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Abstract. Let 9JI be a von Neumann algebra with cyclic trace vector Ω. Let
δ(A) = i\H,A~] be a spatial derivation of $R implemented by an operator H
such that HΩ = 0 and H is essentially self-adjoint on D(δ)Ω.
It follows that:

ί H = 9W, ίelR.

1. Introduction

In a previous paper [1] we discussed the general theory of unbounded derivations
of a von Neumann algebra SDΐ on a Hubert space Jtf and, in particular, introduced
the notion of a spatial derivation. This latter form of derivation is defined in
terms of a symmetric operator H, on Jf, and a weakly dense *-subalgebra D(δ)
of 9Jί, which leaves the domain D(H) of H invariant. The derivation δ is defined
to be a mapping

with the property that

δ(A)ψ = i[H, A~\ψ , ψe D(H).

It is of particular interest to study the case that H is self-adjoint and has an
eigenvector Ω such that D(δ)Ω is a core of H. In [1] it was conjectured that if Ω
is also cyclic and separating for 3Ji then

This conjecture was verified in various special cases. If SDΪ is abelian then it is
essentially a theorem of Gallavotti and Pulvirenti [2]. In this note we extend the
abelian result by verifying the conjecture whenever Ω is a trace vector.

2. Main Theorem

Theorem 1. Let 9W be a von Neumann algebra on a Hubert space J^ and let Ω be

a cyclic normalized vector defining a trace on SR, i.e.

(Ω, ABΩ) = (Ω, BAΩ), A, BeWl.
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Let δ be a spatial derivation of 9JΪ implemented by a self-adjoint operator H such
thatHΩ = 0.

If H is essentially self-adjoint on D(δ)Ω then

The proof of the theorem will be divided into three Lemmas.

Lemma 1. Let SOΪ be a von Neumann algebra with a normalized cyclic trace
vector Ω. Assume that there exists a sequence Bn = B*eW such that BnΩ^ψ.

It follows that there exists a self-adjoint operator B affiliated with SCR such that
Bn^>B in the strong resolvent sense. In particular if χ e ^ I R ) then χ(Bn) converges
strongly to χ(B).

Proof For each λe(C\IR one has

IKμ-jy-'-μ-Bj-'jΩil
= \\(λ-Bny

1(Bm-Bn)(λ-BmΓ1Ω\\

^\ImλΓ2\\(Bm-Bn)Ω\\,

where we have twice used

and, at the third stage, used the trace property. This demonstrates that the re-
solvents (λ-BX1 converge strongly on Ω. But the resolvents are uniformly
bounded in n and Ω is cyclic for the commutant W of 9M. Hence the resolvents
converge strongly to some element Rλ of SCR. We next prove that Rλ is the resolvent
of a self-adjoint operator B.

Define ψn by

Ψn=(λ-Bn)Ω

and hence

l im ψn=λΩ — xp .

n-*oo

Now

\\Ω-Rλ(λΩ-ψ)\\

= \\(λ-BnΓ
1

Ψn-Rλ(λΩ-ψ)\\

+ \\((λ-BnΓ
1-Rλ)(λΩ-i

Hence one concludes that

Rλ(λΩ-ψ) = Ω.
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Thus for CeW

RλC(λΩ-ψ) = CRλ(λΩ-ψ)

= CΩ.

But as Ω is cyclic for W this demonstrates that the range of Rλ is dense. By the
Kato-Trotter theorem [3] there exists a unique self-adjoint operator B such that

Moreover

eitBnψ-*eitBψ

for all ψ, uniformly for t in compacts.
Since

{λ-B)-\λΩ-ψ) = Ω

one immediately concludes that

Finally for

and

Hence χ(Bn) converges strongly to χ(B).

Lemma 2. Adopt the assumptions of Theorem ί. If B = B*eD(δ) and

with αeIR\{0} then

Proof As A — B = aδ(B) the statement of the Lemma is equivalent to

(Ω,χ(B)δ(B)Ω) = 0

Let / be a function such that f' = χ. The Fourier transforms then satisfy

Thus by Lemma 2 of [4] one has f(B)e D(δ) and

00 1

δ{f(B)) = i j dppf(p) I dreίprBδ(B)eipil-r)B .
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The trace property of Ω then yields

) = ί(ί3, I dppf(p)e^Bδ(B)Ω

= (Ω,χ(B)δ(B)Ω).

Hence as HΩ = 0 one has

(Ω,χ(B)δ(B)Ω) = O.

Lemma 3. Adopt the assumptions of Theorem 1. If A = A*eyίl and αeIR\{0}
then there exists a self adjoint B affiliated with SDΪ such that

BΩ = {l+iaH)-1AΩ

and, furthermore,

forallxeSTQBL).

Proof As D(δ)Ω is a core for H there exists a sequence An = (l + otδ)(Bn) such
that AnΩ converges to AΩ. But

AΩ = A*Ω

= lim A*Ω
n->oo

where the second step uses the trace property of Ω. Replacing Bn by (Bn + B*)/2
we may assume the Bn self-adjoint.

Because

and the resolvent of H is bounded we conclude that

converges to (l + iocH)~ιAΩ. The existence of B now follows from Lemma 1.
Further Bn converges to B in the strong resolvent sense.

Next from Lemma 2

and the desired result follows by limiting.

Proof of Theorem 1. From Theorem 6 of [1] it suffices to show that

W^Ω, αeR\{0}.

In order to show this take A^O in Lemma 3 and χ also positive. One then has

by the trace property. Since Ω is separating for 9W it follows that χ(B)B can never
be negative for χ positive. Hence B ^ 0 and the proof is complete.
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Remark. As Ω is a trace vector for 9Dΐ it follows that 90Ϊ is a finite von Neumann
algebra. Let 91 be the set of operators affiliated with 9M and having Ω in their
domain. It follows from [5] that 91 is a self-adjoint space and 9V3JIQ91. This last
statement follows because 9M9tg?ί and WSR = (9Mt)*. If the definition of a spatial
derivation is generalized to allow a mapping

AeD{δ)QWl->δ(A)e9l

then the result of Theorem 1 is still valid. The proof of this more general result
needs a slight extension of Lemma 5 of [1] to establish that the automorphism
property is equivalent to the positivity preserving property

Ω9 αeIR\{0}

and in the proof of Lemma 2 above δ(f(B)) must be calculated directly in the
vector state given by Ω.
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