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Abstract. We show a usefulness of the notion of "dissipative operators" in
the study of derivations of C*-algebras and prove that the closure of a normal
^-derivation of UHF algebra satisfying a special condition is a generator of a
one-parameter group of ^-automorphisms.

§ 1. Introduction

Recently various authors have studied unbounded derivations of C*-algebras
[2-4, 6, 7,10,11,13]. In particular Powers and Sakai [10] have studied unbounded
derivations of UHF algebra.

The purpose of the present note is to show a usefulness of the notion of
"dissipative operators" [9, 17] in the study of derivations of C*-algebras.

Our first result is that an everywhere defined "dissipation" is bounded, which
implies the well-known theorem concerning derivations [5, 12].

Our second result is about a normal ^-derivation of UHF algebra satisfying
a special condition discussed in [1, 10, 14, 15]. For such a ^-derivation, we prove
that its closure is a generator of a one-parameter group of ^-automorphisms.
As its application we consider one-dimensional lattice system.

§ 2. Bounded Derivation

Let 5X be a Banach space. For each xe2l there is at least one non-zero element /
of the dual Banach space 91* such that <χ,/> = ||χ|| \\f\\ by the Hahn-Banach
theorem. An fx denotes one of them throughout this note.

Definition 1. [9] A linear map y with domain Θ(y) in a Banach space is called
dissipative if there is an fx such that

for each xe
Definition 2. A linear map δ with domain Θ{S) in a Banach space is called

derivative if there is an fx such that

for each xe
Let 9ί be a C*-algebra. A linear map δ of 31 is called a derivation if it satisfies
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for x, ye @{δ\ where $){δ\ the domain of δ, is a *~subalgebra in 21. A derivation δ
is a ^-derivation if <5(x)* = δ(x*) for xe Q){δ\ In the following we will be concerned
with only ^-derivation and so omit *.

A linear map δ of 21 is a derivation if δ and — δ are dissipations whose defini-
tion is:

Definition 3. [8] A linear map y of a C*-algebra 21 is called a dissipation if it
satisfies

y(x)* = y(x*)

y(x*x) ^ y(x*)x + x*y(x)

for each xe@(γ), where @(y), the domain of y, is a *-subalgebra.
Remark ί. Call y an "^-dissipation" if y®i; 2ί®F,J->2I(χ)i7,J is a dissipation

where FM is an algebra of all n x n matrices and i is an identity map. If y is a 2n-
dissipation of a C*-algebra with identity and ̂ (7)91, then y' defined by yf(x) =
v M - i { y ( l ) ^ + ̂ 7(l)} is an ^-dissipation. Note y(l)5ΞO and /(l) = 0. (See [8] for
the arguments of bounded complete dissipations; a complete dissipation is defined
to be an ̂ -dissipation for all n.)

Lemma 1. Let y be a dissipation with domain 2{y). Suppose that for any positive
xe@(y) there is an fx such that Re<yx,/ ; c>^0. Then y is dissipative.

Proof. Note that fx is positive for a positive xe2ί [12]. If we define fx* and
xf in 21* for xe2ί and / e 2 I * by <α,/x*>=:<:x*α,/> and (a,xf} = (axj)
(αe2I), then xfx*x = fx* and fx*xx* = fx. For any xe@(y)9 there is an f = fx*x such
that <y(x*x) ?/>^0. Then we have

- 2 R e < y x , / x * > .

Lemma 2. (Lemmas 3.3 and 3.4 in [9]). ^ dissipative operator with dense
domain in a Banach space is closable and its closure is also dissipative.

Sketch of the proof. Let y be the dissipative operator. Let xne3ι{y) with xn->0
and yxn^y. For any ae@(y) and yleR, let fn,λ=fa + λXn with ||/π > λ | | = l and
Re<7(α + 2xn), / w > λ >^0. We may suppose /n,A->/A(n-»oo) and Λ->/'(λ->oo).
Then we have f' = fa and Re<j;,/ />^0. We may suppose f'->f(a^y). Then
f = fy and ||y|j = R e < y , / > ^ 0 , i.e. y = 0. The rest of the proof is easy.

In the rest of this section we will treat only everywhere defined operators.

Theorem 1. A dissipation y of a C*-algebra 2I( = ̂ (y)) is dissipative and
bounded.

Proof. We suppose 21a 1. If 21^1, we can consider a dissipation γ1 of 21! =
1 defined by y}{x + λl) = y(x)(xe% λe<£).

Let xe2I be positive. Setting h = (\\x\\ l - x ) 1 / 2 , we have for f = fx,

=0
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where we have used the Schwartz inequality and the fact </z2,/> = 0 and
Hence y is dissipative by Lemma 1 and closed by Lemma 2. An everywhere
defined closed operator is bounded by the closed graph theorem.

Corollary. A derivation of a C*-algebra is derivative and bounded.

Proof. The proof is quite similar to the above. Or it follows from the above
theorem by the following remark.

Remark 2. From the proof of Theorem 1 we can conclude that if y is a dissipa-
tion, for any fx, Re<yx,/x>:g0. It is immediate for x^O. For a general xe9I, any
fx is equal to /x* where f = fx*x = \\x\\ ~1\fx\ (Let x = u\x\ be the polar decomposi-
tion of x in the enveloping von Neumann algebra of 91. Then \fx\ = fxu, from which
we can deduce \fx\ = f\x\ = fx*x) The same situation prevails for derivations. (See
Remark 2 in [9].)

Remark 3. [6] A dissipation y generates a uniformly continuous one-parameter
semi-group of positive contractions Φt = etγ. Lindblad showed the equivalence of
(i) and (ii);

(i) Φt is uniformly continuous, Φt(l)=l and

Φt(x*)Φt(x)<>Φt{x*x).

(ii) y is a dissipation with y(l) = 0.
Finally we remark the following property of a derivation δ. Let x be self-

adjoint and C(x) be the commutative C*-subalgebra generated by x and 1. Let φ
be a character of C(x) and φ be any norm-preserving extension of φ (φ is a state).
Then <<5x, φ ) = 0 which is considered as generalization of derivativeness (see [5]).

This is easily seen; if a polynomial P(x) of x satisfies <P'(x), φ} = P'«x, φ » = 0,
then <(5P(x), φ) = 0. The set of such P(x) is dense in C(x) and so (δx, φ} = 0 by
the continuity of δ.

§ 3. Unbounded Derivations

In the following the domain of a derivation or dissipation of a C*-algebra is a
dense *-subalgebra.

Theorem 2. Let y be a dissipation of a C*-algebra 91. // 2{y) is closed under the
square root operation of positive elements, then y is dissipative and hence closable.

Proof [4,10]. The proof that y is dissipative is quite similar to that of Theo-
rem 1. By Lemma 2 it is closable.

Let 91 be a uniformly hyperfinite C*-algebra (UHF algebra). A derivation δ
in 91 is said to be normal [10] if 2(δ) is the union of an increasing sequence of
finite type I subfactors {9lπ|n= 1, 2, ...} in 91.

Corollary. A normal derivation of a UHF algebra is derivative and hence
closable. Its closure is also a derivative derivation.

Let τ be a unique tracial state on a UHF algebra 91. A derivation δ in 9ί is
said to be regular [10] if <<5(a), τ> = 0 for ae 3>(δ).

Let δ be a normal derivation. Since <αb, τ°<5> = <£>α, τ<><5> for α, be Q)(δ) =
and <l5τ°(5> = 0, τoδ|9Iπ=^0 for any n. Hence δ is regular [10].



28 A. Kishimoto

Theorem 3. If a derivation δ in a UHF algebra is regular, then δ is derivative.

Proof. Let L2(2t, τ) be a Hubert space completion of a UHF algebra 21 with
inner product <x, y}τ = <y*x, τ>. Let x be a positive element of 2(δ) and L2(C(x), τ)
be the closed subspace spanned by C(x). Let Ex be the orthogonal projection onto
L2(C(x), τ). If δ is regular,

Hence Exδ(x) = 0. Let φ be a character of C(x) and φ be any norm-preserving
extension of φ into L°°(C(x), τ)*. Since £x:2l(cL°°(2I, τ))^L°°(C(x), τ) is a con-
traction, φ = φ°Ex is an element of 21*. Let φ be a character such that <x, φ> =
||x|| | |φ| | = ||x|| and let φ = φ°Ex. Then φ = / c and <<5x, φ) = 0. Now the proof is
completed by Lemma 1.

Let δ be a normal derivation in 21. Let δ be the greatest linear extension of δ
in all linear extensions γ satisfying

γ(axb) = δ(a)xb + aγ(x)b + axδ(b)

(5 is called the greatest regular extension of a normal derivation δ [10].

Theorem 4. L^ί δ be a normal derivation. Suppose that δ is a derivation (or δ
is derivative) and that there is an infinitesimal generator δ1 of a strongly continuous
group of *-automorphisms such that δ^^^δ. Then δi = δ.

Proof. Since δί is regular [10], δ^δ. As (1 ±δ)3>(δ)2(l ±δι)$){δ})=21 and δ
is derivative by Theorem 3, δ is an infinitesimal generator by the following theorem
and remark. Hence δi = δ.

Theorem 5. Let δbe a derivation of a C*-algebra 21. If δ is derivative and closed
and (l±δ)@(δ) is dense in 21, then δ is an infinitesimal generator of a strongly
continuous group of *-automorphisms.

Proof. If fx satisfies Re(δxJx} = 0 and | |/ x | | = l,

= ±Reλ\\x\\

i.e. ||(5

The rest of the proof is standard [2-4].
Remark 4. The assumption that δ is a derivation in Theorem 5 can be replaced

as follows: Let δ be a linear operator with dense domain Θ(δ) such that <2){δ)3\
and (5(1) = 0. It is shown as follows: By a result in the Hill-Yosida semi-group
theory [17] δ generates a strongly continuous group of contractions ρt on 21.
Since ρί(l) = l (by the assumption (S(l) = 0) and ||ρ f | | = l they are positive contrac-
tions. As they form a group, they are order-isomorphisms. Thus ρt is a strongly
continuous one-parameter group of Jordan automorphisms [cf. 16]. Then it is
known [18, Theorem 3.4] that ρt is a group of ^-automorphisms.
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Remark 5. δ is in general not a derivation (see Problem 1 of [10]). For if δ
is a normal derivation which has more than two different extensions to infinitesi-
mal generators, then δ is not a derivation, as easily shown by using Theorem 4.
(We can construct such δ. See Remark 3 of [10].)

Let Pn be the canonical conditional expectation of 21 onto 2In. Let hn be a
self-adjoint element of 21 such that δ(a) = \ihn, a] = δihn(a) for all αe2In. Then
Pnδ(x) = Pnδihn(x) for χe@(δ) [10]. For if aeSΆn,

= <αx, τ o<5) — {(δa)x, τ>

= -φihnΦ>τ}

= (aδihnx, τ>

= (aPnδihnx, τ> .

In [10] Wc9(δ) is defined by

W={xe^(δ);\imPnδ(l-Pn)x = 0} .

If we set Pn(hn) = kn,

Py = {xe 3f(δ) lim (5ifcnPttx = δ{x)}.

In [6] an operator ex-lim<5/fcn (the extended limit of the <5ffcJ2l,,) is defined,
whose graph is the set of (x, y)e<Ά x 91 such that there is a sequence xne9ίn, with

In [7] an operator δ (the graph limit of the δikr) is defined, whose graph is the
set of (x, j/)ε 21 x 21 such that there is a sequence xne% with ||xπ — JC|| —>0 and

ll<W*J-yH0.
Then

Theorem 6. δ is derivative.

Proof. Let xe@{8) and {%„} be a sequence such that xn^>x and (5ίfc

Let fn = fXn be of norm 1. We may suppose /„->/. Then f = fx and

= 0

where we have used Remark 2.

Remark 6. [6, 7] <5 and ex-limδίkn are closed derivations.

Lemma 3. // {\\hn — kn\\} is uniformly bounded, δ is derivative.

Proof. Let xe@(δ) and fn = fPx with ||/n | | = 1. We may suppose /„->/. Then

Re <&,/> = Urn Re <PΛδx,/n>

= limRe<Pπδ(l-P I I)x,/π>

= \imRe(Pnδihn_ikn(l-Pn)xJn}
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where we have used Re <Pn(SPnx,/„> = (), Pnδikn(l-Pn) = 0 and δihn-ikn = δihn — δikn.
The last term is dominated by

which tends to zero as n-χχ>.

Theorem 7. Let δ be a normal derivation. If {\\hn — kn\\} is uniformly bounded,
δ, the closure of δ, is an infinitesimal generator of a strongly continuous group of
*-automorphisms and δ = δ.

Proof. Suppose that (1 + δ)2(δ) is not dense in 21. Then there is an element /

in 21* such that | | / | | = 1 and (x + δxJ}=0 for all xe@ι{δ). There are xMe2IπC

) = ^ such that <*„,/>= |I*J | |/ |8IJ | = |[/ |SIJ. Then

= 11/11
^l-\mi2-\\hn-kn\\

where we have used Re(δiknxn,f} = 0. Suppose \\hn — kn\\ < 1/2 — ε(ε>0). Then it is
a contradiction and hence (l + δ)@(δ) is dense in 21. Quite similarly we can con-
clude that (1 — δ)Q)(δ) is dense in 21. Since δ is derivative by Corollary of Theorem 3,
δ is an infinitesimal generator by Theorem 5. If \\hn — kn\\ <C for any n, we may
consider δβC instead of δ. E=δ follows from Theorem4 and Lemma 3.

Remark 7. Under the assumption of Theorem 7 the one-parameter group ρt

generated by δ satisfies

ρHx) = ]imetδikn{x), x e 2 I

where the convergence is uniform in t on every compact subset of (— oo, oo).
This follows from Theorem 7 combined with Theorems 6 and 8 in [10] (cf. the
proof of Theorem 8 below).

As an application of Theorem 7, we consider one-dimensional lattice system.
Let {SΆj .jeZ} be a family of type I finite factors and let 2l = (X) 2I; be the infinite

JeZ

tensor product of them. Let Φ be a map from the family Pf(Z) of finite subsets
of Z into 21 such that Φ(0) = O and Φ(Λ) is a self-adjoint element of 2l(Λ)= (X) 21,,

Put

IIΦIL=su P Σ e*N{A)IIφ(Λ)II
j Λ3j

where N(Λ) denotes the number of points in A and α ̂  0.
It is known (cf. [1]) that if | |Φ| |α<oo for α>0, there exists a one-parameter

group of ^-automorphisms such that

ρ^β) = lim eitU{Λ)Qe ~ίtU{A) = lim etδίU{Λ)Q, Qe 2ί
A

U(Λ)= Σ
JCA
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Now we give another sufficient condition for the existence of the above
automorphism group:

Theorem 8. Suppose that (i) | |Φ| | 0 <oo and (ii) there is an increasing sequence
{Λn}cPf(Z) such that uΛn = Z and the following element W(Λn) of 21 is bounded
in norm uniformly in n:

W(Λά = Σ {Φ(J) Je Pf{Z\ JnA + 0, JnΛc + 0}
j

where Λc denotes the complement of A in Z. Then there exists a strongly continuous
one-parameter group of *-automorphisms such that

where δn = δiU{Λn) and the convergence is uniformly in t on every compact
interval of t.

Proof By (i), W(Λn) is well-defined. Let 2In = Vί{Λn) and let hn = U(Λn) + W(Λn).
Let δ be the normal derivation such that

Then [1]

\\hn-kn\\^\\hn-U(Λn)\\+\\U(Λn)-kn\\

ύ2\\W(Λn)\\

where kn = Pn(hn). Hence δ is an infinitesimal generator by Theorem 7. Now the
proof of the convergence in (*) follows as in [10]: It is shown by (i) that lim(5π = (5
on 3>{δ). Then for xe9{δ)

S\\(l±δ)x-(l±δn)x\\

S\\δx-δnx\\

-^0 as n->oo.

where we have used ||(1 ±δ n )~^ | | ^ 1.
Hence lim(l±(5J~ 1 = ( l ± ^ ) ~ 1 since (l±δ)@(δ) is dense in 21. By the Trotter-

Kato theorem [cf. 17] we get (*).
Finally we remark that the assumption (i) can be weakened by (ϊ)

^ \\Φ{Λ)\\<OD for anyjeZ.
Λ3j
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