

© by Springer-Verlag 1976

Dissipations and Derivations

A. Kishimoto

Department of Physics, Kyoto University, Kyoto, Japan

Abstract. We show a usefulness of the notion of "dissipative operators" in the study of derivations of C^* -algebras and prove that the closure of a normal *-derivation of UHF algebra satisfying a special condition is a generator of a one-parameter group of *-automorphisms.

§ 1. Introduction

Recently various authors have studied unbounded derivations of *C**-algebras [2–4, 6, 7, 10, 11, 13]. In particular Powers and Sakai [10] have studied unbounded derivations of UHF algebra.

The purpose of the present note is to show a usefulness of the notion of "dissipative operators" [9, 17] in the study of derivations of C^* -algebras.

Our first result is that an everywhere defined "dissipation" is bounded, which implies the well-known theorem concerning derivations [5, 12].

Our second result is about a normal *-derivation of UHF algebra satisfying a special condition discussed in [1, 10, 14, 15]. For such a *-derivation, we prove that its closure is a generator of a one-parameter group of *-automorphisms. As its application we consider one-dimensional lattice system.

§ 2. Bounded Derivation

Let $\mathfrak A$ be a Banach space. For each $x \in \mathfrak A$ there is at least one non-zero element f of the dual Banach space $\mathfrak A^*$ such that $\langle x, f \rangle = \|x\| \cdot \|f\|$ by the Hahn-Banach theorem. An f_x denotes one of them throughout this note.

Definition 1. [9] A linear map γ with domain $\mathcal{D}(\gamma)$ in a Banach space is called dissipative if there is an f_x such that

$$\operatorname{Re}\langle \gamma x, f_x \rangle \leq 0$$

for each $x \in \mathcal{D}(\gamma)$.

Definition 2. A linear map δ with domain $\mathcal{D}(\delta)$ in a Banach space is called derivative if there is an f_x such that

$$\operatorname{Re}\langle\delta x, f_x\rangle = 0$$

for each $x \in \mathcal{D}(\delta)$.

Let $\mathfrak A$ be a C^* -algebra. A linear map δ of $\mathfrak A$ is called a derivation if it satisfies

$$\delta(xy) = \delta(x)y + x\delta(y)$$

26 A. Kishimoto

for $x, y \in \mathcal{D}(\delta)$, where $\mathcal{D}(\delta)$, the domain of δ , is a *-subalgebra in \mathfrak{A} . A derivation δ is a *-derivation if $\delta(x)^* = \delta(x^*)$ for $x \in \mathcal{D}(\delta)$. In the following we will be concerned with only *-derivation and so omit *.

A linear map δ of $\mathfrak A$ is a derivation if δ and $-\delta$ are dissipations whose definition is:

Definition 3. [8] A linear map γ of a C^* -algebra $\mathfrak A$ is called a dissipation if it satisfies

$$\gamma(x)^* = \gamma(x^*)$$
$$\gamma(x^*x) \ge \gamma(x^*)x + x^*\gamma(x)$$

for each $x \in \mathcal{D}(\gamma)$, where $\mathcal{D}(\gamma)$, the domain of γ , is a *-subalgebra.

Remark 1. Call γ an "n-dissipation" if $\gamma \otimes \iota$; $\mathfrak{A} \otimes F_n \to \mathfrak{A} \otimes F_n$ is a dissipation where F_n is an algebra of all $n \times n$ matrices and ι is an identity map. If γ is a 2n-dissipation of a C^* -algebra with identity and $\mathcal{D}(\gamma) \ni 1$, then γ' defined by $\gamma'(x) = \gamma(x) - \frac{1}{2} \{ \gamma(1)x + x\gamma(1) \}$ is an n-dissipation. Note $\gamma(1) \le 0$ and $\gamma'(1) = 0$. (See [8] for the arguments of bounded complete dissipations; a complete dissipation is defined to be an n-dissipation for all n.)

Lemma 1. Let γ be a dissipation with domain $\mathcal{D}(\gamma)$. Suppose that for any positive $x \in \mathcal{D}(\gamma)$ there is an f_x such that $\text{Re}\langle \gamma x, f_x \rangle \leq 0$. Then γ is dissipative.

Proof. Note that f_x is positive for a positive $x \in \mathfrak{A}$ [12]. If we define f_x and f_x in \mathfrak{A}^* for f_x for f_x and f_x by f_x by f_x for any f_x and f_x for any f_x f

$$0 \ge \langle \gamma(x^*x), f \rangle$$

$$\ge \langle \gamma x^*, x f \rangle + \langle \gamma x, f x^* \rangle$$

$$= 2 \operatorname{Re} \langle \gamma x, f x^* \rangle.$$

Lemma 2. (Lemmas 3.3 and 3.4 in [9]). A dissipative operator with dense domain in a Banach space is closable and its closure is also dissipative.

Sketch of the proof. Let γ be the dissipative operator. Let $x_n \in \mathcal{D}(\gamma)$ with $x_n \to 0$ and $\gamma x_n \to \gamma$. For any $a \in \mathcal{D}(\gamma)$ and $\lambda \in \mathbb{R}$, let $f_{n,\lambda} = f_{a+\lambda x_n}$ with $\|f_{n,\lambda}\| = 1$ and $\operatorname{Re}\langle \gamma(a+\lambda x_n), f_{n,\lambda}\rangle \leq 0$. We may suppose $f_{n,\lambda} \to f_{\lambda}(n \to \infty)$ and $f_{\lambda} \to f'(\lambda \to \infty)$. Then we have $f' = f_a$ and $\operatorname{Re}\langle \gamma, f' \rangle \leq 0$. We may suppose $f' \to f(a \to \gamma)$. Then $f = f_{\gamma}$ and $\|\gamma\| = \operatorname{Re}\langle \gamma, f' \rangle \leq 0$, i.e. $\gamma = 0$. The rest of the proof is easy.

In the rest of this section we will treat only everywhere defined operators.

Theorem 1. A dissipation γ of a C*-algebra $\mathfrak{A}(=\mathcal{D}(\gamma))$ is dissipative and bounded.

Proof. We suppose $\mathfrak{A} \ni 1$. If $\mathfrak{A} \not\ni 1$, we can consider a dissipation γ_1 of $\mathfrak{A}_1 = \mathfrak{A} + \mathbb{C} \cdot 1$ defined by $\gamma_1(x + \lambda 1) = \gamma(x)(x \in \mathfrak{A}, \lambda \in \mathbb{C})$.

Let $x \in \mathfrak{A}$ be positive. Setting $h \equiv (\|x\| \cdot 1 - x)^{1/2}$, we have for $f = f_x$, $\langle \gamma x, f \rangle \leq \langle \gamma (x - \|x\| \cdot 1), f \rangle$ $= -\langle \gamma h^2, f \rangle$ $\leq -\langle (\gamma h)h, f \rangle - \langle h\gamma h, f \rangle$ = 0 where we have used the Schwartz inequality and the fact $\langle h^2, f \rangle = 0$ and $f \ge 0$. Hence γ is dissipative by Lemma 1 and closed by Lemma 2. An everywhere defined closed operator is bounded by the closed graph theorem.

Corollary. A derivation of a C*-algebra is derivative and bounded.

Proof. The proof is quite similar to the above. Or it follows from the above theorem by the following remark.

Remark 2. From the proof of Theorem 1 we can conclude that if γ is a dissipation, for any f_x , $\operatorname{Re}\langle \gamma x, f_x \rangle \leq 0$. It is immediate for $x \geq 0$. For a general $x \in \mathfrak{A}$, any f_x is equal to f_x * where $f = f_{x^*x} = \|x\|^{-1} |f_x|$. (Let x = u|x| be the polar decomposition of x in the enveloping von Neumann algebra of \mathfrak{A} . Then $|f_x| = f_x u$, from which we can deduce $|f_x| = f_{|x|} = f_{x^*x}$.) The same situation prevails for derivations. (See Remark 2 in [9].)

Remark 3. [6] A dissipation γ generates a uniformly continuous one-parameter semi-group of positive contractions $\Phi_t = e^{t\gamma}$. Lindblad showed the equivalence of (i) and (ii);

(i) Φ_t is uniformly continuous, $\Phi_t(1) = 1$ and

$$\Phi_t(x^*)\Phi_t(x) \leq \Phi_t(x^*x)$$
.

(ii) γ is a dissipation with $\gamma(1) = 0$.

Finally we remark the following property of a derivation δ . Let x be self-adjoint and C(x) be the commutative C^* -subalgebra generated by x and 1. Let φ be a character of C(x) and $\bar{\varphi}$ be any norm-preserving extension of φ ($\bar{\varphi}$ is a state). Then $\langle \delta x, \bar{\varphi} \rangle = 0$ which is considered as generalization of derivativeness (see [5]).

This is easily seen; if a polynomial P(x) of x satisfies $\langle P'(x), \varphi \rangle = P'(\langle x, \varphi \rangle) = 0$, then $\langle \delta P(x), \overline{\varphi} \rangle = 0$. The set of such P(x) is dense in C(x) and so $\langle \delta x, \overline{\varphi} \rangle = 0$ by the continuity of δ .

§ 3. Unbounded Derivations

In the following the domain of a derivation or dissipation of a C^* -algebra is a dense *-subalgebra.

Theorem 2. Let γ be a dissipation of a C*-algebra \mathfrak{A} . If $\mathcal{D}(\gamma)$ is closed under the square root operation of positive elements, then γ is dissipative and hence closable.

Proof [4, 10]. The proof that γ is dissipative is quite similar to that of Theorem 1. By Lemma 2 it is closable.

Let $\mathfrak A$ be a uniformly hyperfinite C^* -algebra (UHF algebra). A derivation δ in $\mathfrak A$ is said to be normal [10] if $\mathscr D(\delta)$ is the union of an increasing sequence of finite type I subfactors $\{\mathfrak A_n|n=1,2,\ldots\}$ in $\mathfrak A$.

Corollary. A normal derivation of a UHF algebra is derivative and hence closable. Its closure is also a derivative derivation.

Let τ be a unique tracial state on a UHF algebra \mathfrak{A} . A derivation δ in \mathfrak{A} is said to be regular [10] if $\langle \delta(a), \tau \rangle = 0$ for $a \in \mathcal{D}(\delta)$.

Let δ be a normal derivation. Since $\langle ab, \tau \circ \delta \rangle = \langle ba, \tau \circ \delta \rangle$ for $a, b \in \mathcal{D}(\delta) \equiv \cup \mathfrak{A}_n$ and $\langle 1, \tau \circ \delta \rangle = 0$, $\tau \circ \delta | \mathfrak{A}_n = 0$ for any n. Hence δ is regular [10].

28 A. Kishimoto

Theorem 3. If a derivation δ in a UHF algebra is regular, then δ is derivative.

Proof. Let $L^2(\mathfrak{A}, \tau)$ be a Hilbert space completion of a UHF algebra \mathfrak{A} with inner product $\langle x, y \rangle_{\tau} = \langle y^*x, \tau \rangle$. Let x be a positive element of $\mathcal{D}(\delta)$ and $L^2(C(x), \tau)$ be the closed subspace spanned by C(x). Let E_x be the orthogonal projection onto $L^2(C(x), \tau)$. If δ is regular,

$$0 = \langle x^{n}, \tau \circ \delta \rangle$$

$$= n \langle x^{n-1} \delta(x), \tau \rangle$$

$$= n \langle \delta(x), x^{n-1} \rangle_{\tau}.$$

Hence $E_x\delta(x)=0$. Let φ be a character of C(x) and $\hat{\varphi}$ be any norm-preserving extension of φ into $L^\infty(C(x),\tau)^*$. Since $E_x\colon \mathfrak{A}(\subset L^\infty(\mathfrak{A},\tau))\to L^\infty(C(x),\tau)$ is a contraction, $\bar{\varphi}=\hat{\varphi}\circ E_x$ is an element of \mathfrak{A}^* . Let φ be a character such that $\langle x,\varphi\rangle=\|x\|\,\|\varphi\|=\|x\|$ and let $\bar{\varphi}=\hat{\varphi}\circ E_x$. Then $\bar{\varphi}=f_x$ and $\langle \delta x,\bar{\varphi}\rangle=0$. Now the proof is completed by Lemma 1.

Let δ be a normal derivation in \mathfrak{A} . Let $\tilde{\delta}$ be the greatest linear extension of δ in all linear extensions γ satisfying

$$\gamma(axb) = \delta(a)xb + a\gamma(x)b + ax\delta(b)$$
$$\langle x, \tau \circ \gamma \rangle = 0, \quad a, b \in \mathcal{D}(\delta), \ x \in \mathcal{D}(\gamma).$$

 $\tilde{\delta}$ is called the greatest regular extension of a normal derivation δ [10].

Theorem 4. Let δ be a normal derivation. Suppose that $\tilde{\delta}$ is a derivation (or $\tilde{\delta}$ is derivative) and that there is an infinitesimal generator δ_1 of a strongly continuous group of *-automorphisms such that $\delta_1 \supseteq \delta$. Then $\delta_1 = \tilde{\delta}$.

Proof. Since δ_1 is regular [10], $\delta_1 \subseteq \tilde{\delta}$. As $(1 \pm \tilde{\delta}) \mathscr{D}(\tilde{\delta}) \supseteq (1 \pm \delta_1) \mathscr{D}(\delta_1) = \mathfrak{A}$ and $\tilde{\delta}$ is derivative by Theorem 3, $\tilde{\delta}$ is an infinitesimal generator by the following theorem and remark. Hence $\delta_1 = \tilde{\delta}$.

Theorem 5. Let δ be a derivation of a C^* -algebra $\mathfrak U$. If δ is derivative and closed and $(1 \pm \delta) \mathscr{D}(\delta)$ is dense in $\mathfrak U$, then δ is an infinitesimal generator of a strongly continuous group of *-automorphisms.

Proof. If
$$f_x$$
 satisfies $\operatorname{Re}\langle \delta x, f_x \rangle = 0$ and $||f_x|| = 1$, $||(\delta + \lambda)x|| \ge \pm \operatorname{Re}\langle (\delta + \lambda)x, f_x \rangle$ $= \pm \operatorname{Re}\lambda ||x||$ i.e. $||(\delta + \lambda)x|| \ge |\operatorname{Re}\lambda| \cdot ||x||$.

The rest of the proof is standard $\lceil 2-4 \rceil$.

Remark 4. The assumption that δ is a derivation in Theorem 5 can be replaced as follows: Let δ be a linear operator with dense domain $\mathcal{D}(\delta)$ such that $\mathcal{D}(\delta) \ni 1$ and $\delta(1)=0$. It is shown as follows: By a result in the Hill-Yosida semi-group theory [17] δ generates a strongly continuous group of contractions ϱ_t on \mathfrak{A} . Since $\varrho_t(1)=1$ (by the assumption $\delta(1)=0$) and $\|\varrho_t\|=1$ they are positive contractions. As they form a group, they are order-isomorphisms. Thus ϱ_t is a strongly continuous one-parameter group of Jordan automorphisms [cf. 16]. Then it is known [18, Theorem 3.4] that ϱ_t is a group of *-automorphisms.

Remark 5. $\tilde{\delta}$ is in general not a derivation (see Problem 1 of [10]). For if δ is a normal derivation which has more than two different extensions to infinitesimal generators, then $\tilde{\delta}$ is not a derivation, as easily shown by using Theorem 4. (We can construct such δ . See Remark 3 of [10].)

Let P_n be the canonical conditional expectation of $\mathfrak A$ onto $\mathfrak A_n$. Let h_n be a self-adjoint element of $\mathfrak A$ such that $\delta(a) = [ih_n, a] \equiv \delta_{ih_n}(a)$ for all $a \in \mathfrak A_n$. Then $P_n \tilde{\delta}(x) = P_n \delta_{ih_n}(x)$ for $x \in \mathcal D(\tilde{\delta})$ [10]. For if $a \in \mathfrak A_n$,

$$\langle aP_n\tilde{\delta}(x),\tau\rangle = \langle a\tilde{\delta}(x),\tau\rangle$$

$$= \langle ax,\tau\circ\tilde{\delta}\rangle - \langle (\delta a)x,\tau\rangle$$

$$= -\langle (\delta_{ih_n}a)x,\tau\rangle$$

$$= \langle a\delta_{ih_n}x,\tau\rangle$$

$$= \langle aP_n\delta_{ih_n}x,\tau\rangle.$$

In $\lceil 10 \rceil$ $W \in \mathcal{D}(\tilde{\delta})$ is defined by

$$W \equiv \{x \in \mathcal{D}(\tilde{\delta}); \lim P_n \tilde{\delta}(1 - P_n)x = 0\}.$$

If we set $P_n(h_n) = k_n$,

$$W = \{x \in \mathcal{D}(\tilde{\delta}); \lim \delta_{ik_n} P_n x = \tilde{\delta}(x)\}.$$

In [6] an operator ex-lim δ_{ik_n} (the extended limit of the $\delta_{ik_n}|\mathfrak{U}_n$) is defined, whose graph is the set of $(x, y) \in \mathfrak{U} \times \mathfrak{U}$ such that there is a sequence $x_n \in \mathfrak{U}_n$, with $||x_n - x|| \to 0$ and $||\delta_{ik_n}(x_n) - y|| \to 0$.

In [7] an operator $\hat{\delta}$ (the graph limit of the δ_{ik_n}) is defined, whose graph is the set of $(x, y) \in \mathfrak{A} \times \mathfrak{A}$ such that there is a sequence $x_n \in \mathfrak{A}$, with $||x_n - x|| \to 0$ and $||\delta_{ik_n}(x_n) - y|| \to 0$.

Then

$$\delta \subset \tilde{\delta} | W \subset \operatorname{ex-lim} \delta_{ik_n} \subset \hat{\delta} \subset \tilde{\delta}$$
.

Theorem 6. $\hat{\delta}$ is derivative.

Proof. Let $x \in \mathcal{D}(\hat{\delta})$ and $\{x_n\}$ be a sequence such that $x_n \to x$ and $\delta_{ik_n}(x_n) \to \hat{\delta}(x)$. Let $f_n = f_{x_n}$ be of norm 1. We may suppose $f_n \to f$. Then $f = f_x$ and

$$\operatorname{Re}\langle \hat{\delta}x, f \rangle = \lim \operatorname{Re}\langle \delta_{ik_n} x_n, f_n \rangle$$
$$= 0$$

where we have used Remark 2.

Remark 6. [6, 7] $\hat{\delta}$ and ex-lim δ_{ik_n} are closed derivations.

Lemma 3. If $\{\|h_n - k_n\|\}$ is uniformly bounded, $\tilde{\delta}$ is derivative.

Proof. Let $x \in \mathcal{D}(\tilde{\delta})$ and $f_n = f_{P_n x}$ with $||f_n|| = 1$. We may suppose $f_n \to f$. Then $f = f_x$ and

$$\operatorname{Re}\langle \tilde{\delta}x, f \rangle = \lim \operatorname{Re}\langle P_n \tilde{\delta}x, f_n \rangle$$

$$= \lim \operatorname{Re}\langle P_n \tilde{\delta}(1 - P_n)x, f_n \rangle$$

$$= \lim \operatorname{Re}\langle P_n \delta_{ih_n - ik_n} (1 - P_n)x, f_n \rangle$$

where we have used Re $\langle P_n \tilde{\delta} P_n x, f_n \rangle = 0$, $P_n \delta_{ik_n} (1 - P_n) = 0$ and $\delta_{ih_n - ik_n} = \delta_{ih_n} - \delta_{ik_n}$. The last term is dominated by

$$2\|h_n - k_n\| \cdot \|(1 - P_n)x\|$$

which tends to zero as $n \to \infty$.

Theorem 7. Let δ be a normal derivation. If $\{\|h_n - k_n\|\}$ is uniformly bounded, $\bar{\delta}$, the closure of δ , is an infinitesimal generator of a strongly continuous group of *-automorphisms and $\bar{\delta} = \tilde{\delta}$.

Proof. Suppose that $(1+\delta)\mathscr{D}(\delta)$ is not dense in \mathfrak{A} . Then there is an element f in \mathfrak{A}^* such that ||f||=1 and $\langle x+\delta x,f\rangle=0$ for all $x\in\mathscr{D}(\delta)$. There are $x_n\in\mathfrak{A}_n\subset\mathscr{D}(\delta)\equiv\cup\mathfrak{A}_n$ such that $\langle x_n,f\rangle=||x_n||\,||f|\mathfrak{A}_n||=||f|\mathfrak{A}_n||$. Then

$$0 = \lim \operatorname{Re} \left\{ \left\langle x_{n}, f \right\rangle + \left\langle \delta x_{n}, f \right\rangle \right\}$$

$$= \lim \operatorname{Re} \left\{ \left\| f \right\| \mathfrak{U}_{n} \right\| + \left\langle \delta_{ih_{n}} x_{n}, f \right\rangle \right\}$$

$$= \left\| f \right\| + \lim \operatorname{Re} \left\langle \delta_{ih_{n} - ik_{n}} x_{n}, f \right\rangle$$

$$\geq 1 - \overline{\lim} 2 \cdot \left\| h_{n} - k_{n} \right\|$$

where we have used $\operatorname{Re}\langle\delta_{ik_n}x_n,f\rangle=0$. Suppose $\|h_n-k_n\|<1/2-\varepsilon(\varepsilon>0)$. Then it is a contradiction and hence $(1+\delta)\mathscr{D}(\delta)$ is dense in \mathfrak{A} . Quite similarly we can conclude that $(1-\delta)\mathscr{D}(\delta)$ is dense in \mathfrak{A} . Since $\bar{\delta}$ is derivative by Corollary of Theorem 3, $\bar{\delta}$ is an infinitesimal generator by Theorem 5. If $\|h_n-k_n\|< C$ for any n, we may consider $\delta/3C$ instead of δ . $\bar{\delta}=\bar{\delta}$ follows from Theorem 4 and Lemma 3.

Remark 7. Under the assumption of Theorem 7 the one-parameter group ϱ_t generated by $\bar{\delta}$ satisfies

$$\varrho_t(x) = \lim e^{t\delta i k_n}(x), \quad x \in \mathfrak{A}$$

where the convergence is uniform in t on every compact subset of $(-\infty, \infty)$. This follows from Theorem 7 combined with Theorems 6 and 8 in [10] (cf. the proof of Theorem 8 below).

As an application of Theorem 7, we consider one-dimensional lattice system. Let $\{\mathfrak{A}_j: j\in Z\}$ be a family of type I finite factors and let $\mathfrak{A}=\bigotimes_{j\in Z}\mathfrak{A}_j$ be the infinite

tensor product of them. Let Φ be a map from the family $P_f(Z)$ of finite subsets of Z into $\mathfrak A$ such that $\Phi(\emptyset)=0$ and $\Phi(\Lambda)$ is a self-adjoint element of $\mathfrak A(\Lambda)=\bigotimes_{j\in\Lambda}\mathfrak A_j$. Put

$$\|\Phi\|_{\alpha} = \sup_{j} \sum_{\Lambda \ni j} e^{\alpha N(\Lambda)} \|\Phi(\Lambda)\|$$

where $N(\Lambda)$ denotes the number of points in Λ and $\alpha \ge 0$.

It is known (cf. [1]) that if $\|\Phi\|_{\alpha} < \infty$ for $\alpha > 0$, there exists a one-parameter group of *-automorphisms such that

$$\varrho_{t}(Q) = \lim_{\Lambda} e^{itU(\Lambda)} Q e^{-itU(\Lambda)} = \lim_{\Lambda} e^{t\delta iU(\Lambda)} Q, \qquad Q \in \mathfrak{A}$$

$$U(\Lambda) = \sum_{J \subset \Lambda} \Phi(J).$$

Now we give another sufficient condition for the existence of the above automorphism group:

Theorem 8. Suppose that (i) $\|\Phi\|_0 < \infty$ and (ii) there is an increasing sequence $\{\Lambda_n\}\subset P_f(Z)$ such that $\cup \Lambda_n=Z$ and the following element $W(\Lambda_n)$ of $\mathfrak A$ is bounded in norm uniformly in n:

$$W(\Lambda_n) = \sum_{J} \{ \Phi(J); J \in P_f(Z), J \cap \Lambda \neq \emptyset, J \cap \Lambda^c \neq \emptyset \}$$

where Λ^c denotes the complement of Λ in Z. Then there exists a strongly continuous one-parameter group of *-automorphisms such that

$$\varrho_t(Q) = \lim_{n} e^{t\delta_n}(Q) \tag{*}$$

where $\delta_n = \delta_{iU(A_n)}$ and the convergence is uniformly in t on every compact interval of t.

Proof. By (i), $W(\Lambda_n)$ is well-defined. Let $\mathfrak{A}_n = \mathfrak{A}(\Lambda_n)$ and let $h_n = U(\Lambda_n) + W(\Lambda_n)$. Let δ be the normal derivation such that

$$\delta | \mathfrak{A}_n = \delta_{ih_n}, \quad \mathscr{D}(\delta) = \cup \mathfrak{A}_n.$$

Then [1]

$$||h_n - k_n|| \le ||h_n - U(\Lambda_n)|| + ||U(\Lambda_n) - k_n||$$

$$\le 2||W(\Lambda_n)||$$

where $k_n = P_n(h_n)$. Hence $\bar{\delta}$ is an infinitesimal generator by Theorem 7. Now the proof of the convergence in (*) follows as in [10]: It is shown by (i) that $\lim \delta_n = \delta$ on $\mathcal{D}(\delta)$. Then for $x \in \mathcal{D}(\delta)$

$$\begin{aligned} \| \{ (1 \pm \delta_n)^{-1} - (1 \pm \bar{\delta})^{-1} \} (1 \pm \bar{\delta}) x \| \\ &= \| (1 \pm \delta_n)^{-1} \{ (1 \pm \bar{\delta}) x - (1 \pm \delta_n) x \} \| \\ &\leq \| (1 \pm \bar{\delta}) x - (1 \pm \delta_n) x \| \\ &\leq \| \bar{\delta} x - \delta_n x \| \\ &\to 0 \quad \text{as} \quad n \to \infty . \end{aligned}$$

where we have used $\|(1\pm\delta_n)^{-1}\| \le 1$. Hence $\lim_{n \to \infty} (1\pm\delta_n)^{-1} = (1\pm\delta)^{-1}$ since $(1\pm\delta)\mathscr{D}(\delta)$ is dense in \mathfrak{A} . By the Trotter-Kato theorem [cf. 17] we get (*).

Finally we remark that the assumption (i) can be weakened by (i') $\sum_{\Lambda\ni j}\|\Phi(\Lambda)\|<\infty \text{ for any } j\in Z.$

Acknowledgements. The author is deeply indebted to Professor H. Araki for his encouragement and useful suggestions. He would like to thank Professor H. Hasegawa for his encouragement.

References

- 1. Araki, H.: Commun. math. Phys. 44, 1-7 (1975)
- 2. Bratteli, O.: Self-adjointness of unbounded derivations of C*-algebras
- 3. Bratteli, O., Robinson, D. W.: Commun. math. Phys. 42, 253—268 (1975)
- 4. Bratteli, O., Robinson, D. W.: Unbounded derivations of C*-algebras II
- 5. Diximier, J.: Les algebres d'operateurs dans l'espace hilbertien. Paris: Gauthier-Villars 1957
- 6. Herman, R. H.: Unbounded derivations
- 7. Herman, R. H.: Unbounded derivations II
- 8. Lindblad, G.: On the generator of quantum dynamical semi-groups
- 9. Lumer, G., Phillips, R.S.: Pacific J. Math. 11, 679—698 (1961)
- 10. Powers, R. T., Sakai, S.: J. Funct. Anal. 19, 81-95 (1975)
- 11. Powers, R.T., Sakai, S.: Commun. math. Phys. 39, 273—288 (1975)
- 12. Sakai, S.: C*-algebras and W*-algebras. Berlin-Heidelberg-New York: Springer 1970
- 13. Sakai, S.: On one parameter groups of *-automorphisms on operator algebras and the corresponding unbounded derivations. (to appear in Amer. J. Math.)
- 14. Sakai, S.: Commutative normal *-derivations II
- 15. Sakai, S.: Commutative normal *-derivations III
- 16. Stormer, E.: In: Lecture Notes in Physics 29. Berlin-Heidelberg-New York 1974
- 17. Yosida, K.: Functional Analysis. Berlin-Heidelberg-New York: Springer 1965
- 18. Kadison, R.V.: Topology **3**, Suppl. 2, 177—198 (1965)

Communicated by H. Araki

(Received August 22, 1975)