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An Application of Morse Theory to Space-Time Geometry
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Abstract. Milnor's treatment [6] of Morse's global theory of the calculus
of variations for geodesies [7] is restated in the context of space-time geometry:
it is seen as providing a link between the curvature and the causal structure
of a stably causal globally hyperbolic Lorentzian manifold. An application is
discussed.

Introduction

Morse's global theory of the calculus of variations is the basis of a number of
theorems relating the curvature and topology of Riemannian manifolds [6, 7]. In
this paper I shall describe a method whereby the theory can be restated in the
context of space-time geometry and discuss its potential usefulness in dealing with
global problems in general relativity.

The first three sections of the paper are an outline of the principal physical
and mathematical ideas involved, leading up to a statement of the main theorem
at the end of § 3: these sections can be regarded as an extended introduction
(more detailed accounts of some of the material covered can be found in [1, 3,
4,6, 9]). A large proportion of the argument consists of adapting standard ele-
mentary results from algebraic topology and Riemannian geometry. In order to
keep the paper reasonably selfcontained, I have given outlines of the concepts
involved and sketched proofs of the theorems before describing the necessary (but,
for the most part, trivial) modifications. Only where the argument diverges radi-
cally from that used in Riemannian geometry have I gone into the full technical
details.

The fourth section is a proof of the theorem.

Notation. Throughout, M denotes a smooth (C°°) paracompact Hausdorff
manifold of dimension greater than two in which is given a causal Lorentzian
metric g with signature ( + , —, — . . . ) . This means that (M, g) is time oriented (the
two halves of the light cone are labelled continuously throughout M as future and
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past pointing) and contains no self intersecting causal paths (a causal path is a
piecewise smooth map of a closed interval in IR into M with future pointing
timelike or null tangent vector). Thus M admits an antireίlexive partial ordering <^
(the natural chronology) defined by p<ζq if there exists a timelike path from p to
q and pφg, and a reflexive partial ordering < (the natural causality) defined by
p < q if there exists a causal path from p to q or p = q. [In general, I shall distinguish
between a path (which is a map from the real line into M) and a curve (which is
the image of a path).]

The timelike and causal futures and pasts of an event peM are denoted,
respectively, I + ( p ) , J + ( p ) , Γ ( p ) and J~(p) (for example, Γ(p)={qeM\q<ζp}).

A subset S C M is said to be acausal if:

The domain of dependence of a closed acausal set S is defined by :

D(S)= {^eM I every maximally extended timelike curve through q
intersects S} .

A closed acausal hypersurface without boundary is called a partial Cauchy sur-
face : it is a Cauchy surface if D(S) = M.

In addition to being causal, in § 4 (M, g) is required to be globally hyperbolic
and stably causal. This means that each I + (p)r^I~(q\ p,qeM, is compact and that
M admits a second causal metric h such that every vector which is causal (that
is, timelike or null) with respect to g is timelike with respect to h: less formally,
the light cones can be widened without destroying causality. (These are not the
minimum axioms under which the theorem can be proved, but they make sense
physically.) It follows that M is predictable (admits a Cauchy surface) and that
every event lies in a local causality neighbourhood, that is a goedesically convex
(normal) neighbourhood N with compact closure, satisfying:

If q, reN then q<r if, and only if, there exists a causal path from q to r in N.

More details of these concepts are given in [4, 9].
The metric connexion on M is denoted Pand the inner product in the tangent

space at each event <,). The curvature tensor is defined by (X, Ύ and Z are
vectors fields):

VXVΎZ- VΎVXZ- V[XίΎ}Z = R(X, Y)Z .

A closed n-cell (that is a closed disc in IR") is denoted En and its boundary
S""1. The boundary of a zero cell (a point) is empty.

The index of a symmetric bilinear form H on a vector space V is the maximum
dimension of a subspace of V on which H is positive definite (this is the reverse
of the normal definition: the reasons for this will emerge later). The nullity of H
is the dimension of the subspace of V :

{XeV\H(X, y) =
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§ 1. Conjugate Points and Chronological Homotopy

The physical interpretation of the curvature tensor in space-time is based on the
equation of geodesic deviation (the Jacobi equation) [11]. Briefly, the way this
goes is this: a cloud of free falling test particles in space-time is represented by
a timelike geodetic congruence. If T is the tangent vector field to this congruence
and if X is some other vector field which is Lie propagated by the congruence,
then (after a short calculation):

D2X = R(T, X)T (or, in components: D2Xa = Ra

bcdT
bXcTd] , (1.1)

where D = Vτ is the covariant derivative in the direction of T. This is the Jacobi
equation. An observer G moving along a geodesic y0 in the congruence can
measure the position of a nearby particle & relative to a parallelly propagated
orthonormal tetrad (T, 7l5 Y2, 73) (7l5 Y2, and 73 can be thought of as non-rotating
Cartesian axes in 0's local rest frame). At each instant, (9 assigns a position vector
X = XaYa (α=l,2, 3) to 3P. Provided that all the geodesies are parameterized by
proper time, X will be Lie propagated by the congruence and [rewriting Eq. (1.1)]
the frame components of the acceleration of & relative to G will be given by:

(1.2)

where ί is proper time. This equation gives direct physical meaning to the Riemann
tensor components (R(T, Yβ)T, Yay.

Now consider the situation where all the particles in the cloud emerge in an
explosion at an event peM. Initially, G will see & moving directly away from him.
However, if the quantity on the right hand side of Eq. (1.2) is sufficiently negative,
& will, after a time, start moving back towards G and, eventually, pass close by
G again at some event1 qeM. In this case, q is said to be conjugate to p along
y0; mathematically, q is characterized as a conjugate point to p by the existence
of a nontrivial solution of Eq. (1.1) which vanishes at p and at q. Physically, con-
jugate points arise because of the focusing effect of the curvature which is a con-
sequence of the attractive nature of gravity.

The theorem I shall prove below relates the number of conjugate points on
the timelike geodesies from p to q to the structure of the space of timelike paths
joining p and q, which is described within the framework of chronological
homotopy theory [5, 13, 14]. This theory is purely global in the sense that, locally,
all stably causal space-times have the same chronological homotopy type. The
theorem, in conjunction with the equation of geodesic deviation, thus provides
a direct link between the local properties of the curvature tensor and the global
properties of the causal structure, that is between the small and large scale physi-
cal aspects of the gravitational field.

Before going into technical details of the theorem, I shall give a brief account
of the main ideas of chronological homotopy theory and its potential usefulness
in handling global problems.

1 Only in the limiting case where & is infinitely close to Θ will the geodesies actually intersect again
at q. The description of P's position by X is only accurate to first order in the ^Γα's.
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Let (M, g) be a causal space-time and let p<ζq be two fixed events in M. By
a chronological path from p to q is meant a continuous map α: [0, 1]->M such that:

2) If s<ίe[0, 1] then α(s)«α(ί).

If α is piecewise smooth then its tangent vector must be future pointing and
causal if α is piecewise geodetic, then its tangent vector must actually be timelike.
The space Tpq of all chronological paths from p to q has a natural topology (the
compact-open topology [1]) generated by sets of the form:

where KC[0, 1] is compact and C/cM is open. For two paths to be close in the
compact-open topology, not only must the corresponding curves in M be close,
but also pairs of points with the same parameter values. However, the topology
ignores smoothness: the tangent vectors (if they exist) need not be close in any
sense. Two paths α, βe Tpq are said to be chronologically homotopic if they lie in
the same path connected component of Tpq (this means that α can be deformed
into β through a sequence of chronological paths). Two space-times M and M'
have the same chronological homotopy type if there exists a homeomorphism
φ:M-»Λ/Γ such that Tpq and Tφ(p}φ(q) have the same homotopy structure for each

A consequence of the theorem is that, in general (in a globally hyperbolic,
stably causal space-time), Tpq has a very simple structure: it has the homotopy
type of a finite cell complex. Roughly speaking2, this means that it can be deformed
into a space K made up of a finite number of cells of dimension 0, 1, 2 ... fc (that
is, points, line segments, closed discs in IR2, solid spheres in IR3 etc.) glued together
along their boundaries (to give a simple example, a sphere S2 can be thought of
as a cell complex made up of a point and a 2-cell). The number of cells of each
dimension in K carries a great deal of information about the topology of Tpq. For
instance the Euler characteristic of Tpq is given by:

χ(TM) = χ(X) = ΣS(-l) ίft, (1-3)

where μt is the number of cells of dimension i in K (for a more detailed explanation
of this, see [1]). If p and q lie in a local causality neighbourhood, then K consists
of a single 0-cell (a point), so that, locally, all stably causal space-times are of the
same chronological homotopy type.

It must be emphasized that the structure of Tpq depends on the choice of p
and q : chronological homotopy does not lead to any simple topological classifi-
cation of the background manifold M (though, of course, the structure of Tpq is
closely linked with the topology of M). However, the information carried by, for
example, the two point integer valued function χ(p,q} = χ(Tpq) is physically rele-
vant. For instance, consider the problem raised by Penrose's formulation of the
cosmic censorship hypothesis [10] of defining black holes in closed universes.
Loosely, this formulation is that no observer can ever see a singularity which was
once in his past; thus no observer can see a singularity formed by collapse (either
the local collapse of a star or the global collapse of the entire universe) until he
actually runs into it. More formally, space-time must be globally hyperbolic (and
2 Formal definitions are given in § 2.
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hence predictable from a Cauchy surface). This contrasts with the conventional
formulation (Hawking [3]) that no singularity formed by collapse can be seen
by an observer at future null infinity G/+): such singularities are hidden inside
black holes. In this context a black hole is defined to be a spatially connected
region of space not in the past of J^+ (more precisely, it is a connected component
of S~ J~(J>+) where S is a partial Cauchy surface). This version states that space-
time is (future) asymptotically predictable.

Penrose's formulation (which is stronger than Hawking's) has the advantage
of being applicable to space-times (such as closed cosmological models) for which
future null infinity is not defined. However, it leaves open the question of pre-
cisely what is meant by a black hole in such situations. One way of getting a handle
on this problem is through chronological homotopy theory. Consider, first, a
Schwarzschild black hole. Let p be a fixed event outside the horizon and consider
what happens to Tpq as q moves into the future along some timelike path through p
(also outside the horizon). At first Tpq will have a trivial structure: it will be equiv-
alent to a single point. However, when q gets further into the future, there will
exist timelike paths from p to q which "loop around the back" of the horizon.
It is not hard to see that a hole appears in Tpq: its homotopy structure is that
of a circle. As q gets still further into the future, the structure of Tpq gets more
and more complicated. However, if the black hole is replaced by a star, the
situation is qualitatively different: the structure of Tpq remains relatively simple
for all points p and q.

Thus, the picture one would have of a closed universe is this: for points p
and q near the initial singularity Tpq has a very simple structure: possible timelike
paths have only one route from p to q or, possibly, they can wind round the back
of the universe a few times. However if p and q are near the final singularity,
which is made up of collapsed stars and the final collapsed state of the universe
itself, Tpq has a vastly more complicated structure due to the presence of a large
number of "black holes".

It is possible that a closer analysis of, for example, the way in which the two
point function χ(p, q) behaves in exact black hole solutions will lead to a precise
and workable definition of a black hole applicable in any situation: the theorem
proved in this paper provides the technical machinery necessary for such an
analysis.

In the next two sections, I shall review the elements of finite dimensional
Morse theory and the calculus of variations for timelike geodesies: these form the
basis of the theorem proved in § 4.

§ 2. Morse Theory: The Finite Dimensional Case

Definitions. Let A be a smooth paracompact Hausdorff manifold of dimension n
and let /:,4->>R be a smooth function on A. A critical point of / is a point ceA
where the 1-form df vanishes; the value f(c) of / at c is a critical value of/. At
each critical point ceA,f defines a symmetric bilinear form Hc (the Hessian of/)
in the tangent space TCA at c: if XE TCA, then:

HC(X,X) =
δx2

 X=Q'
(2.1)
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where the derivative is taken along any path ξ:x^^ξ(x) through c = ξ(0) with
tangent vector X at c. (That this definition is independent of the choice of ξ is
most easily seen by rewriting Eq. (2.1) in the form:

H<(x>x}=->χaχb> (2 2)

where {xa} are local coordinates at c.) The index μc and the nullity vc of / at c
(or just of c if / is understood) are, respectively, the index and nullity of Hc. If
μc = n, then c is a local maximum of/ If vcΦθ, then c is a degenerate critical point:
/ is said to be nondegenerate if it has no degenerate critical points.

The idea is to relate the topology of A to the indices of the critical points of/
That such a relationship must exist is illustrated by the fact that though it is
possible to find a smooth function on the sphere S2 which has a maximum and
a minimum, but no other critical points, it is not possible to do this on the two
dimensional torus. Formally, the relationship is expressed in the theorem [6]:

2.1. Theorem. Let f:A-+JR. be smooth and nondegenerate. If each set

is compact then A is homotopically equivalent to a CW-complex K containing one
cell of dimension μ for each critical point of index μ.

(Two topological spaces A1 and A2 have the same homotopy type (are
homotopically equivalent, written A1^A2) if there exist maps φ12:A1-+A2 and
φ2ί:A2-+A1 such that φ12

0(P2i and Φ 2 i ° Φ i 2 are homotopic with the identity
maps on A2 and A^. In the application in §4, the function considered has only
a finite number of critical points. In this case K is a finite cell complex, that is
it is the union of a finite number of closed sets C? (μ and i are integers) with the
following properties: if Kμ= (Jλ<,μ C\ and Bf-K^nCf, then:

K 1) (Cf - Bf)n(Cj - Bj) = 0 unless μ = λ and i =j.
K2) For each Cf, there exists a map φμ \Eμ-*K which takes Sμ~^ onto Bf
and maps Eμ — Sμ~1 homeomorphically onto Cf — J5f.

For example, any compact triangulated manifold is a finite cell complex. More
details are given in [1].)

In fact, in § 4, I shall use a slightly stronger version of the theorem. Before
stating this, I shall outline a proof of Theorem 2.1 (a more detailed version is
given by Milnor [6]).

The method is to investigate how the topology of As changes as s is decreased
from the maximum value smax of / to — oo . To do this it is necessary to find a
smooth vector field Y on A with the properties :

Y 1) 7 = 0 only at the critical points of /.
Y2) Y(f) > 0 except at the critical points of /

Such a vector field always exists: for example, put Y = g ~ 1 ( d f ) where g is any
Riemannian metric on A (this is not, in fact, how 7 is constructed in § 4).

When s = smax, As is just a finite collection of points. Also if the interval [s, ί]
contains no critical values of/ then At~As. The map φts:At-*As is just the natural
inclusion map. To construct the map φst:As->At, for each αef~l(\_s, ί]) let
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αfl : [0> t — f(ά)]-+A be an integral curve of Y parameterized by f with initial point
α that is :α, that is :

2) /oα>)
3) The tangent to αα is parallel to Y.
Then φ s t:y4 s->A t is defined by:

f(a)<t

(2.3)

This definition makes sense: because 7ΦO on the compact set /"HEX t]) and
because 7(/)>0, an integral path of Y with initial point in /-1([5, ί]) must
eventually reach /~1(ί) Further φf is continuous and φst°φts is the identity on
^4,. The homotopy F:[0, l]xA s->^4 ( between φts°φst and the identity on _/4s is
defined by:

ue[0, 1]

we [0,1]. (2.4)

Thus, when s = smax, ^4S has the homotopy type of a finite collection of 0-cells
(points) and, as s decreases, the homotopy type of As only changes when s passes
through a critical value of /

Suppose that sc is a critical value o f / and that c1? c2...cme/~1(sc) are the
corresponding critical points in A Then, for small enough ε, ASc_ε is equivalent
to ylSc+ε with cells E"e> , Eμ°* . . . Eμc » attached. The proof of this is intuitively
straightforward, though quite long when written out explicitly: one chooses
coordinates {xa} in a neighbourhood JV f of each critical point ct so that / has the
local coordinate form :

/ = $c + * 1 + X2 + + X

μι — X

μί + i

(this is possible by a lemma of Morse [6]). Outside these neighbourhoods ASc_ε

is pushed along Y into ASc+ε as before. A purely local argument is used to deal
with what happens inside each JV f : for each /, the μCι-cell:

must be attached to ASc+ε in Nt (this illustrated in Fig. 1 for n = 3 and μc. = 2).

Remark. Though it is clear from this outline that a space with the same
homotopy type as A can be built up from a number of 0-cells by attaching a cell
of the appropriate dimension for each critical point of / (such a space is called
a spherical complex), it is not immediately clear that this space is a finite cell
complex (that is that the cells are attached in such a way that the axioms Kl
and K2 are satisfied): some sublety must be employed to prove this. However,
for many applications [for example, the proof of Eq. (1.3)] this refinement is
unnecessary.

Suppose now that AcB is an open submanifold of B with compact closure
and that, as before, / is a nondegenerate smooth function on A with a continuous
extension to A. Then, provided that there exists a smooth vector field Y on A
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f = s -

Fig. ί. The change in homotopy type at
a critical point of index 2

which satisfies, in addition to Y l and Y2:

Y3) If ξ:xκ>ξ(x) is an integral path of Y with initial point ζ(0)eA, then
ξ(x)εA can be defined for all x^O, and ξ([0, co))r^A = φ (that is, ξ never
reaches the boundary of A in J5),

precisely the same proof can be used to show that the conclusion of the theorem
still holds.

In its main application to Riemannian geometry, this theorem is used to
calculate the structure of the space of paths joining two fixed points in a geode-
sically complete Riemannian manifold, and hence the homotopy invariants of
the manifold. Naively, what is done is to treat the energy functional :

as a real function on this path space (all the paths are assumed to parameterized
by the interval [0, 1]): its "critical points" are the geodesies. There are two ways
of realizing this idea: the first, and older, approach is to approximate the path
space by a finite dimensional manifold of the same homotopy type [6]. The
second, and more sophisticated method, is to extend the finite dimensional theory
outlined above to infinite dimensional Riemannian manifolds (that is, Hubert
manifolds) and then apply it directly to the full path space [8, 12]. It is possible
that, with suitable modifications, this second approach could be made to work
in Lorentzian manifolds: this has not yet been done. Here I shall show how the
old method can be adapted to space-time geometry. What this approach lacks
in mathematical sophistication, it makes up for with geometrical transparancy.

There are two points at which the Riemannian argument, as expounded by
Milnor, breaks down when applied to metrics with Lorentzian signature (these
same problems arise in a disguised form in trying to apply Palais and S male's
version of the theory). The first is that the energy functional is, locally, neither
maximized nor minimized by affinely parameterized geodesies: for spacelike
geodesies, this difficulty is intrinsic (a spacelike geodesic can be shortened by


