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Abstract. It is shown that the ε ^ 0 limits of renormalized Feynman integrals
exist and define Lorentz invariant tempered distributions in the external
momenta. The proof applies to the case where some or all particle masses
vanish.

Within the Bogoliubov-Parsiuk-Hepp-Zimmermann (BPHZ) framework of re-
normalized perturbation theory [1-3], the connected Green functions of ele-
mentary and composite fields are expressed as sums of contributions from Feyn-
man diagrams, each of which corresponds to a subtracted momentum-space
integral of the form

JJ[p)= J dkRε(p,k) (1)
JR4Λ4"

P = (PI>P2>' ->PN):= independent external momenta (pteIR4), /c = (fe1,fe2,...5fcJV) =
independent internal (loop) momenta (fe^elR4).

With Zimmermann's subtraction prescription [3], if all mass parameters are
positive, the integral (1) converges absolutely for all ε > 0 ; moreover, as ε tends
to zero, JE(p) approaches, in the sense of tempered distributions, a Lorentz in-
variant limit [4]. Zimmermann's proof of the distributional limit was based on
an earlier theorem of Hepp [2]. There, also, the non-vanishing of all masses was
a crucial hypothesis.

In Ref. [5], one of us (J.H.L.) introduces a modified subtraction scheme such
that the integral

Tε{φ)= j j dpdkφ(p)Rε(p,k) (2)

converges absolutely for arbitrary ε > 0 and 0e^(IR 4 i v ), provided that a certain
infrared power-counting criterion is fulfilled. There is no requirement that any of
the masses of the unsubtracted integrand be positive (there is, however, at least
one non-zero normalization mass appearing in subtractions terms). In the present
article, we use the absolute convergence of (2) to show that Tε approaches, when ε
tends to zero, a Lorentz invariant limit as a tempered distribution. Again, some
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of the masses may vanish. Our proof shares some of the features of Hepp's proof
of the purely massive case in [2, 6], and our technique of integration by parts is
similar to that of [7].

Our main theorem (Theorem 1 below), combined with the subtraction pre-
scriptions of [5, 8] and the absolute convergence theorems of [5, 9,10], allow one
to construct, within the BPHZ framework, the perturbative Green functions of
a wide class of models involving zero-mass particles. This can now be done with
the same level of mathematical precision attained by Blanchard and Seneor [11]
using the method of Epstein and Glaser [12]. Normal product techniques based
on [5, 8] have already proven extremely useful in deriving Ward identities and
other structural relations in a number of theories with zero-mass 'particles
[8,12-15].

We begin with a (presumably subtracted) momentum-space Feynman inte-
grand

P is a polynomial,

N M

ii=ΣyijPj+Σβijkj (3)

a linear form in the momenta, and the ε dependence in the denominators is
included via Zimmermann's prescription [3]:

with μf^O. We assume that rankβ = M.
Our main result is

Theorem 1. Suppose that, for ε>0, Rε defines an element in ^'(IR4Λr) via an
integral (2) which is absolutely convergent for every φe 5^(IR4iV). Then

To= lim Tε
ε->0 +

exists in ^ '(IR 4^); 7̂  is a distribution of order at most n — 2M—[r/2], where r is
the degree of P in k. If P(p, k, 0) is a Lorentz covariant polynomial, then To is a
distribution of the same Lorentz covariance.

The first step in proving Theorem 1 is to introduce Feynman parameters, so
that (2) becomes

TJLφ) = (n - 1)! j dpdkφ(p)P(p, K ε) f da \ £ α,(7? - μ (4)

where ®={α|α f^O, Xα f =l}. Zimmermann [3] has shown that (4) is absolutely
convergent; his proof applies to the case considered here in which some μt may
vanish. By Fubini's theorem, we may then interchange the α and k integrations.
The k integrations are evaluated (for almost every α) by completing the square
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and diagonalizing the resulting quadratic form in the denominator (it is here we
need rank/? = M). We find

where r' is the degree of P in k, and

I\ = J dp I dαΛΓ(α, p, ε)φip)F\{*> PY* (5)

Here JV(α, p, ε) is a polynomial in p and ε, rational in α;

ί = «-2M-[r/2];

*>,?) = Σ PMuPj - ί Σ Σ fiAijP>j
i , j = l \i,j=ί μ=l

= p°Ap°-(pAp + M2)(ί-iε);

and 1̂ is an N x iV quadratic form, rational in α, continuous in ̂ , and positive
definite when all αf are positive. We note that, if P(p, fc, 0) is Lorentz covariant, so
is JV(α, p, 0). Thus Theorem 1 will follow from

Theorem 2. // the integral (5) is absolutely convergent for all ε > 0 and all

Io= lim I\
ε->0 +

exists in y(]R 4 N ); 70 w a distribution of order at most t. If N{p,k,0) is Lorentz
covariant, so is Io.

Theorem 2 can be expected to have independent application to α-space
renormalization methods.

Our proof of the Lorentz covariance is similar to that of Zimmermann [3] :
we show that 70 is also the limit of distributions which are manifestly covariant.
Thus define

F2

ε=pAp-M2

I2

B(φ) = $ dp J dαN(α, p, B)φ(p)F2

ε(a, pΓ (6)

F2 is Lorentz invariant. We will write Fι

ε = pΆp + iεQι (z = l, 2), where

i=tpAp + M2 i=ί

^ \ί i = 2'

Lemma 1. The integral (6) is absolutely convergent for all ε > 0 and all

Proof. Since A is continuous on the compact set Q),
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for some constant K; we may take K^ 1. Then

Since

is in ^(IR4iV), the integrand for I2(φ) is dominated by the absolute value of the
integrand for ll(ψ).

Lemma 2. Let N(a, p,ε)= ]£ Nra(oc, p)ε\ where Nra is homogeneous of degree

Jj β e = J dp j daNJa, p)φ(p)Fi(a, p ) " f , (7)

f = l , 2. Γ/zerc (7) is absolutely convergent.

Proof For fixed λ>0, we make the variable charge (p% Pj) = (λq^qι) in (5),
to obtain

/< = J Jαrfq X Λ" + VΛUα, ί)Ψ(9)F.'(«, Pίί))"', (8)

where φ(q) = φ(p) defines φe5^'(IR4]v). Note that for λ, ε, and δ in a fixed compact
subset of R+ = {x\x>0}, there is a constant K with

for all xelR. Thus

IFKα, p(q))/Fl(a, q)\ = \(λD- 1 + iε)/(D- 1 + ίδ)\ <K (9)

for almost every α, p, where

D(oc, p) = p°Λp°/(pAp + M 2 ) . (10)

Since (8) is absolutely convergent, (9) implies that

j dadq Σ λN + aεrNJa, q)φ{q)F\^ * Γ ' (H)

is absolutely convergent for fixed (5>0 and λ,ε in an open set; the integral J}aδ

defining the coefficient of λN+aεr in (11) is therefore also absolutely convergent.
The convergence of J2

aε now follows from Lemma 1.

Lemma 3. If the integral (7) defining J\.aε is absolutely convergent for all ε > 0,
then

Jlraθ(Φ)= l i m Jlraε(Φ)
ε^0 +

exists and defines a tempered distribution of order at most t; moreover, Jlao
 = ^mo-
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We will prove this lemma shortly, but first note that it implies our main result.

Proof of Theorem 2.

Io= lim
ε->0 +

= lim μadpΣNraε
rφ(p)Fl(a,p)-'

£-•0+

= lim \ dotdpN(oc, p,0)φ(p)Fl((x,

= glim j dotdpN(a, p, ϋ)φ{p)F2M
g

These limits exist as distributions of order at most t by Lemma 3. Finally, if
N(a, p, 0) is Lorentz covariant, the last equality represents IQ as a limit of dis-
tributions with the same covariance.

Proof of Lemma 3. Let χ(x) be a C00 function of xeIR with 0:gχ(x)^l and

[0, if x < l / 3 ,

[l, if -x>2/3.

We will write Jι

raε = Kι

ε + Lι

ε9 where

Kε = j dadpNra(a,p)φ(p)Fε(ot,p)~t(l—χ(D)), (12)

Lε = J d(xdpNra(a, p)φ(p)Fε{a, p)~fχ(D) (13)

here D = D(a,p) is given by (10). Now for (l-χ(D))Φθ, | D - l | > l / 3 , and

Hence

This inequality and the convergence of the integral (7) defining Jlaε imply that
the integral

Ko = J J dadpNJa, p)φ(p) \pAp-M2Π1

is absolutely convergent; the Lebesgue dominated convergence theorem and the
inequality

imply that

i K0, ΐ = l , 2 .i 0
ε->0

To study Lΐ we write

(14)
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If we consider (13) as an iterated integral we may insert (14) and integrate by
parts with respect to p°, to find

L{= - 2-\t- lyr'ldadpldp0 logFfop)
γ 1 (15)

Σ d/dpf p°/(p°Ap^ φ(p)Nra(p, a)χ(Dή .

The integration by parts is justified, and hence (15) converges as an iterated in-
tegral, since for almost every α and p, F\(a, p) and χ(D) are C00 functions of p°,
and the fast decrease of φ enables us to discard boundary terms.

We wish to show that (15) is in fact absolutely convergent. The quantity in
brackets has the form

where φbe<9?(lR4'N) and χb is a bounded function with

(it is here that we use the homogeneity of Nra in p°). Since

is bounded on H, the absolute convergence of (13) for any φe^'(IR 4 ] V) implies that

is absolutely convergent. We will show in the Appendix (Corollary 1) that this
implies that

j dadpNJp°Apor^bxb \og\pΛp-M2\ (17)

and

ldadpNra{p0Ap0)-^ah\og\pAp + M2\ (18)

are absolutely convergent. Now we use the inequality,valid for c>0 and do>d>0,

which implies

whenever ε ^ β 0 . Thus (15) is dominated by a fixed linear combination of (16)—(18);
it is absolutely convergent, and the Lebesque dominated convergence theorem
implies that

ε->0

for ί = l , 2. Finally, note that φb is obtained from φ by at most t differentiations,
so the limiting distribution is at order at most t.
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Appendix

We want to prove the statement made earlier that the addition of a logarithm
to a convergent integral does not destroy convergence. We use the method of
resolution of singularities, and follow the notation and ideas of [16].

Lemma 4. Let X be a real analytic n-manifold with f,g,h1,...hk real analytic
functions on X and ω an analytic n-form on X. Let

G={xeX\hi(x)^0 for all i}

and suppose that G is compact. Then if

lΓιω (19)
G

is absolutely convergent, so is

j / " 1 logMω.
G

Proof Because G is compact it suffices to prove integrability in the neighbor-
hood of every point xoeG. Let tί9...tn be local coordinates at x0, so that

co = w(t)dtί A ... /\dtn

in a neighborhood at x, with w real analytic. We apply the Resolution Theorem
[16] to resolve the set A= {£1/(00(0^0,11^(0 = 0}; this produces a neighbor-
hood U of x0, a real analytic manifold U, and a proper analytic map φ:U-+U
such that φ:{U — Ά)-+U — A is a homeomorphism, with A = φ~1(A). Moreover,
if/ = /oφ, etc., then for any xeϋ and yl9...yn local coordinates centered at Jc in
a suitable neighborhood V of x, each of / g, hb and vv have the form

f[ή> (20)

with αφO in V. Finally,

φ*(dt1 Λ ... Λ dtn) = r{y)dy1 A ... Λ dyn

in K with r(y) real analytic; r(y) cannot vanish for yφAnV. Since φ extends to
a map φc: Uc-+Uc of the complexifications, r(y) is complex analytic and vanishes

n

only on (J {̂ - = 0} in a complex neighborhood of x; hence r(y) also has the

form (20)!"'
Now

UnG Unφ-HG)

The set φ~ι(G)r\γ is a union of certain octants Gt of V, i.e., subsets in which each
yt has a fixed sign. Thus (19) becomes locally a sum of terms

fy1A...AdyH, (21)
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with a(y) Φ 0; the absolute convergence of (19) and hence (21) implies^ ^ 0, i = 1,...n.
n

Since log|#| = log|α'(y)| + £ /c£log|> £̂| from (20), the inclusion of a factor \og\g\
i = ι

in (21) does not affect convergence.

Corollary 1. //

\da j dpR(a,p)φ(p)χH(a,p) (22)

converges absolutely for every φe ^(IR4^), where R is rational and χH is the charac-
teristic function of H= {(α,p)\D(a, p)>a} for D rational, then so does

Jrfα j φΛ(α,p)log|S(α,p)|0(p)χfl(α,p), (23)

where S(oc, p) is rational

Proof Let

It is an easy exercise to see that (22) will converge absolutely if φ(p) is replaced
by B(p)~r for some sufficiently large r; moreover, it suffices to prove the con-
vergence of (23) with this same replacement.

We define A\ = { a e R I I | £ a i = l } ,

N 3

V V (_ŷ )2 + y2 =
i = l μ=0

and X = X1 x l 2 . There is an injection λ:JR4N-+X2 given by

and an analytic (n + 4JV)-form ώ on X with

ίία1 Λ ...dα,,-! Λ φ J Λ ... Λ ^ ,

for some 5. Then (22) becomes

(24)

where GcX, G the closure of {(α,p)|α;Ξ>0, i=l,...n, D(α, p)>l/3}.
We can rewrite (24) in the form (19) of Lemma 5 as follows. Let

= R1(a, p)/R2(a, p)

= Dι(a,p)/D2(oί,p)

= Sί{a,p)/S2(a,p),
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where Ri9 Dt, and St are polynomials; let k denote the maximal degree in p of

these polynomials. If we define

ω = R1(<x,p)B(p)-kώ,

K+M P) = [βi(«, P) ~ aD2(

then ω, /, and hί,...hn + 2

 a r e analytic on X, (24) becomes

G

and G = {(α, p) | ftf(α, p) ̂  0, i = 1, 2,... n + 1}. Finally, we note

log|S(α, p)| = loglSiία, p)5(p)-fe| - log|52(α, p)β(pΓ<Ί

and apply Lemma 5, with gf = ίS15~ fc and g = S2B~k in turn, to deduce the absolute

convergence of (23).
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