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Abstract. A general momentum-space subtraction procedure is proposed for
the removal of both ultraviolet and infrared divergences of Feynman integrals.
Convergence theorems are proved which allow one to define time-ordered
Green functions, as tempered distributions, for a wide class of theories with
Z€ro-mass propagators.

I. Introduction

Until recently, the applicability of Zimmermann’s momentum-space subtraction
procedure [1,2] for Feynman integrals was limited to cases with no vanishing
masses. To be sure, zero-mass theories could be discussed, but only as limits of
corresponding massive theories, and even then only the limits for non-exceptional
Euclidean momenta could be taken legitimately. The aim of the present work is
to extend the convergence theorems of Zimmermann to a very general class of
momentum-space Feynman integrals with arbitrary non-negative mass param-
eters.

The subtraction scheme adopted below evolved from one used by the author
and Zimmermann [3] to formulate the massless 4* model (see also [4]). The
essential idea is the following: all subtractions are made at vanishing momentum,
but some of them, including the ones otherwise expected to give rise to infrared
divergences (mass singularities) by naive power counting, are made at a non-zero
value of the mass. The absolute convergence of the subtracted Feynman integrals
in the massless 4* model has been proved [5] for non-exceptional (in the
Euclidean sense) external momenta and non-zero ¢ in the denominator factors.
Similar treatments have been given for the Goldstone model and Abelian Higgs
model [3, 6]. Unfortunately the methods of these references are not sufficient to
treat models with renormalization parts with three external boson lines (e.g.
massless scalar QED, non-Abelian Yang-Mills models). If one gives the three-
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vertices extra subtractions at zero mass, as one must to satisfy the hypothesis of
the general power-counting theorem [7], one runs into the problem of overlaps.
As we shall see, this problem can be handled in a manner very similar to that
used by Zimmermann [1] to verify the ultraviolet power-counting criterion.

The main convergence theorems presented below (Section III) provide rela-
tively simple criteria for the absolute convergence of the following two integrals
involving Rp,(p, k) the Feynman integrand for a diagram I', subtracted according
to our new prescription (specified in Section II):

§d*"kd*'p f (D)RAp, k)

I' connected
e>0 (1.1)

fe SR
and

§d*"kRr{p, k)
I one-particle irreducible
e>0

{p;} non-exceptional (Euclidean sense) . (1.2)

The usefulness of these theorems lies in their applicability to the definition, as
tempered distributions, of the time-ordered Green functions of a wide class of
quantum fields and their normal products. The absolute convergence of each
Feynman integral contributing to such a Green function is shown in Section IV
below; the final distributional limit and the proof of Lorentz invariance are
presented elsewhere [8]. It can be shown [9] that the normal products defined
by this procedure have all of the convenient properties needed for the systematic
derivation of Ward identities and other structural relations of perturbative
Lagrangian field theory. Already these normal products have proven extremely
useful in the formulation, with the Bogoliubov-Parasiuk-Hepp-Zimmermann
framework, of the massless Yang-Mills model [10, 11] and the Georgi-Glashow
model [12].

I1. Preliminary Considerations

The momentum-space integrand (without subtractions) for a connected Feynman
diagram I" is assumed to be of the form

Ir(p, k, s)= H Py({ly;}, s) H Ayl ) (2.1)

Ver Ler
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where
p={p1> P2s--.,p,} = basis for external momenta of I
k={ky, k,,...,k,}= basis for internal momenta of I"
0<s<1

[T = product over vertices V of I
Vel

|1 = product over lines L of I

Lerl’

{l,;;}= set of momenta flowing into vertex V

I, = momentum flowing through line L

A (ly, 5)=Pi(l1,5)/ H [Frily, )]

Filly, )=1f —(s— 1’ M{;— s> ui;—mi;+ ie (I +(s— 1)> ML, + s>+ mi)
mi+Mz,>0

P, = polynomial in /; and s

v;= positive integer .

Of particular importance in any subtraction procedure for Feynman integrals
are the one-particle irreducible (1PI) sub-diagrams of a diagram I". With each
1PI y we associate ultraviolet (UV) and infrared (IR) superficial divergences,
suitably generalized to incorporate the parameter s, given by

dy)=4m(y)+ Y, Dy+ Y D,

Vey Ley
2.2)
r(y)=4m(y)+ Y Dy+ ) Dy
Vey Ley

where

DL= @psAL , D= digp(s— AL

DV=degpsPVﬂ DVZ c_ligp(s—l)PV
and m(y) is the number of independent I, Ley, for fixed external momenta of 7.
The upper degree deg,, gives the asymptotic power for p and s tending to infinity;
the lower degree deg,- ;) gives the asymptotic power for p and s—1 tending to

zero [see (2.15—16 below].
Using the identity

m(y)=(no. of Ley)—(no. of Veyp)+1,

equations (2.2) may be rewritten as

diy)=4+ Z (Dy—4)+ Z (DL+4)
Vey Ley (23)
() =4+ Y (Dy—4)+ ) (DL +4).

Vey Ley
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A reduced subdiagram A/A, ... 4, is obtained from A by contracting mutually
disjoint, non-trivial 1PI subgraphs A; to points [reduced vertices V(4;)]. Assigning
the unit polynomial to each V(4,), we see that for 1PI y and disjoint 4;Cy,

) =ds 2+ Y A
= 24)

)=l 2+ 3 ).

Although the UV and IR degrees are applied only to 1PI diagrams in the
subtraction procedure, it is-obvious that the concepts can be generalized to con-
nected diagrams, with formulae (2.2—4) remaining valid. This generalization will
be employed in stating sufficient conditions for infrared convergence in Theorems
3.1 and 3.2.

More generally, one assigns to each 1PI yC I ultraviolet and infrared subtraction
degrees, d(y) and o(y), defined respectively by

o(y)=d(y)+b(y)
o)=r(y) —cy)

where b(y) and c(y) are non-negative integers constrained by the inequalities

(2.5)

oMz d(y/Ay... A+ Y o)
=1 (2.6)

UELCURNERES WD

o) =d(y)+1

for arbitrary reduced 1PI subdiagram y/{4,} of I.

The subtracted integrand for I is defined by a modified version of Zimmer-
mann’s “forest formula” [13],

Rl"e(p’ k5 S)=SF Z 1_[ (_TySy)IFs(U)a (27)

UeFr yeU

where Z is the set of I'-forests (families of non-trivial, non-overlapping 1PI
subgraphs of I');

I(U) is the unsubtracted integrand (2.1) in which [,; and [, are written

Lri=qvdp?) + ki (k)
L =41(p") + ki (k)

where 7 is the smallest element of Uu{I'} containing V (resp. L). Here g},; (resp.
qr) is a linear function of the external momenta p5 of 7, considered as independent
variables, and kj,; (resp. k) is a linear function of the internal momenta of I.
Similarly, the variable s appearing in Py or 4, is replaced by s°;

S, is a substitution operator, shifting from the variables of Ae U to thiose of
yeU,pD4;

7, is the subtraction operator defined by

(1—7) == ) (1 — 130 (2.9)

(2.8)
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where, in general,

Taylor series about x;=0 to order
t =«qd if d=0;
0 .if d<O0.

The above description of unsubtracted and subtracted Feynman integrands
assumes some familiarity on the part of the reader with Zimmermann’s formalism.
A more complete explanation of the nomenclature may be found in Ref. [1].

Having specified the subtraction rules for constructing renormalized inte-
grands, we now want to lay the groundwork for the absolute convergence theo-
rems of Section III. We first observe that the absolute convergence of the integral
(1.1) is implied by that of

| dpdkRp(p, k, s) (2.10)

where Ry, is the subtracted integrand for the augmented diagram I’ obtained
from I" by drawing special lines (g-lines) which carry the external momenta g;(p)
and which meet in a new internal vertex V,. In computing Rp,, each g-line of I’
is assigned a propagator

(@(p) — 2 +ie(@+ 1),  i=1,2,...,n+1

with u?>0 and v chosen sufficiently large that both o(y) and &(y) may be taken
to be negative [and consistent with (2.6)] for every 1PI subgraph y of I' which
contains V,. The foregoing construction of I’ is of course not applicable to a case
where I' has only one external line (tadpole) or no external lines (vacuum bubble).
In the former case we define I' to be I' with its external line amputated; in the
latter case we simple set I'=I". Thus in all cases I is a connected diagram with
only internal vertices.

We now restate the main theorem of Ref. [7] with a somewhat stronger (but
simpler) hypothesis:

Theorem 2.[7]. Let R(p, k) be a function of four-vector variables p=p;,...p,
and k=k, ...k, of the form

R(p. )= P(p, 10/ [ (B —mi? +ie(l? + i) (2.12)

where P(p, k) is a polynomial in the components of p and k and each I; is an element
of %, the space of linear forms

2 %Pt Zl Bik;-
=

i=1

The integral

| d*"kR(p, k)
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converges absolutely if for every choice of we?, i=1,2,...,a and v;e &,
j=1,2,...m—a such that the Jacobian 0(u,v)/d(k) is non-vanishing, the following
UV and IR convergence conditions are satisfied:

deg,i,R(p, k(u, v, p))+4a <0 (2.13)
deg,,R(p, k(u, v, p))+4a>0. (2.14)

The upper and lower degrees are defined as in [7]. For a function F(x, y) of
variables x; ... X, ¥; ... y. we have

deg, F=h
S (2.15)
deg., F=k
if, for almost all x;...X,, y1... V.,
}im A7RF(Ax, ¥) %0, oo
L (2.16)
/llm(l) A7*¥F(1x, y)*0, 0 .
Some of the important properties of these degree functions are
degy [[ Fy= Y degy,F; (2.17)
j=1 j=1
degy, [ Fj= ) degy,F; (2.18)
j=1 ji=1
degy, ). F;< max {deg,,F;} (2.19)
=1 j
(ngly Z FJg min {d_CExlij} ’ (220)
=1 j

with equality in (2.19-20) if F; are linearly independent monomials in x and .

II1. Convergence Theorems

We are now ready to state our first main theorem.

Theorem 3.1. Let I be a connected Feynman diagram, whose subtracted integrand
is given by (2.7). Suppose that for every set {y} of mutually disjoint, non-trivial 1PI
subgraphs of I" with I' ¢ {y} the inequality

r(I'/{y})+), max {0, o(y)} >0 (3.1)
Y
is satisfied. Then the integral

§dpdk f(P)Rr(p, k,s), 0<s<1, (3.2)
converges absolutely for arbitrary e>0 and f € #(R*"). [
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Crucial to our proof of this theorem is the concept of complete forest [1].
Suppose that S is a linear subspace of £(I'), the space of linear forms in p and
k, and ¥ is a reduced subdiagram of I'. We shall say that ¥ lies along S (in symbols
711S) if, for all (internal) lines Le ¥, kje S [see (2.8)]. If ¥ has no line L with k} €S,
we shall say that ¥ is oblique to S (in symbols 7t S). A I'-forest C is complete with
respect to S if

I'tPI=TeC

and, for all ye Cu{I'},

HOIS or JOKS,
where y(C) is y reduced by all elements of C properly contained in it. The use-
fulness of complete forests derives from the following result of Zimmermann [1]:
Lemma 3.1. [1]. Let I' be a connected diagram, S a subspace of £(I'); then
RF8= Z RT&(C) (33)

Ce%s(I)

Rr(O)={1—1)Y(O) 34)
where

Cs(IN={UeF:U complete w.rt. S}
and Y,(C), yCT, is defined recursively by

Y(O)=I;0S,[] £,.%,(0) (3.5)
HO=p/y1...7n

{Y1>-..n) = set of maximal elements of C contained in y

¢ _[1=m Ok, OIS

'« |—1,, otherwise.

The subtraction operator T is, by convention, non-zero only if I' is 1PI and
oNz0. O

We now present three power-counting lemmas which will be used in proving
Theorems 3.1 and 3.2. The first of these lists those properties of the subtraction
operator 7, which are relevant to infrared power counting.

Lemma 3.2. Let uy,... U, Uq,...,05, a>0, be an arbitrary basis of L(I'), the
space of linear forms in the internal and external momenta of a connected graph I'.
Furthermore, let C be a I'-forest which is complete with respect to S, the subspace
of L(I') spanned by uy,...u,.
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For ©,Y(C)#0, we have
digupy(sy— DieTy X/(C)

= min {deg, (s 1)| ,(C)s degypmsr— 1), Y,(O)+ max {0, o(y)} },
(_le_gulpy(sv - 1oTy YY(C)

> {dig,q prsr— 10 (€)1 J(OF'S
= |min {deg, v - 1)1 KO — (1) + 1, degy s - 1), Y(CO)}

if OIS,
deg, s — 1)1 = 7,) Y(C) Z deg, sy — 1), H(O) + max {0, o(y)}
if WOLS.

For ¢(y)<0 Equations (3.6) and (3.7) may be strengthened to read
cje_gupytsv- DTy Yv(C) 2 qe_gulpv(sv— 1o YY(C) >
digulpy(sy— 1Ty YY(C) 2 digu[py(sv —1)v Y;(C) - ad
Proof. Formulae (3.6—10) follow directly from the definition

Ty =Tyt +Ty2 —Ty1Ty2

where

—_ )—1 __ 40
=ty Ta =t

and the following inequalities: if t,; Y,(C)#0,

digupy(sy— D}Ty1 Yv(c)g digup"(sv— 1)Iva(C) )

digupV(sV— l)le;(C) - Q(y)+ 1
it OIS

degulpy(sy— 1)uYy(C)
if p(OfS,

digupv(sy— 1)|v(1 - ‘Cyl) Yy(c)g (Egulupv(sy— 1)Yy(C) + Q([y)
if pO4S;

d_65u|p7(sy— 1)v’ty1 Yy(C) z

and if 7., Y(C) *0,

degyprisr - 1)6Ty2 YO Z degupupror - 1) K(O) 5
digup“/(sy— 1)|ury2 Y)’(C) g qe_gulvpy(sv— 1) Y)»(C) ’

digup*’(sy— 1)Iu(1 —Ty1)Ty2 Y;(C)
2 deg,jupnsr- 1) Y,(C)+ max {0, o(y)} .

To prove (3.11-13), we write

Y(O=D"'(p", " —1,u,0) kzl Jip?, "= 1)gyu, v)

(3.6)

(3.7

(3.8)

(3.9
(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
(3.15)

(3.16)

(3.17)
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where

fo k=1,2,...n, areindependent monomials, of
degree w(k), in p” and s"—1,
g k=1,2,...n, arepolynomialsinuandv,
D is a product of factors of the type,
FLi=li2—(5y'“ I)ZMii_syzﬂii_mI%i (3.18)
i 4 (" — 1) M2+ 5722 +m?) '
with
L=Pup")+ULw)+ V().

We note that P,(p"), uZ; and M2, can only be non-zero for Le7(C) or Le X(C),
4 a maximal element of C contained in y, with A(C) 4 S, %(C)| S. Moreover V,(v)=0
for Le %(C)| S and V;(v)=0 for Le y(C)xS. It is then straightforward to verify the
following relations (abbreviations: Y,=Y(C), y=%(C), deg,=deg, 1)
Cle_gupy(sV— 1= digupv(sV— 1)|v):

d&gupv(sv _nY,= digupnsv— nD~ L+ mlfn k) + (_i_C_gugk} > (3.19)
deg, ¥, = deg,D™* + min (k) + deg, g, , (320

deg,pvisr -1y Y,

= min {d_esupV(SV - 1)@%5—11—) v(k)D ! + V(k) + di_gugk}

RICEYORS!
(=0 if wk)y>o(y)—1 forall k), (3.21)
deg.,,1 ¥, 2 v(k)glgi(rvl)— L {deg,t&iy'1)"“ D! + deg,g,}
(=0 if wk)y>o(y)—1 forall k), (3.22)
digupy(sy— 1)(1 - Tyl)Yy
2 min {deg,— 1) (1 807157 )D ™! +3(k)+ deg, g1} (3.23)
digupy(sy_ 1)t§§)(’;;_li‘)v(k)D“ ! g digupy(s“/— 1)D— ! s (3.24)

deg, 5511570

> Eie_gupV(sv—l)D_l—Q(V)‘l'1+V(k) if ¥[8
diguD_1 if 948, (3.25)

—1—vk\ -1
de_gupy(sy— 1)(1 _tg“(’)()-)ﬂ’- I)V( ))D

Zo(y)—v(k)+deg, D" if FFS. (3.26)

Since, by hypothesis, 7,,Y,#0, we have w(k)<o(y)—1 for some k, and (3.11-12)
follow from (3.24-25), combined with (3.21-22). Inequality (3.13) follows from
(3.26) and (3.23), comparing with (3.20). ’
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To obtain (3.14), from which (3.15) follows immediately, we simply observe
that differentiating with respect to p” and s” and setting p’=0=s" cannot lower
deg, of D' f,g;, since the relevant denominator factors have non-zero mass
terms for s'=0. This fact also permits us to use essentially the same argument
which led to (3.13) to obtain (3.16).

With the aid of Lemma 3.2, one obtains the following infrared power-counting
inequalities for Y,(C):

Lemma 3.3.For I, S, C, and {PI ye C as in Lemma 3.2,

deg, s -1y Y,(O) 2 2(y) = Ms(y)  for HO)S, (3.27)
deg, s - me(C)i —Ms(y)+1 forall yeC, (3.28)
where
Mg(y)=4 Y (no. of independent loops of i(C))
Ay
2OS

*
and = means = with the r.h.s.=0 if M(y)=0.

Lemma3.4.Let I', S, and C be as in Lemma 3.2. Let 1 be a maximal element
of C properly contained in ye Cu{I"}. Then

*
degjuprsr - 1S, T Y(C) 2 —Mg(A)+1, (3.29)
*
CEgquV(sV—l)Sy(l—‘cl)Yl(c)g _MS(A)+1 ’ (330)
deg, s - 1S, YA(O) = max {0, o(A)} — My(4) for A(C)|S, (331)

deg, sy - 1)108,(1 = 72) Yi(C) 2 max {0, o(4)} — M(4)

for XOkS, 7O)|S. (3.32)

Proof of Lemmas 3.3 and 3.4. We adopt here the same notational conventions
as in the proof of Lemma 3.2.

The proof is by mathematical induction, with the inductive hypothesis that
Lemma 3.3 holds for all maximal elements of C contained in a given ye C. We
shall show that (3.27—3.32) are valid for y. Observe that for minimal ye C,

and, for all ye C,

degupy(sy—l)lygr(y)_MS(’?) if 7“5, (334)

3
deg,[;202 — M) +1. (3.35)

For minimal y, (3.34—35) imply (3.27-28).
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We now proceed to the verification of (3.27—32), supposing that / is a maximal
element of C contained in ye C [ye Cu{I'} in the case of Lemma 3.4]. By the
inductive hypothesis and Lemma 3.2,

%
deg,,Y, 2 — My(A)+ 1. (3.36)

*
deg,(1—7,) %2 — M()+1, (337)
deg,pisr— 17 Y2 max (0, o)}~ My(3) if TS, (3.38)
deg,pris— (1 - 7)Y, 2 max {0, ()} — M) if 7S, (3:39)

We note that 7,Y, and (1 —7,)Y, may both be written in the form (3.17). Clearly
the only way that deg, of these expressions could be lowered by the S, substi-
tutions, p*—pX(p?, u,v), s*—s", is for some denominator factor (3.18) to have
M3}, =0=m},=pi and k} ¢S, kjeS. But this is not possible and hence (3.29-30)
follow from (3.36—37). Similarly, deg, - 1,Y; (but not deg, 117, Y;) could be
lowered if mj; =0= i, ki ¢S, k€S, but only if the internal parts of S,p} are not
in § (for y=TI, this means S;p*¢S). Hence (3.31-32) follow from (3.38—39).

To complete the inductive proof, we combine (3.34—35) with (3.29—32), using
the relations

Mi(y)= Ms(7)+ Z;CMSM)’ (3.40)
iy
o) =r()+ ; o(4) (3.41)
max AeC
ACy

to obtain (3.27-28).

Proof of Theorem 3.1. Let I' be a connected diagram. From Theorem 2, it is
sufficient to show that for arbitrary basis 4, ... up, ...v, of £(I'), the inequalities
(2.13—14) are satisfied for Rp,. The first of these follows from the fact that <, ful-
fills all of the criteria for a legitimate subtraction operator in the sense of Ref.
[13], with the exception of property (iv), which is not relevant to the verification
of (2.13). We now verify (2.14), using Lemmas 3.1 to 3.4.

Let C be a forest of I" which is complete with respect to S, the subspace of
spanned by u; ... u,. We wish to show

deg,,Rp(C)+4a>0. (3.42)

First of all, we have

__ R©)-m(©) it LS
dig‘“(s—l)lvlf(c)g { 0 if F(C)*S

=

Moreover, if V(y)is a reduced vertex of I'(C), we have as a consequence of (3.29—32),

digu(s—l)lvsfnyy(C) ~
2 max {0, o(y)} — Ms(y) if I'(O]S, (3:44)

(1C_g,,(s_ l)lv‘s‘l"vKv(C)g digulv(s— I)SI"TVY;(C)
* =
> Mgy +1 if T(OS. (3.45)

(3.43)
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Combining (3.43—45) and using
ml(O)+ Y M) if F(O]S

max yeC =
taz S My i FOss, (3.46)

max yeC

with equality only if the right-hand side does not vanish, we obtain
degquRFs(C)+4a> degu(s l)lerE(C)+4a

=nF(0) it F(OlS
>0 if T(O)S. (3:47)
Since by hypothesis r(F (C) is positive, inequality (3.42), and hence (2.14) are

established.
We now turn to our second main convergence theorem.

Theorem 3.2. Let I' be a 1 PI diagram, with augmented diagram I’ and subtracted
integrand Ry, given (2.7). Suppose that for every set {y} of mutually disjoint, non-
trivial 1PI subgraphs of I such that I'/{y} contains no g-lines, the inequality

H(C/ )+ Y max {0, ()} >0 (3.48)

is satisfied. Then the integral
[ dkR;(p. k,s), 0<s<l1 (3.49)
converges absolutely for arbitrary ¢>0 and nonexceptional p (Euclidean sense).
Proof. We must verify the convergence conditions of Theorem 2. The ultra-
violet criterion, (2.13), follows immediately from the theorem of Ref. [13]. To

check (2.14), suppose that u; ...u, v, ...v,,_, are linearly independent elements of
L(I') with d(u, v)/d(k) 0. By Lemma 3.1, it will be sufficient to show

deg,,Rr(C)+4a>0 (3.50)

for arbitrary forest C which is complete with respect to S, the space of linear
combinations of u; ...t py... Py

We first observe that Lemmas 3.2—3.4 remain valid for fixed external momenta.
The only modification in the proofs is the addition of a term linear homogeneous
in p (distinguished from p’!) in the expression for [} in (3.18). Like the possibly
non-zero mass m7;, such a term does not affect the infrared power-counting
estimates. In particular,

dog it V()2 degprir - 1yt H(OZ — MyI)+1. (351)
Since

daz=My(T)

a>0,
relation (3.51) implies

deg,,7r Y(C)+4a>0. (3.52)

It remains to prove

deg,, Y(C)+4a>0. (3.53)
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It is easy to see that if I(C)||S, the lines (if any) whose momenta are linear
combinations of u, ...u, are those of a reduced diagram I'/{y} containing no
g-lines and, moreover, m(I'/{y}) is the number of such momenta which are linearly
independent (here is where the non-exceptionality of the external momenta is
important). Note that I'/{y} is in fact I' reduced by a connected subgraph which
includes all external vertices. From here on the proof of (3.53) coincides with
that of (3.42).

IV. Normal Products

The convergence theorems of the preceding section can be applied to define
Green functions of normal products N$[Q‘”(x)] and differential vertex opera-
tions (integrated normal products) 4% [Q‘O)] [ dxNS[Q¥(x)], where Q¥ is a
formal product of free fields ¢{?, thelr derivatives and a non-negative integer
power of s or (s—1). It is assumed that the fields ¢!® have momentum-space
two-point functions 4,(p, s) of the type (2.1), with upper and lower degrees related
to the naive UV and IR dimensions of the ¢!* by

C_le_—gpsAlj=Jl+Jj——4

4.1
deg,-ndy=d;+d;—4,
where d;=dim ¢{*, d;= dim ¢{”, so that in particular
—l&E'A~+4
( gps ii ) (42)

%(degp(s I)A il i 4)

The positivity of d; follows from the requirement that 4;; be well defined as a
distribution. For reasons which will become clear shortly, we restrict ourselves
to ¢! such that d;>d,. In the definition of N¢[Q'?(x)], 6 and ¢ are restricted by

5= dim Q¥ + non-negative integer

0= dim Q'” — non-negative integer 4.3)
0<p=9o.
We define, for ¢>0,
n+1 conn
<0|T I—[ N§: [09(x)] H A"J[M(O)]|O> 4.4)
i=1

by the generalized Wick expansion (expansion in Feynman diagrams, with
external vertices corresponding to NZ[Q!”(x,)] and internal vertices corre-
sponding to 4;[M;], supplemented by the forest formula (2.7), with subtraction
degrees

oy)=4-— Zy dg+ Y 0=+ Y™ (-4
V.ey V,ey (45)
oy)=4- Zydﬁ Ze’“ @—4+ Y™ (o;~

Viey V,ey
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where

sz sum over external lines of y
E

Y e/int— sum over external/internal vertices of y.
Viey

Note that g(y) < (y).
The existence theorem for Green functions (4.4) is the following:

Theorem 4. If 0,24, j=1,2,...r, then the connected Green function (4.4) exists
as a tempered distribution in x; ... x,, and, for non-exceptional momenta ( Euclidean
sense), the vertex function

n - ¥ prop

(017 [] N51Gp1Ng:2 1108 O T] aLm1i0) 6

i=1 j=1 £

(the tilde indicates Fourier transformation) exists as a complex-valued function.

Proof. From Theorems 3.1 and 3.2 it is sufficient to verify that for every set
{y} of disjoint, non-trivial 1PI subdiagrams of a connected diagram, the inequality

rT/{y})+ Y, max {0, o()}>0 4.7)

is satisfied. )
From (2.3), we have, setting A=1/{y},

")+ {0, e0)}i= Y DL+4)+ ) (Dy—9)

LeA 56?
+ Y (max{0,0(y)}—4) (4.8)
Voyév
But
Y (DL+4)= Z(nkk+% > nkz)(pk+4)+4nq
LeA k I+k
= Z’(Z vk(V)+4vq(V)), 4.9)
Ved\ k

where the last summation excludes V=1V, or V'="V(y,) where V,ey,, and

nu = no. of 4, lines of A
n,= no. of g-lines of A
v(V)=no. of 4, lines with kend at V
Dy=degys- A
Moreover, from (4.5) and
oy—4=0 for all internal Vel , (4.10)
we obtain, for all reduced vertices V(p)e A, V¢, with v (V(y))=0,

oy)—4+ Ek: vV (7))d,20. (4.11)
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Substituting (4.9) and (4.11) into (4.8), we arrive at the relation
r(A)+ Y, max {0, o(y)}
Y

z )

2 ViV di+ Dy +4(v,(V) — 1)}

Ved Lk+gq

Vel

+ Y| X Vo)t max {0, o()} +4(v(V(2) — 1)
V(y)ed k¥g

vg(V'(y))> 0

+ ) ka(V)dk]- 4.12)
V=V, Llk¥gq

orV =V (yo)
Voevo

If A contains g-lines, one of the first two summations in (4.12) must be positive
[recall (4.10) and d,,>0]. If A has no g-lines, the last summation is positive.
This completes our proof of positivity of #(4)+ ) max {0, ¢, y)}, and hence of

the theorem. If, as is often the case, all elementar)y/ fields have d;,>1, one can
easily check that the hypothesis of the theorem may be relaxed slightly to include
the possibility of one ¢; equal to three.

We observe, finally, that Theorem 4 allows one to define Green functions in
a wide class of interacting theories with both massive and massless particles:

n+1 conn
<T [T N&LQi(x)] H 45 [M ]> (6,24)

n+1 conn
<0|T H Ni: [049(x))] H 41 M}O)] expidi[Z ?f),]|0> 4.13)

where Q; and M are formal products of the renormalized interacting fields (and
factors of s or (s— 1)) with corresponding free-field products Q! and M{”, and
P, is a linear combination of free-field products (including s or (s— 1) factors)

(9

with dim £4, dim =4. To every order in perturbation theory, the right-hand side
of (4.12) is just a linear combination of terms of the form (4.4). Because of the
assignment g,, =4 for each interaction vertex, each of these terms is well defined
as a tempered distribution.
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