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On Lorentz Invariant Distributions
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Abstract. n-point Lorentz invariant tempered distributions with the supports
for one-point only in V% are described.

1. Introduction

Lorentz invariant one-point distributions were extensively investigated by
P.-D. Methée [1-2]. n-point Lorentz invariant tempered distributions with
supports for one-point only in V* were studied by K. Hepp [3]. In this case the
problem of the description of Lorentz invariant distributions is equivalent to the
description of the rotation invariant tempered distributions of n three-vectors.
For n=1, 2 this problem was solved [3]. Rotation invariant distributions and the
Lorentz invariant distributions were represented as distributions on the space of
the SO(3)-invariants and conformably on the space of the L]-invariants. In
trying to generalize Hepp’s results to n>2 one encounters the difficulty that the
space of the L] -invariants (and the SO(3)-invariants) is an algebraic variety with
singularities, on which no reasonable spaces of testing functions have yet been
defined [3].

In present paper SO(3)-harmonic analysis on the space S(R®) is studied.
Taking advantage of this analysis it is possible to describe the rotation invariant
tempered distributions. As stated above the Lorentz invariant tempered distribu-
tions with supports in V% x R*" were connected with the rotation invariant
distributions. Hence we obtain the description of the Lorentz invariant distribu-
tions belonging to the space S'(V* x R*").

The plan of this paper is as follows: Section 2 contains SO(3)-harmonic
analysis on S'(R®); in Section 3 rotation invariant tempered distributions were
studied. The Lorentz invariant distributions belonging to S'(V# x R*") are under
consideration in Section 4.
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2. Spherical Harmonics

We shall consider first the spherical harmonics Y,,(0, @), i.e. the eigenvectors of
the spherical part of the three-dimensional Lapalace operator. The spherical
harmonics Y,, and the associated Legendre functions P} are related by ([4],
p. 24).

1/2

21+ 1)(1—m)!

amllm)! PP(cosB) expime . (2.1)

Y, (6. <p)=(—1)m[

We define the harmonic polynomial Y,,(x), xe R® as
YuX)=1"Y,,(0, 9),

where r, @, ¢ are the spherical coordinates of x.
With the distribution f(x)e S'(R®) and the harmonic polynomial Y,,(x) we
relate the linear functional f),,(f) on the space S(R.)

(funl®)s @) =(f (%), Yy ()p(|xI?)) - 22

The function Y,,(x)¢(|x|*)e S(R?), and the relation (2.2) is well defined. We call
[fim(t) thé spherical harmonic of the distribution f(x).Itisevidentthat £, (t)e S'(R ;).
For further purposes we need to know how the continuity of f,(f) depends on /.
Let us estimate the seminorm || Y,,,(x)@(x[*)|,. || l..x is @ usual seminorm on the
space S(R?)

||¢(x)||n,k=sgp(1 +[x12Y1 D (%)
where Z*= d*/ax* oxkz oxcke,

Recursion relations for the associated Legendre functions P}'(x) ([4], pp. 23—24)
are combined for finding the relations for derivatives of Y, (x)o(/x|?)

(9/0x , +10/0x3) Yy(x)(1X1%)

= =200, Yy 1, 1 () F 01— 1 Vi s 10 D)

0f ox 3(Yx)p(1x[%)) 2.3)
=281 1 Yir 1)@ (X12) 4 Brn Vi 1 X)D1()

(9fdx y =10/ 0x3) Yyx)p(|X]?)

=204, - Y11, m-~ 1) (X2 =0 - 1 -1 Vi 1= 1(X) Do)

where the coefficients

Oy =L +m+ 1)1 +m+2)/Q21 + 1)1 +3)]/2
B =L —m)(I+m)/2l— 1)1+ 1)]*7?
@y(x) =21+ 1)o(x1?) + 2|x[>¢'(1x]?) .

Combining the equations (2.3) and the inequality
1Y) <21+ 1)1 2
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we obtain the estimate

1Y i) @UX1 ) .k
SCQI+ 1)kt g;eﬁ||<pnn+.kffz,|k. (2.4)

where constant C depends on n and k, and the seminorm

l9(@) 1 x=sup 7 (L4 1 lp" (o)
(here (I— k). =max(I—k, 0)) is a usual seminorm on the space S(R.).

The application of the inequality (2.4) to the distribution f(x) gives the
continuity of the spherical harmonics f),(t).

Let S(R, xSO(3)) be the space of the sequences {¢,, (1)} (=0,1,...;m=
—1,..., ] of the infinitely differentiable functions ¢,,() in R, such that

max (20 17 @1, () g < 20 (2.5)

54

for any p, n, ¢, k. S(R, x 86(3)) is locally convex topological vector space with the
topology defined by the seminorms that are finite according to (2.5). The inequality
(24) gives us {f,,(1)}eS (R, x SO(3)).

Let the spherical harmonics f,, be given. We shall consider the problem of the
distribution f(x) reconstruction.

Let the function g(x)e S(R®). We rewrite it in spherical coordinates: g(r,0, )=
g(r sin @ cos @, r sin@sin @, r cos @). We define the function §,,(r) as follows:

Gumlr) = sz dQY,(Qg(r, Q). (2.6)

It is easy to see that §,,(r)e S(R') for any I, m. (We allow a negative r.) We shall
study the properties of §,,(r).

If follows from (2.6) that §,,(0)=0 for [>0. Let us introduce the differential
operators

d; =(8m/3) %(8/ox; —i0/dx,)
dy=(4m/3)*%0/0x4
d_,=—(8n/3)1/%(0/x, +i0/0x,) .
We may use the spherical harmonics Y;,, for computing the derivative of g(r, Q)
1
(dg/ar)ir, Q=3 Y (Qdug(r, Q).
m=-1
In virtue of (2.6) this implies
_ 1 k
(@,d40)= [ 42T (@[ T V@M, | 0.
S2 n=-—1

Thus the problem of computing §{¥(0) is reduced to that of computing the integrals
over the product of the spherical harmonics Y,,(2). These integrals equal zero, if
the resultant angular momentum of the addition of the angular momentum / and k
angular momenta 1 isn’t zero [4].
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Hence

(d*G1/dr0)=0  k=0,...,1—1. (2.7
Now we show that function §,,(r) has the definite parity. On taking into account
the relation (2.6) and

g(=1,0,9)=g(r,n—0, ¢ +n)

Y,(n—0,9—n)=(-1)'Y,,(6, ¢)
we find

Gin=1)=(=1)Gp(1). (2.8)

In view of (2.7) and (2.8) the even function r~'g,,(r)e S(R"). Thus there exists the
function g,,(t)e S(R ,) such that

Junlr)=7""Gyl1)

(see, for example, [5]). We call g,,() the spherical harmonic of the function g(x).
We shall prove that for g(x)e S(R®) the sequence {g,,(t)}e S(R, x SO(3)). We
must show that any seminorm (2.5) is finite on {g,,(t)}. First we consider the factor
(21+1)? in (2.5). The spherical harmonic Y,,, is the eigen function of the spherical
part A, of the Laplace operator 4 with the eigenvalue —I(I+1) ([4], p. 21). Hence

Q2I+1)Pg,, (=17 | dQY,,(Q)1—440)9(t"?, Q). (2.9)
S2
However the function (1—44,)7g(r, Q) is the function

Gx) =227 "4

1 3 2
(54— Y xié/éx,) —|x|?4
i=1

in spherical coordinates. It is clear that g, (x)e S(R?). Thus we have
21+ 1*2g1,,) = G pyunl®) - (2.10)
Let us estimate now the seminorm |g,,,[,% , First note that
(d* f [dtR)(E) = (tdfdt — (n— D))"~ (d L f /de*~ 1)(e) .
This implies for 1=2qg+k
”glm(t)”nflq),k
S CQI+ 1) max [ 724G, (1) g5 - (2.11)
s=q

We wrote the result in terms of the coordinate r, r*=t¢. The seminorm || ||, , is
usual seminorm on the space S(R')

@)1, =sup (L4700 .
Similarly for I<2q+k

“glm(t)“n(,2,k
=021 max |(r” td)dryt T2 g () s g.s (2.12)

=30
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Using (2.7), (2.11) and the formula for the Taylor remainder terms we have for
1Z22q+k

“glm(t)“ng]),k.g_ C(‘?’l + 1)q |s|r§n§iqx+ X ”g(x) “n+q,s (213)

where constant C depends on g and k only. It is a simple matter to extend this
estimate to [<2q-+k by using (2.8) and (2.12). In order to prove {g,,(!)}e S(R, x
SO(3)) it is sufficient now to use (2.10) and the estimate (2.13) for the function
9ip+g(X). Whence

max (2l + 1)) gy (6) 9«
<C max k”g(p+q)(x)”n+q,s (214)

|s|<3q+

and consequently {g,,(t)}e S(R . x SO(3)). In particular this implies that for the
sequence {f,,(t)} of the spherical harmonics of the distribution f(x)eS'(R3) the
expansion

IZ: (flm’ glm)

is convergent. We prove it converge to (f(x), g(x)). Note that the series

IZ Yin(X)g 1l X]%) (2.15)

absolutely converge to g(x) at every point [6]. In view of (2.4) and (2.14) it con-
verges to g(x) in the topology of S(R?). By definition (2.2) of the spherical harmonic
fu(t) of the distribution f(x) we have

(f(x) g(x))= IZ (Sim(®): Gim(2)) - (2.16)

Summing up:

Theorem 1.The relation

(f(x), g(x)) = IZ (funlt) 712 sz dQY,(2)g(t*?, Q) (2.17)

implies the isomorphism between two topological spaces: S'(R®) and S'(R ;. x SO(3)).

In Section 3 we consider the rotation invariant distributions from the space
S'(R3".

3. Rotation Invariant Distributions

Let the distribution f(xy, ..., x,)e S (R*). Its spherical harmonics f .. (1
..., t,) are defined in the similar way to the spherical harmonics of the distribution
f(x)eS'(R?). The sequence {f},,,. ., Delongs to the space S'((R. x SO(3))").
The proof of this is exactly analogous and can be omitted. The distribution f and
its spherical harmonics are related by

(f’ (p)=IZ (flm’ (plm) (31)
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where @, 1wt ...» t,) 18 n-dimensional spherical harmonics of the function
o(xy, ..., x,)e S(R®")

P=tir 7 | d"QY, Q). Y, (Q)p . (3.2)

S2xn

Let us study how the spherical harmonics of the distribution f vary under the
rotation ue SO(3). Applying (3.1) for the function ¢,=@(ux;, ..., ux,) we get

(fs )= Z Dlg;rzn(u)”-D}cl:an(u)(flm9 P (3.3)

I,m,k

where the matrice D{)(u) represents the rotation u in the (2/+ 1)-dimensional
irreducible representation of the group SO(3). Unitary matrice D{)(u) continuously
depends on u. This implies that the series (3.3) is integrable with respect to du,
where du is the invariant normalized Haar measure of SO(3). In virtue of (3.3) we
get for the rotation invariant distribution f(x, ..., X,)

(f,0)= Y (fiwou) | auD{s w)...D{m (). (34

I,m,k SO(3)

Thus the problem of the description any rotation invariant tempered distribu-
tion is reduced to that of computing the integral over the product of n D’s. In
order to compute this integral we note that the product of two D’s may be expressed
in terms of one D function by using the Clebsh-Gordan -coefficients
(Iymylym,|l 1,jm) ([4], (4.3.1)) and the integral over the product of three D’s equals
the product of two 3 —j symbols of Wigner ([4], (4.6.2))

L L L
m1 my mgy .

Then
[ duD{) (u)...D{ (u)

knn

SO(3) (3 5)

(b l,,) (ll...l,,>
;(mbﬂmn Jleedn-3 kl"'kn Jtedn-3

where the generalized Wigner’s symbol!

(11 l,,)
my...m, Jleejn-3

(3.6)
= Z (llm112m2|lllzj1p1)...<
I3

jn—3 ln—l ln)

Dn—3 My_1 M,

Let us consider the properties of the generalized Wigner’s symbols. The
properties of the Clebsh-Gordan coefficients may be used to obtain the invariance
property and the ortogonal property of the generalized Wigner’s symbols stating
from the definition (3.6).

1 These generalized Wigner’s symbols differ in factors only from those introduced in [7].
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We have
I ... 1 .1
D4 (u)... D, (u ( ! ") =( ' n) 67
; 1k1( ) "k"( ) klkn] ml...mnj

Z(g.“g>(h.”g)
my...m,)\my...my);

=0t 0 il Oy L1 Ju=3)

where 8(l;...1L,j;...j,—3)=1if the natural numbers I, ..., L;; j;, ..., j,— 3 satisfy the
polygonal condition, and is zero otherwise. The polygonal condition for [, ..., [;
Jis---sju—sz 18 as follows: one can construct the polygon such that [, ..., [, cor-
respond to the lengths of sides and j,,...,j,_3 correspond to the lengths of the
diagonals which get going at the vertex where sides [, and [, intersect. By P, we
denote the set of I, ...,1,; ji, ..., J,— 3 satisfying the polygonal condition.

The invariance property (3.7) and the ortogonal property (3.8) of the generalized
Wigner’s symbols are analogous to those of the 3—j symbols of Wigner ([4],
(4.3.3), (3.7.8)). In view of (3.8) the generalized Wigner’s symbol

(ll ...l,,)
ml...m,, Jiejn-3

equals zero if (14, ..., L3 j1s oo osju—3) & P

Let us return now to the rotation invariant distributions. Let p=(l,, ..., [,;
J1s -5 Ju—3)€ P,. We define the invariant harmonic of the distribution f(x,, ..., x,)€
S/(R3n) by

(3.8)

L. 1,
fp_%(m1...mn)jl...j,._3flm(t1’ e (3:9)
where f;,,,, 1., are the spherical harmonics of f.
Similarly for e S(R>")
Lo )
Q,= " I (PR 3.10
P %(ml"'mnjx N 3901 1 ) (3.10)
In virtue of (3.5) the relation (3.4) implies
(fx), 0(x)=Y (f, ¢, (3.11)
PEPn

It follows from the invariance property (3.7) that any term in the sum (3.11) is a
rotation invariant distribution from S'(R").

Let us express the invariant harmonics f, and ¢, in terms of f and ¢. We
relate p=(l;, ..., 1,;j1 ..o ju_3)€ P, to the invariant spherical harmonic

Y, = z(
It corresponds to the invariant polynomial

Yp(xl, ey xn)=rlll ...VL” Yp(Ql’ T Qn) .

) Yllml( 1) Ylnmn(Qn) .
My j

m..
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By definition of the spherical harmonics of f we get

(f@ @)= (f (X1 s X, V(X 1o X) P12 [%,]2) (3.12)
for every We S(R",).

Similarly

@ =tyhr e [ d"QY(Q)go(t”2 Q.. L1120, (3.13)

Let S(R", P,) be the space of the sequences (Y o=y s bisjis s u3)EP)
of the infinitely differentiable functions ¥ (t;, ...,tn) in R’; such that for any
k,m,q,s.

maX(Z y l+1)k ¥ ()], @) < 00 (3.14)

pePy

i=1

where the seminorm || ¥(¢)|],,?), equals

&)

sllpt‘l“”s’”zz,‘}f"“s)*/z(l+ Y t,.) |29 (1)) .
R% i=1

S(R™ P,) is locally convex topological vector space with the topology defined by
the seminorms that are finite according to (3.14).

It is easy to see from the ortogonal property (3.8) that a modulus of any
generalized Wigner’s symbol is less than one. This implies {¢,}e S(R". P,) and
{fp1es (R".P,) in virtue of (3.10) and (3.9). Inversely any sequence { f,1eS(R.P,)
defines a rotation invariant distribution from S'(R*") by (3.11). More precisely
we have

Theorem 2. The relation

(@)= % (fpti2og > [ &'QY,(Q)) (3.11)
pePy S2xn
implies the topological isomorphism between the space of SO(3)-invariant tempered
distributions from S'(R*") and the space S'(R" P,).

For n=1 the set P, is one point /=0 (the only connected polygon). Thus the
Theorem 2 coincides in this case with the well-known theorem on rotation
invariant distributions from S'(R?%) [5].

Note that a rotation invariant polynomial Y,(x;, ..., x,) may be represented
asa polynomial of the scalar products (x;, x;) [8]. Thus the sequence of the invariant
harmonics {f,} defined by (3.12) is probably a way to define a distribution on the
variety of the SO(3)-invariants.

4. Lorentz Invariant Distributions

In this section we shall consider the Lorentz invariant tempered distributions
with the supports in V* x R*", where V* = {plpog]/lpI2+u2}.
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Let R be the interval p*<t<co. K. Hepp proved that the subspace of L.-
invariant distributions from S'(V4 x R*") is topologically isomorphic to the
subspace of the distributions from §'(R%” x R" x R*®") which are SO(3)-invariant
in the last variables [3]. We shall describe this isomorphism.

For any yeV, let L(y) be the Lorentz transformation corresponding to the
A(y)e SL(2, C) (o;: Pauli matrices)

AW)= 120 V20 1)+ 901720 Y2 +yo)ag + e (4.1)
It is convenient to define S(V* x R*") as the quotient space of S(V'}xR*")

(0<v<u) by the subspace of those functions which are zero on V* x R*". Any
function @eS(VY x R*") are related to the function M@(tg, ..., 1, X1, ...s X,)E

S(RY* x R" x R*™) by
Mo =[dyd((y, y)—to)p(y, L)ty Xy); ..., L)t X)) - 4.2)

The mapping M implies the above mentioned isomorphism. More precisely
for any Lorentz invariant Fe S'(V4 x R*") there exists a rotation invariant f(t, x)e
S'(R%? x R" x R3") such that

(F, 9)=(f(t, x), Mo(t, x)) . 4.3)

Let us use the SO(3)-Fourier transform of f(z, x) in the variables x,, ..., x,.

The invariant harmonics [ ,(fg, ...s by Ly 15 -+ L2)ES(RY? x R"x R",) are
defined in exactly the same way as for the distributions from S'(R>"). Let the
function ¥eS(R%” x R"x R™). We have

(fp’ T)=(f([, X), Yp(x)g’(to, S - IXIIZ, s IX,,|2)) . (44)

The space S(R¥ x R"x R", P,) may be defined in the similar way to the space
S(R". P,); for a sequence {@,(to, ..., Ly tys1s ..o £2,)} an index pe P, is related to
the variables ¢, 4, ..., t,, only.

It is clear that the sequence {f,}e S'(R¥ x R"x R, P,). The distribution

f(t, x) and the sequence {f,} of its invariant harmonics are connected by the
relation which is analogous to (3.11). Substituting in this relation the invariant
harmonics

Myp=t71v1...t30 | d"QY,(QMe (4.5)
SZ xn

of the function M¢ we obtain (F, ¢) in virtue of (4.3).
In summary:

Proposition 1. The retation
(F.o)= ) (fp M) (4.6)
pePn
implies the topological isomorphism between the space of L_l-invariant tempered
distributions from S'(V* x R*") and the space S'(R¥? x R" x R". P,).
It is anticipated that our isomorphism (4.6) can be extended to more general
case.
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