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Abstract. Let I be a von Neumann algebra with cyclic trace vector Q. Let
d(A)=i[H, A] be a spatial derivation of MM implemented by an operator H
such that HQ=0 and H is essentially self-adjoint on D(5)S2.

It follows that:

eHPMe M=, teR.

1. Introduction

In a previous paper [1] we discussed the general theory of unbounded derivations
of a von Neumann algebra 9t on a Hilbert space 5# and, in particular, introduced
the notion of a spatial derivation. This latter form of derivation is defined in
terms of a symmetric operator H, on , and a weakly dense *-subalgebra D(J)
of M, which leaves the domain D(H) of H invariant. The derivation ¢ is defined
to be a mapping

AeD(6)—d(A)e M
with the property that

dAw=i[H, Ay, weD(H).

It is of particular interest to study the case that H is self-adjoint and has an
eigenvector 2 such that D(6)Q2 is a core of H. In [1] it was conjectured that if Q
is also cyclic and separating for 9 then

eHMe =90 teR.

This conjecture was verified in various special cases. If 9 is abelian then it is
essentially a theorem of Gallavotti and Pulvirenti [2]. In this note we extend the
abelian result by verifying the conjecture whenever Q is a trace vector.

2. Main Theorem

Theorem 1. Let M be a von Neumann algebra on a Hilbert space # and let Q be
a cyclic normalized vector defining a trace on I, i.e.

(Q, ABQ)=(Q, BAQ), A, BeM.
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Let 6 be a spatial derivation of IN implemented by a self-adjoint operator H such
that HQ=0.
If H is essentially self-adjoint on D(0)Q then

EHMe =9, teR.
The proof of the theorem will be divided into three Lemmas.

Lemma 1. Let M be a von Neumann algebra with a normalized cyclic trace
vector Q. Assume that there exists a sequence B,=B}eIR such that B,Q—y.

It follows that there exists a self-adjoint operator B affiliated with I such that
B,—B in the strong resolvent sense. In particular if ye #(IR) then y(B,) converges
strongly to y(B).

Proof. For each Ae C\R one has
(=B~ —=(A=B,) " He|
= ”()'_Bn)_l(Bm—Bn)(’{_Bm)_IQ”
<|Imi|”"|(B,,—B,)(A1—B,) " 'Q|
=|Ima|” " (A~ B,)” '(B,,—B,)Q|
where we have twice used
I(A—B,) " | <[ImA|
and, at the third stage, used the trace property. This demonstrates that the re-
solvents (A—B,)”! converge strongly on Q. But the resolvents are uniformly
bounded in n and Q is cyclic for the commutant 9 of 9. Hence the resolvents
converge strongly to some element R, of M. We next prove that R, is the resolvent

of a self-adjoint operator B.
Define v, by

y,=(A—B,)Q
and hence
lim p,=4Q—vp.

Now
[2—R,(AQ—w)|
=[(A=B,) " 'p,— Ry(AQ2 )|
< (A=B,) "y, — (AQ—y))|
+((A=B,) "' = R)(AQ—y)|
< [md| 7w, — (A2 —y)|
+(A=B,) "' =R)(AQ—y)| —=—0.

Hence one concludes that

R,(AQ—y)=0Q.
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Thus for Ce N
R,C(AQ—y)=CR,(1Q—1)
=CQ.

But as Q is cyclic for 9 this demonstrates that the range of R, is dense. By the
Kato-Trotter theorem [3] there exists a unique self-adjoint operator B such that

R,=(A—-B)"1'.
Moreover
eiBnp s ¢itByy

for all p, uniformly for ¢ in compacts.
Since

(A=B)"'(2Q-y)=Q
one immediately concludes that
BQ=y.
Finally for ye #(IR)
1By = | dpe'®®p7(p)
and
1(Byw=| dpe™yj(p) .

Hence y(B,) converges strongly to x(B).

Lemma 2. Adopt the assumptions of Theorem 1. If B=B*e D() and
A=(1+ad)(B)

with ac IR\{0} then
(Q, x(B)BQ)=(L, y(B)AQ)

for all ye Z(R).
Proof. As A—B=ad(B) the statement of the Lemma is equivalent to
(@, x(B)d(B)2)=0

for all ye Z(R).
Let f be a function such that f’'=y. The Fourier transforms then satisfy
inf ()= 1 n)=70).

Thus by Lemma 2 of [4] one has f(B)e D(5) and

o0

1
S(f(B)=i | dppf(p) | dre?™®5(B)ePt "B

—© 0
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The trace property of Q then yields
@.ar@=i(e. | dmfoeime)

- ©

=(Q, x(B)d(B)Q) .
Hence as HQ2=0 one has
(@, x(B)d(B)2)=0.

Lemma 3. Adopt the assumptions of Theorem 1. If A=A*eIM and aeR\{0}
then there exists a self-adjoint B affiliated with I such that

BQ=(1+iaH) ' AQ
and, furthermore,

(@, x(B)BQ)=(L2, (B)AQ)
for all ye #(R).

Proof. As D(6)R2 is a core for H there exists a sequence A,=(1+ad)(B,) such
that 4,2 converges to AQ. But
AQ=A*Q
= Jim 470

= lim (1 +20)(B))<.

where the second step uses the trace property of Q. Replacing B, by (B,+ B})/2
we may assume the B, self-adjoint.
Because

(1 +ad)(B,)2=(1 +ixH)B,Q
and the resolvent of H is bounded we conclude that
B,Q=(1+iaH)"'4,2

converges to (1 +ixH) 'AQ. The existence of B now follows from Lemma 1.
Further B, converges to B in the strong resolvent sense.
Next from Lemma 2

(@, x(B,)B,2) = (€, x(B,)4,2)

and the desired result follows by limiting,
Proof of Theorem 1. From Theorem 6 of [1] it suffices to show that
(1+icH) 1M, QWM. Q, acR\{0}.

In order to show this take 4=0 in Lemma 3 and y also positive. One then has
(©Q, x(BIBQ)=(Q, (B)A2) 20

by the trace property. Since Q is separating for 9 it follows that y(B)B can never
be negative for y positive. Hence B=0 and the proof is complete.
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Remark. As Q is a trace vector for 9 it follows that 9 is a finite von Neumann
algebra. Let 9 be the set of operators affiliated with 9 and having Q in their
domain. It follows from [5] that 9 is a self-adjoint space and MIMCN. This last
statement follows because MILC N and NI = (MI)*. If the definition of a spatial
derivation is generalized to allow a mapping

Ae D(B)SM—5(A)e N

then the result of Theorem 1 is still valid. The proof of this more general result
needs a slight extension of Lemma 5 of [1] to establish that the automorphism
property is equivalent to the positivity preserving property

(1 +icH) ' M, QCM, 2, oacR\{0}

and in the proof of Lemma 2 above 6(f(B)) must be calculated directly in the
vector state given by Q.
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