .

Some of the important properties of these degree functions are

d^xlyf\Fj= ΣdSfelΛ (2.17)
l

_ ,Fj (2.18)
j= i ; = i

r

, Σ Fj ^ m a x {degχ|^ } ( 2 1 9 )
7 = 1 7

degx | v Σ ^j ^ m i n {degxiy^j}' ( 2 2 0 )
7 = 1 j

with equality in (2.19-20) if F are linearly independent monomials in x and y.

III. Convergence Theorems

We are now ready to state our first main theorem.

Theorem 3.1. Let Γ bea connected Feynman diagram, whose subtracted integrand
is given by (2.7). Suppose that for every set {γ} of mutually disjoint, non-trivial ίPI
subgraphs of Γ with Γφ{γ} the inequality

r(f/{y})+Σmax{0,ρ(y)}>0 (3.1)
y

is satisfied. Then the integral

J dpdkf(p)RΓε(p, k,s), 0 ̂  s ̂  1, (3.2)

converges absolutely for arbitrary ε>0 and f e ^ ( R 4 " ) . •



Convergence Theorems for Feynman Integrals 59

Crucial to our proof of this theorem is the concept of complete forest [1].
Suppose that S is a linear subspace of if (Γ), the space of linear forms in p and
k, and γ is a reduced subdiagram of Γ. We shall say that y lies along S (in symbols
y ||S) if, for all (internal) lines Ley, ky

LeS [see (2.8)]. If y has no line L with ky

LeS,
we shall say that γ is oblique to S (in symbols yJ(S). A Γ-forest C is complete with
respect to S if

Π P I = > Γ e C

and,forallyeCu{Γ},

or

where y(C) is y reduced by all elements of C properly contained in it. The use-
fulness of complete forests derives from the following result of Zimmermann [1]:

Lemma 3.1. [1]. Let Γ be a connected diagram, S a subspace of 5£{T); then

Rrs= Σ Rrs(Q (3-3)
Cs^s(Γ)

RΓε(Q = (ί-τΓ)YΓ(Q (3.4)

where

%s(Γ)={Ue^Γ:U complete w.r.t. S}

and Yy{O), yQΓ, is defined recursively by

ySQ (3-5)

= y/γ1...γn

{7iJ •>yn]
= s e t °f ^icίximal elements of C contained in y

f [ l - τ y . i f UQXS, y(Q\\S
Ίa \ ~ τ ) . α otherwise.

The subtraction operator τΓ is, by convention, non-zero only if Γ is 1PI and
(S(Γ)^O. •

We now present three power-counting lemmas which will be used in proving
Theorems 3.1 and 3.2. The first of these lists those properties of the subtraction
operator τy which are relevant to infrared power counting.

Lemma3.2. Let uί,...,ua,v1,...,vb, a>0, be an arbitrary basis of JS?(Γ), the
space of linear forms in the internal and external momenta of a connected graph Γ.
Furthermore, let C be a f-forest which is complete with respect to S, the subspace
of J£?(Γ) spanned by u1,...ua.
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ForτγYγ(Q*0, we have

i)\vτγ

Yy(Q

, degu{pγ{sγ_ί)vYy(C)+ max{0,ρ(y)}}, (3.6)

ίdegu | p y ( s,_1 ) ί ;yy(C) if

~ \mm{dQgupΎ{sγ_ί)lvYγ(C)-ρ(y)+l, |

if γ(Q\\S9 (3.7)

degWpv(sy-1)1,(1 - τ y ) Y γ ( Q ^ deg t t | jpV(5y_ 1)vYy(Q + m a x {0, ρ(γ)}

if y(QXS. (3.8)

For ρ(y)S® Equations (3.6) and (3.7) may be strengthened to read

<teiupy(sy-l)\vτyYy(Q^<tegu\pV(Sv-l)vYy(Q> (3-9)

degulPr{sr-1)vτyYy(Q^degu{pγ{sγ-ί)vYy(Q. D (3.10)

Proof. Formulae (3.6-10) follow directly from the definition

Ty — Tyl-{- Xy2 — ̂ yl^ r2 •>

where

τyί~ ίpy(sy- l) •> τγ2 — ιpysy •>

and the following inequalities: if τylYy(Q + 0,

S«|pV(sV-l)ι;
if y{QXS, (3.12)

if K O ^ S ; (3.13)

andifτ^QφO,

degu |py ( s,- l)υτγ2 Yy(Q^άegu\vPy(Sy-i)Yy(Q» (3-14)

(3.15)

^ degu | l ) p y ( s r_ t)YjLQ + max {0, ρ(y)}. (3.16)

To prove (3.11-13), we write

= / r V , s»-1, M, v) t fkiP
γ, *y- lK(w,») (3.17)
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where

fto k=l,2,...n, are independent monomials, of
degree v(fc), in pγ and sγ — 1,

gk, k= 1,2,... n, are polynomials in u and υ ,

D is a product of factors of the type,

F^lΐ-^-ίfMh-s^μh-mh

with

We note that PL(pγ\ μ£f and M£f can only be non-zero for Ley(Q or Leλ(Q,
λ a maximal element of C contained in γ, with λ(Q)(S, y(Q \\ S. Moreover VL(v) = 0
for Leγ{Q\\S and FL(z;)φ0 for Ley{Q)(S. It is then straightforward to verify the
following relations (abbreviations: Yγ=Yγ(Q, y = y(Q, degM= degM(t;py(s r_1)?

v -1) — degM p y ( sy _ i) i J :

«pv ( sv-1)1;= d e g « P y ( s v - 1 ) ^ " x + * {v(fe)+ degu0f f e}, (3.19)

" x + m i n {v(fe)+ degMflffc}, (3.20)

t {degupy(sy_ 1 ) ί ^ 7 _ 1

( Ξ O if v(k)>ρ(γ)-ί for all ik), (3.21)

deguτyl Yy^ v ( w πύn _ i { d e g ^ ^ - i Γ ) ^ " ^ " r + d e g ^ }

( = 0 if v(k)>ρ(γ)-l for all k), (3.22)

^ }, (3.23)

' ^ degupy(sy_ 1 } D - x , (3.24)

if y | |S
if γ^S, (3.25)

^ r 1 if ^ 5 . (3.26)

Since, by hypothesis, τylYyφ0, we have v(k)^ρ(y)—ί for some k, and (3.11-12)
follow from (3.24-25), combined with (3.21-22). Inequality (3.13) follows from
(3.26) and (3.23), comparing with (3.20).
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To obtain (3.14), from which (3.15) follows immediately, we simply observe
that differentiating with respect to py and sy and setting py = 0 = sy cannot lower
degu of D~ιfkgk, since the relevant denominator factors have non-zero mass
terms for sy = 0. This fact also permits us to use essentially the same argument
which led to (3.13) to obtain (3.16).

With the aid of Lemma 3.2, one obtains the following infrared power-counting
inequalities for Yγ(Q:

Lemma 3.3.For Γ, S, C, and ίPI ye C as in Lemma 3.2,

degup^-1)lvYy(Q^Q(y)-Ms(y) for γ{Q\\S, (3.27)

degu\Py{sv-i)vYy(Qi-Ms(γ) + l for all yeC, (3.28)

where

Ms(y) = 4 Σ (no. of independent loops of X(Q)
λeC
λgy

kc)\\s

and ^ means ^ with the r.h.s. = 0 if Ms(y) = 0.

Lemma 3.4.Let Γ, S, and C be as in Lemma 3.2. Let λ be a maximal element
of C properly contained in ye Cu{Γ}. Then

^ - i)SyτAyv(C) ί -Ms(λ)+ί, (3.29)

i ( 3 . 3 0 )

for I(Q||S, (3.31)

degupr(sv- D I Λ C 1 ~τλ)YAQ^ max {0, ρ(λ)}-Ms(λ)

for λ{Q\S, y(Q\\S. (3.32)

Proof of Lemmas 3.3 and 3.4. We adopt here the same notational conventions
as in the proof of Lemma 3.2.

The proof is by mathematical induction, with the inductive hypothesis that
Lemma 3.3 holds for all maximal elements of C contained in a given ye C. We
shall show that (3.27-3.32) are valid for y. Observe that for minimal ye C,

Yy=ho (3-33)

and, for all ye C,

d e g ^ ^ / ^ K v ί - M s ί y ) if y\\S, (3.34)

^ . (3.35)

For minimal y, (3.34-35) imply (3.27-28).
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We now proceed to the verification of (3.27-32), supposing that λ is a maximal
element of C contained in ye C lye Cu{Γ} in the case of Lemma 3.4]. By the
inductive hypothesis and Lemma 3.2,

(3.36)

degu(l-τλ)Yλi-Ms(λ)+l, (3.37)

if λ\\S, (3.38)

if ΪJ(S. (3.39)

We note that τλYλ and (1 -τλ)Yλ may both be written in the form (3.17). Clearly
the only way that degM of these expressions could be lowered by the Sγ substi-
tutions, pλ->pλ(py,u,v% sA->sy, is for some denominator factor (3.18) to have
Mli = 0 = mli = μli and kiφS, ky

LeS. But this is not possible and hence (3.29-30)
follow from (3.36-37). Similarly, deg^A^A-D^ (but not dεgUp*(sλ-i)τλYλ) could be
lowered if ml^=0 = μlί, kλ

LφS, ky

LeS, but only if the internal parts of Sypf are not
in S (for γ = Γ, this means SΓp

λφS). Hence (3.31-32) follow from (3.38-39).
To complete the inductive proof, we combine (3.34-35) with (3.29-32), using

the relations

Ms(y) = Ms(γ}+ £ MS(Λ), (3.40)
max λeC

λcγ

ρ(y)^r(y)+ £ ρ(λ) (3.41)
max/leC

λcγ

to obtain (3.27-28).

Proof of Theorem 3.1. Let Γ be a connected diagram. From Theorem 2, it is
sufficient to show that for arbitrary basis uγ ...uaυγ ...υb of JS?(Γ), the inequalities
(2.13-14) are satisfied for Rfε. The first of these follows from the fact that τy ful-
fills all of the criteria for a legitimate subtraction operator in the sense of Ref.
[13], with the exception of property (iv), which is not relevant to the verification
of (2.13). We now verify (2.14), using Lemmas 3.1 to 3.4.

Let C be a forest of f which is complete with respect to S, the subspace of
spanned by ux... ua. We wish to show

degM|ϋ£ f ε(C) + 4 α > 0 . (3.42)

First of all, we have

Wf(Q)-m(Γ(Q) if Γ(Q\\S

j 0 i f f{Q)(S (3-43)
Moreover, if V(γ) is a reduced vertex of f(Q, we have as a consequence of (3.29-32),

deguis-1)WSΓfyYγ(Q

^max{0,ρ(y)}-M s(y) if f(Q\\S, (3.44)

degu(s_ i)| A /, Yy(Q ̂  deg«|,(s- i A τ y Yy(Q

i-Ms(γ)+ί if Γ(QiS. (3.45)
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Combining (3.43-45) and using

ίm(Γ(O)+ Σ C

M

S ( T ) i f Γ(Q\\S

4a-\ Σ Ms(γ) if f{QXS, (3.46)
L max ye C

with equality only if the right-hand side does not vanish, we obtain

if Γ_(Q\\S

\>0 if Γ(QJfS. (3.47)

Since by hypothesis r(f(Q) is positive, inequality (3.42), and hence (2.14) are
established.

We now turn to our second main convergence theorem.

Theorem 3.2. Let Γ be a ίPI diagram, with augmented diagram f and subtracted
integrand RΓε given (2.7). Suppose that for every set {γ} of mutually disjoint, non-
trivial ίPI subgraphs of f such that f/{y} contains no q-lίnes, the inequality

f (3.48)

is satisfied. Then the integral

J dkRΓε(p, k, s), 0 ^ 5 ^ 1 (3.49)

converges absolutely for arbitrary ε>0 and nonexceptional p (Euclidean sense).

Proof We must verify the convergence conditions of Theorem 2. The ultra-
violet criterion, (2.13), follows immediately from the theorem of Ref. [13]. To
check (2.14), suppose that uί...ua9v1...vm-aa.rG linearly independent elements of
JS?(Γ) with d(u,v)/d{k) +0. By Lemma 3.1, it will be sufficient to show

(3.50)

for arbitrary forest C which is complete with respect to S, the space of linear
c o m b i n a t i o n s oϊu1...ua,pί...pu.

We first observe that Lemmas 3.2-3.4 remain valid for fixed external momenta.
The only modification in the proofs is the addition of a term linear homogeneous
in p (distinguished from py\) in the expression for lγ

L in (3.18). Like the possibly
non-zero mass m2

Li, such a term does not affect the infrared power-counting
estimates. In particular,

d^u]vτΓYΓ(Q^dcgulprisr.1)vτΓYΓ(Qi-Ms(Γ) + l. (3.51)

Since

α > 0 ,

relation (3.51) implies

degwit;τΓΓΓ(q + 4α>0. (3.52)

It remains to prove

(3.53)
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It is easy to see that if Γ(C)\\S, the lines (if any) whose momenta are linear
combinations of u1...ua are those of a reduced diagram f/{γ} containing no
g-lines and, moreover, m(f/{y}) is the number of such momenta which are linearly
independent (here is where the non-exceptionality of the external momenta is
important). Note that f/{γ} is in fact Γ reduced by a connected subgraph which
includes all external vertices. From here on the proof of (3.53) coincides with
that of (3.42).

IV. Normal Products

The convergence theorems of the preceding section can be applied to define
Green functions of normal products N§ [_Qi0)(xj] and differential vertex opera-
tions (integrated normal products) ΔQ

δ[Q{0)~\ = JdxN$lQ{0)(x)~], where Q ( 0 ) is a
formal product of free fields φ[°\ their derivatives and a non-negative integer
power of s or (s— 1). It is assumed that the fields φ\0) have momentum-space
two-point functions Atj(p, s) of the type (2.1), with upper and lower degrees related
to the naive UV and IR dimensions of the φ[0) by

where di=dimφ\0\di= dim(/>j0), so that in particular

(4.2)

The positivity of dt follows from the requirement that Δ{i be well defined as a
distribution. For reas_ons which will become clear shortly, we restrict ourselves
to φ\0) such that d{^d{. In the definition of N$[Q{0)(x)\ δ and ρ are restricted by

δ= d i m β ( 0 ) + non-negative integer

ρ = dim g ( 0 ) — non-negative integer (4.3)

We define, for ε > 0,

n+ 1 r

o | τ π Nf;[δS 0 )(*;)] Π AnJ

3\
MT]~\ 1°) ( 4 4 )

by the generalized Wick expansion (expansion in Feynman diagrams, with
external vertices corresponding to Nf Cδ;0^*;)] and internal vertices corre-
sponding to A°J.[Mj'], supplemented by the forest formula (2.7), with subtraction
degrees

V.ey VjSy

Σ e x t fe
V,ey
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where

Σγ= sum over external lines of γ
E

γext/mt _ s u m o v e r eχternal/internal vertices of γ.
Vieγ

Note that ρ(y)^δ(γ).
The existence theorem for Green functions (4.4) is the following:

Theorem 4. // σ} Ξ 4̂, j= 1,2,... r, ί/zerc ί/ze connected Green function (4.4) exists
as a tempered distribution in xί... *„, αrcd, for non-exceptional momenta (Euclidean
sense), the vertex function

(θ\T fl NfXQ^ip^Nrjl[βΰi (o)] Π Δ^[_Mf] loV^ (4.6)
\ i=l j=l /ε

ίiZde indicates Fourier transformation) exists as a complex-valued function.

Proof From Theorems 3.1 and 3.2 it is sufficient to verify that for every set
{y} of disjoint, non-trivial 1PI subdiagrams of a connected diagram, the inequality

Kr/{y})+Σm a χ{o^ω}>° (4 7)
y

is satisfied.
From (2.3), we have, setting Λ = f/{y},

LeΛ VeΛ
VeΓ

4) (4.8)
y

Voφy

But

Σ ΦL+4)=ΣK+έ Σ «H)(P
he A k \ IΦk J

WV (4.9)
k /

where the last summation excludes V=V0 or V= V(y0) where Voeyo, and

n w = no. of Λkl lines of yl

w^= no. of f̂-lines of A

vk(V)= no. of Ajk lines with /c end at V

Moreover, from (4.5) and

ρv-4^0 for all internal VeΓ, (4.10)

we obtain, for all reduced vertices V(y)eΛ, Voφy, with vq(V(y)) = 0,

0. (4.11)
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Substituting (4.9) and (4.11) into (4.8), we arrive at the relation

^ Σ
VeΛ
VeΓ

+ Σ f Σ MV(y))dk+max {0, ρ(γ)}+4(vq(V(γ))-1)

Vq(F(y))>0

+ yΣ [Σvk{V)dkγ (4.12)

If yl contains g-lines, one of the first two summations in (4.12) must be positive
[recall (4.10) and dk>0~]. If A has no g-lines, the last summation is positive.

This completes our proof of positivity of r(A) -f £ max {0, ρ, y)}, and hence of
y

the theorem. If, as is often the case, all elementary fields have d^U OΠQ can
easily check that the hypothesis of the theorem may be relaxed slightly to include
the possibility of one σ, equal to three.

We observe, finally, that Theorem 4 allows one to define Green functions in
a wide class of interacting theories with both massive and massless particles:

i=l j=l

= (θ | τ"ff N$mO)(xJ] Π Δ%[Mj°>] e x p i J S M J loV0"" (4.13)
\ ί=ί j=ί /ε

where Qt and M ; are formal products of the renormalized interacting fields (and
factors of s or (s— 1)) with corresponding free-field products β | 0 ) and Mf\ and
«£?iffj is a linear combination of free-field products (including s or (5— 1) factors)
with dim ^ 4 , dim ^ 4. To every order in perturbation theory, the right-hand side
of (4.12) is just a linear combination of terms of the form (4.4). Because of the
assignment ρv = 4 for each interaction vertex, each of these terms is well defined
as a tempered distribution.
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