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Convergence of the Diagonal Operator-valued Padé
Approximants to the Dyson Expansion
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Abstract. The diagonal operator-valued Padé approximants formed from the
Dyson expansion to the Schrodinger time-evolution operator are shown to
converge everywhere in the complex plane, except on a certain subset of the
real axis.

The purpose of this paper is to outline a proof of the convergence of the
diagonal operator-valued Padé approximants (O.P.A.) formed from the Dyson
expansion for the non-relativistic time-evolution operator. This will be carried
out by showing that the Dyson expansion belongs to a broad class of operator-
valued analytic functions for which the diagonal O.P.A.’s converge.

Let U(t,z) be the time-evolution operator which solves the Schrodinger
equation,

i % U(t,z)=[Hy—zV(t)]U(t, 2)

1

U@,z)=1, W)

where V(t) is a bounded, positive-definite operator for all time t and H, is an

unperturbed Hamiltonian. It is known [1] that U(t, z) is an entire function of the
coupling constant z and that the Dyson expansion [2],

Ut 2)=Y %0 Uf0)Z, 2

converges for all complex z. There are two difficulties concerning this expansion.
First of all, for z real, the truncated power series is unitary only to some finite
order; secondly, the series may be slowly convergent. On the other hand, Padé
approximation techniques can be used to resolve both of these difficulties. In
general, the Padé approximants to a series, when they do converge, converge more
rapidly than the partial sums; and, in the case of the diagonal ([N/NJ)
approximants, they preserve the unitary character of the operator (cf. Zinn-
Justin, Ref. [3]).

Operator-valued Padé approximants are defined analogously to scalar Padé
approximants: Let A(z) be a bounded operator-valued function analytic in a
neighborhood of the origin and having the power series expansion

A(Z)=Z?.;0AIZI .
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The [N/N] O.P.A. to A(z) is defined as the unique rational function A,(z)=
Pp(2)(Qn2)) "1 such that A(z)— Ay(z)=D,y 122V 1+ ..., where Py(z) and Q\(z)
are polynomials of degree N or less [3,4]. The main difficulty in the operator
case is with the non-commutativity of the A4,.

As Zinn-Justin [3] observes, there are several important “invariance”
properties of the diagonal operator-valued Padé approximants. Let o, f, y, and o
be scalars, then we have:

(2) {(2AE)+HAE)+6) 1}y =(0Ay(2) + B AD) +8) .

(b) Ap(oz/(fz +6)) = {Alaz/(z+ )} .

() If A(z)" = A(Z), then Ay(2)" = A\(2).

(d) If A(2)' A(Z)=1, then Ay(z)TApZ)=1.

In words, the [N/N] Padé approximants are invariant under homographic
transformations of the function. They are also invariant under homographic
transformations of the variable, provided the origin is fixed. Finally, the diagonal
approximants preserve self-adjointness and unitarity.

In the scalar case, the diagonal Padé approximants are known to converge
uniformly for Stieltjes series [5, 6]. Such series arise from functions of the form

fiay=f 1.

3)
where u(t) is a positive measure with infinitely many points of increase.

Functions of the form given in (3) can be classified according to their mapping
properties. In fact, by a theorem of Nevanlinna (cf. Stone, Ref. [7], p. 573) every
function which is analytic in the cut complex plane C—[a, b] and preserves the
upper and lower half planes has the form

fl2)= ocz+ﬂ+jb #(t)

(4)
By using (4) coupled with properties (a) and (b), which hold for scalar Padé
approximants as well, it is possible to show that the diagonal Padé approximants
converge uniformly for any function which is analytic in the upper and lower half
planes, and in a neighborhood of the origin, and which maps the upper and lower
half planes into themselves. Such functions are called R-functions (cf. Kac and
Krein, Ref. [8]).

The operator-theoretic generalization of R-functions was formulated by
Wigner [9] in conjunction with the study of the R-Matrix (cf. Lane and Thomas,
Ref. [10]; Narcowich, Ref. [11]; Wigner, Ref. [12]). Following Wigner’s work,
we make the

Definition. Let T(z) be an operator-valued® function, analytic in the upper
and lower half planes and in a neighborhood of the origin. If also T(z) satisfies

(1/2i(T(z) - T(2)") - Imz 20,
we call T(z) an R-operator.

! Unless otherwise stated, in what follows all operators belong to the space of bounded linear

operators on some Hilbert space .
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For R-operators T(z) which are analytic in the cut complex plane C—[a, b],
we have the following representation (cf. Allen and Narcowich, Ref. [137),
du(r)

T(z)=Az+B+ [0, ®)
t—z

where A is a bounded positive semi-definite operator, B is a bounded self-adjoint
operator and du(t) is a positive strongly countably additive operator-valued
measure. [That is, for any Borel set 4, |,du(t)20, and if A; are mutually disjoint
Borel sets and A= )72, 4, then

wA)p= 32}023': (4 ,)d’

for all ¢ e #°.]

Bessis and Zinn-Justin [4] have shown that if the underlying space # is
finite dimensional, it is possible to construct the diagonal Padé approximants
to (5). By means of continued fractions, they also prove that these approximants
converge to T(z) except along the cut. In the infinite dimensional case, the situation
is complicated by the presence of the continuous spectrum in the various operators.
However, by using a variational principle (cf. Bessis and Talman, Ref. [14]), it is
possible to derive a formula for the [N/N] operator-valued Padé approximant
which is similar to Nuttall’s compact formula (cf. Baker, Ref. [6]), but which
avoids assuming invertibility. The convergence of the [N/N] O.P.A’s to T(z)
then follows along much the same path as used by Allen et al. [5] in the scalar
case (further details and a complete proof will appear elsewhere). Finally, for any
R-operator, it is possible to use (a) and (b) to prove that the [N/N] operator-
valued Padé approximants exist, and that they converge on a set which includes
the upper and lower half planes and a neighborhood of the origin. Precisely, we
have the following

Theorem 1. If T(z) is an R-operator, analytic on C—{(— o0, f]ula, c0)},
p<0<a, then the [N/N] O.P.A’s converge uniformly in the uniform topology to
T(z) on compact sets bounded away from the cut.

From the definition of R-operator, it is clear that every such operator is self-
adjoint on any portion of the real axis where it is analytic. Thus the modified
Cayley transform (cf. Riesz and Sz-Nagy, Ref. [16]) of an R-operator

(U@)=—(T@)~iXT)+)"", (6)

is unitary on the real axis, away from the cuts. If we assume that —i is never in the
spectrum of T(z), then for any ¢ € #,

(o, (U*U—1)¢)=—4p,(ImT)yp) ,

where p=(T +1i)”'¢. Hence, U satisfies the following properties:
U*U<1 if Imz<0, (7.1)
U*U=1 if Imz=0, znoton the cuts, (7.2)
U*Uz1 if Imz>0. (7.3)
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This motivates the following

Definition. Let U(z) be an operator-valued function analytic in the upper and
lower half planes and in a neighborhood of the origin. If in addition U(z) satisfies
(7.1), (7.2), and (7.3), we call U(z) a U-operator.

Given a U-operator, if —1 is not in the spectrum of U(z) for z off the real axis
and in a neighborhood of the origin, then it is clear that the inverse Cayley trans-
form,

T(2)=i(l-U@)1+U(z) ",
is an R-operator. By applying Theorem 1 and property (a) of the O.P.A.’s we have

Theorem 2. Given a U-operator U(z) such that on the set S=C—{(—c0,f]u
[o, 00)}, f<O0<a, U(z) is analytic and —1 does not belong to the spectrum of U(z),
then the [N/N] O.P.A.s converge in the uniform topology to U(z) on S.

We are now in a position to prove

Theorem 3. Let U(t, z) be defined by (1), and let V(t) be a bounded measurable
operator-valued function of t on [0, 00) satisfying

V(t)=c>0,

where ¢ is some constant, for all t=0. Then, for any t=0, the [N/N] O.P.A.s
formed from (2) converge to Ul(t, z) in the uniform topology at each point of the set
S=C—{(— o0, flula, )}, B<O0<a, where the interval (B,c) is the smallest
interval including the origin for which —1 is not in the spectrum of U'(t, 0)U(t, z).

Proof. Let ¢ be any vector in the domain of H. It is well-known that U(t, z)¢
is a strongly differentiable function of ¢ (cf. Kato, Ref. [16]), and that |U(t, z)¢ >
is also differentiable in t. A short computation shows that

UG, 2912 =(~2maK U, I, VIOU(, 6

where (, ) is the inner product in #. Using the fact that V(t)=c for all ¢, we have

d

1o 1?2 (=2Imz)c|U¢|> 8)
if Imz<0 and

d

T 1U¢[* <(—2Imz)c||U¢|? ©)
if Imz>0. From (8) and (9) it immediately follows that

1UQ|1>z e 20 |2, Imz <0 (10)
and

US> e 20| $)2, Imz>0. (11)

By the continuity of U, (10) and (11) hold for all vectors in s#. Hence, U(t, z) is a
U-operator. Since multiplication by U(t,0)" does not affect (10) and (11), the
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operator U(t, 2)=U'(t,0)U(t, z) is also a U-operator. Moreover, for t=0, (10)
and (11) imply that —1 is not in the spectrum of U off the real axis. Also, since
U(t,0)=1, —1 cannot be in the spectrum of U(t,2) in a neighborhood of z=0.
By Theorem 2, the diagonal O.P.A.’s converge to U(t, z) in S. Finally, the diagonal
O.P.A’s to U(t, z) converge to U(t,z) on S because they are simply the [N/N]
O.P.A’s to U(t, z) multiplied by U(t, 0). This completes the proof.

We remark that the condition V(tf)=c can be very simply achieved by the
addition of a constant to the perturbing potential. This merely produces an
oscillatory term in the time-evolution operator.

It is not known if the O.P.A.’s converge at points z for which U'(z, 0)U(t, z)
has — 1 in its spectrum. However, by way of analogy, it can be shown (Narcowich,
Ref. [17]) that if, for ', we consider the function

g2)=i(1—e®)1+e%) 71,

then the complex-valued diagonal Padé approximants to e do converge for all z,
even at the poles of g(z). Thus it is probable that the diagonal O.P.A.’s converge
to U(t, z) for all z.
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