
Communications in
Commun. math. Phys. 46, 253—262 (1976) Mathematical

Physics
© by Springer-Verlag 1976

Correlation Inequalities in Quantum Statistical Mechanics
and Their Application in the Kondo Problem
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Abstract. We consider a large class of models which share the essential
features of the Kondo model. Bounds on the susceptibility of the impurity
spin are derived as consequences of general inequalities for quantum correla-
tion functions. We also obtain bounds for the spin polarization in the presence
of an external field.

1. Introduction

The Kondo model for the interaction of the conduction electrons with localized
magnetic moments, in its most idealized version, concerns an isolated spin
immersed in an electron gas. The purpose of the present work is to investigate
the behavior of a single spin coupled to a heat bath and, in particular, to place
lower and upper bounds on the susceptibility χ as a function of the temperature T
and the coupling constant J. From these bounds it is seen that, as J-*0, the
deviation of χ~x from the Curie law tends to zero uniformly in T. This result
refutes the singular T-dependence of χ~ι obtained from the Kondo model in
perturbation theory [1,2], but it does not contradict χ(T = 0) being finite.

First, we clarify terminology and notation. Let ( }βH denote the thermal
average with respect to the hamiltonian H and the inverse temperature β=l/kT.
For any two operators A and B, Bogoliubov [3] introduced the inner product

with the remarkable property

(A,B) = (B*,A*).

The physical significance of this inner product becomes apparent if A and B are
chosen to be selfadjoint and if by chance the hamiltonian contains a term — xB.
Then

d/dx(A)βH = (A,B)-β(A)βH<B>βH.

A similar formula valid in classical statistical mechanics suggests to call β~x(A, B)
the canonical correlation [4] between A and B. In accordance with this notion,
the observables A and B are said to be uncorrelated (for fixed β and H) if

meaning that the thermal average (A}βH is invariant under an infinitesimal
change H^H-xB.
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As a response to an external magnetic field B={B1,B2,B3}, a term —B M
is introduced into the hamiltonian, M being the vector operator of the magnetic
moment. The simplest, although by no means trivial, system is that of a magnetic
moment generated by a single spin, in which case the Hubert space naturally takes
the form of a tensor product J f (χ)(C25+ * and

M = μt®S (1)

where S stands for the conventional spin operator pertaining to the spins. Note
that the Kondo model provides a specific example of this general structure. We
are free to choose μ= 1 which we shall use in the sequel.

Macroscopic observations refer to the magnetization (M}β{H_B.M) or, if
merely the first order response is considered, are concerned with the susceptibility χ
given by

χδ i f c=(M ι,M k) = (3/aβΛ)<M ί> / ? ( H_ i ϊ.M ) | l ϊ = 0 (2)

where rotational invariance and continuous differentiability with respect to B
is assumed. In the case of no coupling, we have [//, M] = 0 and consequently, if
we adopt (1), χ= 1/3 s(s + ΐ)β which is the Curie law.

2. A Convexity Argument

Our main objective is to control the positive quantity (A, A) as a function of β
with the example 1®S 3 for the operator A in the back of our mind. In order to
fix our ideas and to simplify the discussion, we shall assume that, throughout this
section, the hamiltonian H acts on a finite dimensional Hubert space. For any
operator A in this space we shall write

Then, Bogoliubov's inner product may be rewritten as

β

(A,B) = i j dxΊvA(x)*B{x) (3)
-β

showing that (A,B) is a positive hermitian nondegenerate form. In addition, it
satisfies:

(A,B) = (B*,A*) (4)

~βH (5)

β (6)

Indeed, (4) and (5) are immediate consequences of the definition, while (6) follows
from the identity

o
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By virtue of the basic properties of the trace, we obtain two relations

Tr A(x)*A(y) = Tr A((x + y)/2)*A((x + y)/2) ^ 0

|Tr/4(x)*y4(j;)|2^TrA(x)*A{x) TτA(y)*A(y)

which, if taken together, prove the inequality

(7)

for the real valued function / given by

Since the function / is continuous, the inequality (7) states that / is convex.

f ( x )

Fig. 1

In particular / is convex for —β^x^β and hence stays inside the triangle
(Fig. 1) given by the vertices (/?, /(/?)), (-/?,/(- β)\ and (a, b), where the coordinates
a and b are to be calculated from

We emphasize the fact that, given β, the triangle is completely determined by the
following four expectation values

(8)

(9)

and the geometrical assertion is adequately represented by the following bounds

on/(x):

(β+x) (2β) ~! f(β) + (β-x) (2β) -ιf{-β)^ fix)

Let us first concentrate on the upper bound. Taking the exponential and carrying
out the integration we are lead to the inequality

-β
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thereby proving the first desired relation

(A, A)^β/2<{A*, A}yβHr/tanh-ί r (10)

where

tanh- 1 r=i log(( l+r)/( l-r)) , r = (IA\ AJ)βHK{A\ A}yβH

and {A,B} = AB + BA. Since r ^ t a n h " 1 ? * ^ ! for real r, a weaker statement is
also implied:

which was previously derived and used to obtain Bogoliubov's inequality [5].
Next, we turn to the lower bound for /(x). By a simple integration,

β

J dxefix) ^ (eb - en ~ β))/f'{ -β) + (ef{β) - eb)/f\β)
-β

which, after a little algebra, can be brought into the form

(AMmVc{α(AA*yβH + (l-α)(A*A}βH-(AA*yβH<A*A)lH«e-βc} (11)

where α and c may be obtained from the equations

(1 -α)<[Λ*, H]A>PH = c(A*A}βH .

If A = A*, the inequalities (10) and (11) specialize to

<A2}βH(l-e-β<yc^(A,A)ίβ<A2>βH (12)

where c now satisfies

4c<^2 V = <[[Λ HI A]>βH = &A9 HI [A, HI) (13)

and therefore c^O and c = O(β) as /?—>0.

3. Infinite Systems

The next problem we encounter is to give meaning to various expressions like
(A,B) and (J_A,H~\A*yβH in the thermodynamic limit, i.e. if we pass from finite
to infinite systems. Here, we must refrain from considering global observables and
restrict ourselves to quasilocal operators accommodated within a C*-algebra 9ί
which we always assume to be simple (i.e. it has no nontrivial two-sided *-ideals).
As a substitute for Gibbs' formula

we characterize the equilibrium state by the KMS condition [6; Chapter 7.6]:
For A, Be'Ά there exists a function FAB(z\ analytic in the strip 0<Imz</? and
continuous for Oίglmz^/? such that for real t

and
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where

At = eiHtAe-iHt.

Apparently, this function serves to define a scalar product on 91:

which, for finite systems, is easily shown to coincide with the previously defined
product (3). Let us now assume that the infinite system under consideration
emerges as a limit of suitably defined finite systems. Then the function f(x) =
\ogFA*A(ί(β + x)/2), being a limit of convex functions, is itself convex for — β ^ x ^ β.
It may or may not be differentiable at the endpoints of that interval. If it is, then
<[>!*, H~]A}βH and ([_A,H2A*yβH exist and are given by (8) and (9) respectively.
All inequalities derived for finite systems then also hold for the infinite system.
We now turn to the susceptibility of a single spin in a heat bath. Abstractly
speaking, by a "heat bath" we mean a tripel (Jf0, 9I0, Ho) consisting of a Hubert
space jf0, a concrete C*-Algebra 9I0 of operators on j ^ 0 and a hamiltonian H o ,
such that time translations act continuously on 9I0 and that there exists a KMS
state {'}βHo on 9I0. The total system, spin + heat bath, may then be represented
by a tripel (Jf, 21, H) where

(14)

Here, Mn(<£) stands for the algebra of all complex n x ^-matrices and, as for the
hamiltonian, summation over fc=l, 2,3 is tacitly assumed. The interaction is
linear in S and therefore, except for s=l/2, it is not the most general Ansatz.
However, it underlies the Kondo model [7]. Intuitively, if the operators Hk are
sufficiently "gentle", the total system will admit a KMS state as well.

From now on the crucial, although by no means compelling, assumption will
be made that the operators Hk belong to 9ί0. This assumption, phrased in a more
physical language, means that the perturbation is local which is the key assumption
of the Kondo model.

To establish the existence of an equilibrium state for the locally perturbed
system we first observe that the uncoupled system (Jf, 91, HO®1) admits a
unique KMS state such that

(Ά0(g)a}βHoΘt = (AoyβHo (2s+1)" 1 Trα

for /ί o e2I o and α e M 2 s + 1 ( C ) . By assumption, the interaction part of the
hamiltonian,

V = Hk®Sk

is an element of the algebra 91. Thus, appealing to a general result of Araki [8],
we conclude that (Jf, 91, H) admits a KMS state

= F(A)/F(l) As 91 (15)
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where the positive functional F on 21 is defined by the perturbation expansion

00 β Xn X2

where fn

Λ is the unique analytic function in n variables satisfying

fΛ-itί,-;-itm,β-itm + ι,...,β-itn) = (Vtm+i...VtnAVtι...VtJβHom

Vt = eUH°Hke-itH°®Sk

 { '

for m = 0,...,n and any real tί9...,tn. The domain of analyticity is known to contain
the tube Ts= {ze(P; RezeS} with basis ScIR" given by the inequalities 0<xx<
x2<...<xn<β [9]. It should perhaps be stressed that the perturbation series
converges absolutely for any fixed temperature β~x. This conclusion can be
drawn from the estimate

\f,t{z)\^\\A\\\\V\\" (17)

valid for ze Ts, implying that F(A) is entire analytic with respect to the coupling
constant

J=W\\

and that it is of at most exponential growth: \F(A)\^ \\A\\ expβJ. We shall now
give the details of the proof of (17) for finite systems. On writing K = H0(g)t +
\\H0\\t we have

which is entire analytic. Since K^O, \f^(z)\ is bounded in the tube Ts and by an
extension of the "three lines theorem" to several complex variables [10; Chapter VI,
Theorem 2] the function

Fί(x)=sup\fn

Λ(x-iή\

is logarithmically convex on the convex set S={xeW;0^xί^...^xn^β}
assuming its supremum in one of the extreme points of S. Since § is a π-dimensional
simplex, its extreme points are the vertices x°,x1,...,*" with coordinates x™ = 0
if i<m and x? = β if ί^m. It is quickly realized that fn

Λ(x — it) assumes the value
(16) for x = xm. Therefore, \fn

A(xm-ίή\S\\A\\\\V\\n which proves (17). It seems
hopeless to apply the perturbation expansion in the limit β=co; i.e. at zero
temperature. The worst models in this respect are those satisfying [//0, //k] = 0,
where the rcth order corrections to {A} and (A, A) in general grow like βn resp.
βn+ι There a r e better behaved models, e.g. of the Kondo type, where the second
order correction to the susceptibility grows like /Πogβ instead of β3. However,
this does in no way reveal the true behavior of the quantity under study.

A second remark concerns the denominator in (15). We have

(18)
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and so it never becomes small. To prove this result, we start from Klein's in-
equality [6; Chapter 2.5]

valid for arbitrary hermitian n x n-matrices A and B.
On putting A = βH and B = βH0(g)l in a finite system we obtain

as a consequence of Tr Sk = 0.
Therefore,

and (18) is still valid for infinite systems appearing as limits of finite systems.

4. Bounds on the Susceptibility

We are now in the position to apply the correlation inequality (12) to the operator
A = ί®S3, thereby obtaining bounds for the susceptibility

χ=(A,A)

The crucial property of A is \_A, //]e2I though HφSΆ in all cases of interest. Note
that, in any rotational invariant theory, (A2}βH= 1/3φ+1) and

which simplifies the result:

We see that in general the susceptibility is smaller than the Curie law predicts but
exceeds some positive quantity involving the thermal average of the interaction
energy which is negative. If this energy is small as compared to kT, the suscep-
tibility is close to its Curie value.

Note that c~x{\ — e~βc) is a monotone decreasing function of c. This suggests
to look for upper bounds on — (V}βH. The obvious bound —{V}βH^\\V\\=J
is not the best possible for all temperatures. A more refined analysis yields

(19)

This way we get a result which no longer involves the details of the dynamics:

β

ε = JtanhβJ/2s(s + l).

In order to prove (19) we consider the thermal average <F> with respect to the
hamiltonian H0<g)i + λV and obtain
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Upon setting /(A) = tanh ~ * ( - J~\V}) we have f'{λ)^βJ and /(0) = 0 implying
f(λ)^βJλ which, for λ— 1, is the assertion (19). It has become common practice
to plot χ " 1 against T. The allowed area for such a plot is shown in Fig. 2. As a
measure for the deviation from the Curie law, we introduce the quantity

ό = sup(χ~1-3fcT/s(s + l))
T
p

T

which not only proves to be finite but also tends to zero for small J because

(s+l)2. (21)
JC>0

It should be stressed that this behavior of δ cannot be inferred from perturbation
theory.

x-1

Fig. 2

5. Nonzero External Field

Our next problem concerns the mean polarization caused by a homogeneous
magnetic field in the direction of the 3-axis. We shall restrict the discussion to the
simplest case which is s = 1/2 and write

The total hamiltonian now reads

H' = H-xσ3 x^O

where we introduced a variable x proportional to the magnetic field. Thermal
averages are taken with respect to H'. However, we shall shorten the notation
and omit the subscript βH\ writing for instance

Since | < σ 3 > | ^ l for all x9 we may set <σ3> = tanhj;(-x;) and thus obtain

where A = σ3 — <σ 3 ) l . In particular, 4χ = j/(0). From the conclusion reached in
Section 2 we know that



Kondo Problem 261

Since <σ 3) = 0 for x = 0 assuming rotational invariance, we may write

thereby establishing the following results:
<σ3> is a monotone function of the magnetic field variable x and is majorized

by the Brillouin function for a free spin, i.e.

In order to improve upon the lower bound, we obviously need, with regard to (12),
and upper bound for

the problem being that there can be no estimate uniformly in x, since {A2} tends
to zero as x increases. In this situation the best general result is obtained by
applying Cauchy's inequality:

^ Jcoshy.

Then the essential content of (12) is the differential inequality

(l-e-
βJcoshy)/J cosh ySy'Sβ (22)

to be supplemented by y(0) = 0. Because y(x) is monotone, we may pass to the
inverse function x(y), thus obtaining the inequality

Integrating both sides and introducing the function

φa(y)= { dtcoύit{\-e-*co*htyι α>0
0

we get

]x (y)=]dtx'(t)SJφβj(y).

We emphasize that both x and φa are monotone functions of y. Therefore, φa

 ι

exists and φβJ

1(J~1x)^y(x). Summarizing:

tanh(/)^ J

1(J~1x)^<σ3) ^tanhjSx. (23)

For small β these bounds are very tight, they fall apart if β becomes large. Still,
at zero temperature we get an interesting answer. Since φ^iy) = sinhy, we con-
clude that

x(J2 + x 2 ) " 1 / 2 ^ lim < σ 3 > ^ l (24)
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assuming that the limit exists. Although for any finite β

lim<σ3> = 0
χ->0

it is feasible that

lim li

and consistent with (24).
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