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Abstract. The Weyl relation e-
isQjtpeisQ = j t { J t + sI) is generalized so as to hold

for noncanonical couples (P, Q) implying the commutation relation i [P, Q] = C
where C is arbitrary bounded self-adjoint. It is shown that if 0 is not in the
closure of the numerical range of C then both P and Q are spectrally con-
tinuous and neither bounded from below nor above. The dynamical equations
in noncanonical theory are established. It is shown that H (which is no longer
given by correspondence) cannot be bounded from below (above) if C^O

Introduction

Consider a one-dimensional possibly nonlinear quantum mechanical oscillator,

iίH,Q] = P, (0.1a)

i [ H , P ] = - F ( β ) , (0.1b)

where P, β, and H are the operators of momentum, position, and energy, respec-
tively, and where F is a nice function, for example, a polynomial. In addition, P
and β satisfy the canonical commutation relation

i [P, β] = / (= identity operator). (0.1 c)

Some years ago it was suggested by Heisenberg (cf. [1]) to replace (0.1c) by
a ''noncanonical" commutation relation,

/[Λβ] = C, (0.2)

where C is some self-adjoint linear operator. The motivation for this proposal
has to do with the removal of divergencies in quantum field theory. But there are
also other reasons to study noncanonical quantum theories, for example, general
relativistic models. Clearly, H cannot be in correspondence with the classical
Hamiltonian of (0.1a, b) if C is not a multiple of the identity operator. However,
this does not matter as long as we can expect to have the operator H the desired
spectral properties. In a paper to follow it will be shown that, for example, the
dynamical equations (0.1a, b) have solutions for a large class of functions F (such



160 G. Braunss

as F(Q) = Qn, n odd) in which P and Q are bounded whereas H coincides spectrally
with the Hamiltonian of the corresponding canonical system (same F but C = /).

In this paper we shall investigate some mathematical properties of one-
dimensional noncanonical quantum systems. Section 1 deals with the commuta-
tion relation (0.2), Section 2 with the dynamical equations (0.1a, b).

1. Generalized Weyl Relations

In the following the self-adjoint operator C in the commutator equation (0.2)
will be assumed to be bounded. Let σf(A)= \\[A — (/, Af)~\f\\ be the standard
deviation of a symmetric operator A with respect to a state / Then (cf. [2])

If Oe Wc (= numerical range of C) then σf(P)σf(Q) = 0 could happen for some /,
i.e. one could perform a simultaneous measurement of P and Q with respect to
a certain state / Since such distinguished states are not known we shall demand
0φWc.

As is well known the commutation relation (0.1c) without further specifica-
tion does not necessarily give the quantum mechanical operators P and Q.
Therefore it has been replaced by the Weyl relation,

which involves only bounded (namely unitary) operators. This relation implies
(0.1c) and gives the correct quantum mechanical operators P and Q. It would be
desirable to find a relation which in a similar manner replaces (0.2). Motivated
by the following proposition we shall establish such a relation.

Prpposition. Let A, B, and C be bounded operators on a Banach space such that

IA,B-] = C (1.2)

and let

Then (1.2) implies

Conversely, (1.3) and (1.4) each imply (1.2).

Proof. It is no difficulty to see that (1.2) implies

e - sBAesB = A + f0 dt(d/dt) (e ~ tBAetB) = A + CB(s).

Hence

e - sBetA esB __ et(A + CB(s))
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which proves (1.3). The proof that (1.2) implies (1.4) is completely analogous. To
prove that (1.3) implies (1.2) differentiate first with respect to t and then with
respect to s and set t = s = O. The proof that (1.4) implies (1.2) is completely
analogous. D

Theorem 1.1. Let A, B, and C be self-adjoint linear Hubert space operators with
C bounded and let (in the strong topology)

CB{s)=$s

oe-iσBCeiσBdσ,

Assume that

Then (1.5) and (1.6) each imply on @[A,B]

i\_A,B~\ = C. (1.7)

Equations (1.5) and (1.6) are mutually equivalent.

For the proof we need the following

Lemma 1.1. Let F and G(s) be self-adjoint linear Hubert space operators with
G(s) bounded and at least once bounded differentiable with respect to seJR. Then

(d/ds)ei{F + G{s)) = iei{F+G{s)) ^e-itiF+Gis)){dG{s)/ds)eit{F + Gis))dt. (1.8)

Proof/Let T = F + G{s) and ΔT = G{s + ή-G{s). Then the Duhamel formula
gives

Dividing by ε, taking the limit ε->0, and setting ί = l the assertion follows. D

Proof of Theorem 1.1. From (1.5) it follows immediately that A and A + CB(s)
are unitarily equivalent for every seJR, that is,

(*) e~isBAeίsB =

Since (d/ds)(eisBf)\s = 0 = iBf for all fe@B and (d/ds)(CB(s)f)\s=0 = Cf Eq. (1.7)
follows from (*) by strong differentiation. The proof that (1.6) implies (1.7) is
similar.

To prove that (1.5) implies (1.6) note that from (1.5) it follows

e~itAe~ ίsBeitA = e-ίtAeit{A + CB(s))e- isB

The left hand side is exp[_—is(e~itABeitA)~]. Let the right hand side be F(s). For any
/ in ΘB, we shall prove that F(s)f is strongly differentiable at 5 = 0 and the result
is —i(B — CA(t))f By Stone's theorem, / is in the domain of e~ίtABeιtΛ and we
have e~~itABeίtA2B-CA{t\ where B-CA{t) has the same domain as B due to the
boundedness of CA(t). Since both sides of this equation are self-adjoint, they are
equal and hence we have (1.6).
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To prove (d/ds)F(s)f=-ί(B-CA(t))f, we first note that e~isBfis strongly dif-
ferentiable if/is in the domain of B and (d/ds)(e~ίsBf)\s=0 = —iBf. We also have

strongly due to Lemma 1.1.
The derivation of (1.5) from (1.6) is similar. D

Remark. If C = I then both (1.5) and (1.6) coincide with the Weyl relation (1.1).

Theorem 1.2. Let A, B, and C be_ as in Theorem ί.ί and let Oφ Wc. Then A and
B are spectrally continuous. If OφWc (= closure of Wc) then A and B are neither
bounded from below nor above.

Proof. Let Vs = eίsB, let

and let Aλ = A-λI, 2eR Then (1.5) implies V*AλVs = Aλ + sKB{s). Assume Aλf = 0,
/ φ θ . Then the above equation inserted between / and Vs*f yields

Dividing by s and taking the limit s->0 it follows (/, C/) = 0 which contradicts
OφWc. Hence A is spectrally continuous. Similarly one proves that B is spectrally
continuous.

Let now OφWc. Then either C^c/or C ^ - c / for some c>0. Hence, since C
is bounded, we have either (KB(s)f,f)^c or (KB(s)f,f)^ —c for all real s and all
unit vectors /. Assume that A is bounded from below or above. Then both {Af,f)
and (AVsf, Vsf) for all unit vectors / in ΘA are bounded from below or above
by some real a. If (AVJ, VJ)^a, then V*AVs = A + sKB(s) implies s(KB{s)fJ)^
a — (Af,f) for all real s, which contradicts with (KB(s)f,f)^c at s-» — oo and with
(KB(s)f,f)^ — c at s->oo. Similar arguments hold for the other cases. •

In view of the foregoing results we now can replace the commutation relation
(0.2) by one of the relations (1.5) or (1.6) with P instead of A and Q instead of B.

Definition. A (one-dimensional) generalized Weyl triple consists of self-adjoint
linear operators P, Q, and C where C is bounded, such that for all s, ίeIR

e - isQ eitP eisQ _ eίt(P + CQ(s)) Q 9)

or, equivalently,

e-itPeisQeitP = eis(Q-CP{t)) ^ (1.10)

where (in the strong topology)

CQ(s) = $s

oe-iσQCέ"Hσ, CP(t) = %e-
iτPCeixPdτ .

Remark. Any pair of bounded self-adjoint linear operators belongs due to the
above Proposition to a noncanonical Weyl triple.

It follows from Theorem 1.2

Theorem 1.3. Let (P,Q,C) be a generalized Weyl triple where C is strictly
definite, that is, 0φWc. Then P and Q are spectrally continuous and neither bounded
from below nor above.
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The following two examples will show that 0φWo 0eWo can be realized in
the commutator relation (0.2) for bounded as well as unbounded P and Q.

Example 1. Let P and Q be Jacobi matrices with elements pmn and qmni re-
spectively, where

(i) pmn = il~ 1/2{amδm+ Un-anδm>n+ x ) ,

(ii) qmn = 2~1/2(amδm+1§n + anδm>n+1) m , n = 1,2,... .

Then C = ί[P, Q] is a diagonal matrix with diagonal elements

Cl=a2

l9 cn = a2-a2_ί « = 2 , 3 , . . . .

Let 0<a1<a2< ... ^ constant < oo. Then P and Q are bounded self-adjoint and
(cf. [3]) absolutely continuous. Clearly, C is of trace class and 0φWo 0eWc.

Example 2. Let P and Q be Jacobi matrices with elements given by (i) and (ii)
in Example 1 where an = n1/4. Then P and Q are both unbounded and (cf. [4])
self-adjoint. C = i[_P,Q] is a diagonal matrix with diagonal elements

C l = l, C|I = n 1 / 2 - ( n - l ) 1 / 2 n = 2,3,... .

Clearly, C is compact but not of trace class and O^FFC, OeJ/Pc.

Remark. A theorem given by Putnam (cf. [3]) states that if P and Q are
bounded self-adjoint linear operators and if C = z'[P, β ] ^ 0 then 0eΐ/Fc; if in
addition 0φWc then P and Q are absolutely continuous.

2. The Dynamical Equations

Let for a moment P, Q, and H in (0, la) be bounded. Then

e - ίsQeirHeisQ _ ^ir(H+ PQ(s)) Γ ? 5 e jR (2.1)

where (Vs = eίsQ)

PQ{s) = ls

0Vσ*PVσdσ = %{P + γ0 Vτ*CVτdτ)dσ = sP + % CQ(σ)dσ.

Equation (2.1) implies

Ks* H Vs = H + PQ(s) = H + sP + f0 CQ(σ)dσ . (2.2)

If P, Q, and H are unbounded then (2.1) is not necessarily a consequence of (0.1a).
However, in canonical theory VSΘHC^HQΘP for every real s and (2.2) holds on
Q)H. If in addition H is self-adjoint then (2.1) follows from (2.2). Since the con-
dition of H being self-adjoint is too restrictive (one might be willing to consider
essentially self-adjoint operators H) we shall replace (0.1a) by (2.2) [and not by
(2.1)].

Consider now (0.1 b). Again, if P, Q, and H were bounded (and F, say, a poly-
nomial) then

e-
ίtPeirHeitP= expir{H- [F(β)]P(ί)} r, ί e R (2.3)

where (Ut = eίtP)
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Equation (2.3) implies

U*HUt = H-lF(Q)Mt). (2.4)

If P, Q, and H are unbounded then (0.1b) does not necessarily imply (2.3). In
canonical theory one has

ί) = G(Q) - G(Q - tl), G(α) = f0

and H = jP2 + G(Q) (with a rest-mass m = l ) . Hence

This agrees with (2.4). If in addition H is self-adjoint then (2.4) implies (2.3). For
reasons which have led us to establish (2.2) we replace (0.1b) by (2.4) and not
by (2.3).

Definition. A (one-dimensional) general quantum mechanical system (GQMS)
consists of a generalized Weyl triple (P, Q, C), an essentially self-adjoint operator
H, and a function F such that (2.2) and (2.4) hold.

Theorem 2.1. // for a GQMS C^O, C + 0, then H cannot be bounded from
below.

Proof. Let

s2LQ(s) = s2 JJ JJ V*sCVστsdσdτ = f0 Jg V*CVσdσ= f0

Then it follows from (2.2)

If C^O then (LQ(s)ff)^0 for all real s. It is possible to choose / so that
β = (Pfif)^0 because otherwise the closed operator P satisfying (P/,/) = 0 for
a dense linear subset 3JH+SP = ΘHC\@P must vanish contradicting with CφO.
Hence the right-hand side of (*) tends to — oo either for s-> —oo if β > 0 or for

D
Corollary. If C^.0, C + 0, then H cannot be bounded from above.

Remark. If C^O, CφO, then H cannot be bounded from above even for
bounded P, Q, and F(Q\ which is possible if 0eWc (see Example 1 in Section 1).

Theorem 2.2. Let f be in the domain of H - [F(β)]p(0 /or <z// reα/ ί. // ίftβ /unc-
ίίoM ([P(β)]p(.)/?/) n a s no upper (lower) bound then H cannot be bounded from
below (above).

The proof follows from (2.4) by copying the proof of Theorem 2.1.

Example. Let F(Q) = kQ, k real constant. Then

ίF(Q)Mt) = fc ft (β - CP(τ))dτ = fcίβ - kt2LP(t)

where
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Let C^O so that (LP(ήfJ)^0 and let

φ(t) = ([F(β)]p(ί)/J) = kt(QfJ) - kt2(LP(t)fJ).

where (β/,/)φO. Then φ has no lower (upper) bound if /c>0 (fc<0). Hence by
Theorem 2.2 /c^O is a necessary condition for H being bounded from below.

Remark. In [1] it has been shown that H and C commute. The easy proof
follows from Eqs. (0.1a), (0.1b), and (0.2).

We conclude with a simple noncanonical model. Consider a system of par-
ticles with rest-masses mk: 0<m1 <m2< .... Let Q be the many-particle position
operator and assume (Q, β, C) to be a generalized Weyl triple in a Hubert space
Jf. Let Jf fc be the subspace of particles with rest-mass mk so that for any f{k)e J f k

which is in the domain of [β, β ] there holds

Then we should have C=(l/m 1)E 1 + (l/m 2 )£ 2 + ••• where Ek is the projector onto
Jffc. Since C must commute with H (the total Hamiltonian) it follows that H is
reduced by each Jf7

 fc. This would agree with the assumption that mk is a (lowest)
eigenvalue of H for an eigenvector in Jffc or that J^k is an eigenspace of H
belonging to an eigenvalue mk (of a certain multiplicity). Clearly, C>0, so H can-
not be bounded from above. Hence, if H were bounded on each Jf^, then the
sequence m1,m2,... could not be bounded and therefore 0eWc (in this case β
and β possibly could be bounded). Note, however, that if Hk = EkH = HEk is
bounded then β and β are not reduced by J^k. Because if Qk = EkQ = QEk then
i[_Qk,Qk]={l/mk)Ek and this would imply (due to Theorem 2.1) that Hk is not
bounded from above.
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