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Free States and Automorphisms of the Clifford Algebra
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Abstract. We study automorphisms of the Clifford algebra which map the
set of quasi-free states onto itself. We show that they are quasi-free if the one-
particle space is infinite dimensional, and give counter examples in finite
dimensions.

In a recent paper [1], Hugenholtz and Kadison have shown an automorphism
of the CAR or Clifford algebra which maps the set of gauge invariant quasi-free
states onto itself to be quasi-free. The same result is known for automorphisms
which preserve the set of all quasi-free states [2]. We give simple, alterative proofs
of these two results when the one particle space is infinite dimensional and counter-
examples when it is not. Because of its economical description of non-gauge
invariant free states and of non-unitary Bogoliubov transformations, we have
worked in the real Hubert space formalism of [3]. The connection between this
and the complex Hubert space formalism used in [1] is found in Section 2 of [3].

Let (H, (,)) be a real Hubert space of even or infinite dimension. The C*-
Clifford algebra 2I(//) over H is generated by the range of a linear map /-»£(/)
oϊH into self-adjoint part of 9I(H), satisfying

B(f)B(g) + B(g)B(f) = 2{f9g). (1)

If H' is a subspace of even or infinite dimension we denote by 9l(//') the C*-
subalgebra of 3ί(H) generated by {B(f)\f e H'}. Every orthogonal transformation
Θ on H defines a ^-automorphism α^ of 9ί(H) such that

Such an automorphism is called quasi-free.
Every anti-hermitian operator A in the unit ball of B(H) defines [3] a state

ωA such that
O i f W i s o d d

N / Λ M ( r>( r \ τ>t f\\ / r>( f \ o Όί /• \\ί = 2 (~ l)lωA(B(fί)B(fi))ωA(B(f2)...B(fi).. B(fN))

otherwise
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where '^ means the entry is omitted and ωA(B(f)B(g)) = (f,g) + i(Af,g). Such
states are called quasi-free.

The quasi-free state ω0(A = 0) is the unique tracial state on 2lpf) and so is
invariant under any automorphism [4].

The first lemma answers the question, "When is the convex combination of
quasi-free states quasi-free?" The proof is in the appendix.

Lemma 1. Let A,B,C be antί-hermitian operators in the unit ball of 3fi(3f}\
let ωA, ωβ, ωc be the corresponding quasi-free states and let Q<λ< 1. Then,

ωc = λωA + (l-λ)ωB (3)

if and only if C = λA + (ί — λ)B and there exists an orthonormal pair { f , g } and
μ > 0 such that

A-B = μ(f®g-g®f).

If { f , g } is an o — n pair of vectors in H, we shall define the automorphism
α β(/» 9) as follows.

= Qχp((θβ)B(g)B(f))SGxp((θ/2)B(f)B(g)) VS e SI(/f) . (4)

Let P be a 2-dimensional projector on H and let / be a complex structure on H
commuting with P (i.e. J2= — 1, J+ = — J). Let P, denote the group of automor-
phisms generated by {αβ(/, J/)|P/ = 0}; and let 9I(#, P,) denote the algebra of
Py-fΐxed points of 9I(if).

Lemma 2. Let P and J be as above. If H is infinite dimensional, then 2l(P//) =

The proof is in the appendix.

Theorem 3a. Let J^ be infinite dimensional; and, let α be a * -automorphism of
which maps the set of all quasi-free states onto itself. Then α is quasi-free.

Proof. Let {/i,/2} be an o — n pair of vectors in Jf. By α-invariance of ω0,
Lemma 1 and linearity of the transpose α of α~ 1, we have

(!-A)ω0 + /ίαω/ l Θ / 2_/ 2 @ / 1=άωΛ ( / l (g ) / 2_/ 2 (g ) / l ) 0</ί<l.

By hypothesis and Lemma 1, ̂ O}fι@f2_f2@fl = ωμ(gί<s>g2_g2@gι} for some positive
μ and o — n pair {#ι,02} Now, if {/z, k} is an arbitrary o— n pair and η a real
number (\η\ < 1), it follows easily that

^ ( Λ®fc-k®Λ ) = (l + iηB(h)B(k))°ω0 .

Since ω0 is faithful and invariant, it follows that <x,(B(f1)B(f2)) = μB(gί)B(g2).
Squaring both sides gives μ= 1. Now let {/3, /4} be an o — n pair, pairwise ortho-
gonal to {Λ, /2}, and let {#3 #4} be so that <x(B(f3)B(f4)) = B(g3)B(g4).

Now

And,

=0=
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Combining these two results, we have

Q = ω0(B((g2, g3)g4-(g2, 04)03)£(0ι) .

2, g4)
2} .

Similary (0ι,03) = (0ι»04) = 0. Thus, {gl9g2} is pairwise orthogonal to {g3,g4}.
Since α~ l has this property as well,

[α(5(Λ)), B(Λ)B(Λ')] =0= [α(£(/2)), B(Λ)B(Λ')]

for all o — n pairs {/z, /z'} which are pairwise orthogonal to {gι9g2} Let P be the
projector upon the subspace spanned by {gι,g2} and let J be a complex structure
commuting with P. Clearly α£(/i) and α5(/2) are Py-fixed points of 9I(#). By
Lemma 2, there exist numbers PΓy}y = i;i"4 such that

X\B(g,) + X2B(g2

Clearly ω0(αB(/y)) = ω^B(fy)B(g^B(g2)) = 0.
Hence X^ = ̂  = 0. It follows from self-adjointness that ̂  and X2 are real

and from (1) that

Now let { f j } j e ι be an o— n basis of #, and let {$/}} be the orthonormal basis
such that

Let Θ be the unique linear, continuous extension of the basis transformation.
(9 is orthogonal and, by linearity and by continuity,

<x,B(f) = B(Θf) V / e / f . Q.E.D.

Theorem 3b. Let H be finite dimensional (dim if > 2). There exists a * -auto-
morphism of yί(H) which transforms the set of quasi-free states onto itself and which
is not quasi-free.

Proof. It suffices to exhibit a ^-automorphism α which is non-free, which is
trivial on even monomials and commutes with a_ί. Let {fj}2=ι be an orthonormal
basis of H, let

ί 1 TV odd ]
gN=\ . \ and let

1 1 N even J

U = 2~^(l — gNB(f1) ... B(f2N)). U is unitary and defines an automorphism with
the above properties.

UB(fk)U* = gNB(fk){B(f1) ... B(f2N)} Vk. Q.E.D.

We now indicate a simpler, alternative proof of Theorem 3.1 of [1]. Let J be
a complex-structure on //, let HJ denote the J-complexifϊcation of H and let C
denote a complex-conjugation on HJ(C2 = 1, CJ= — JC, C+ = C).
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A quasi-free state ωA is said to be gauge invariant if [J, A~] = 0. It is easily
checked that μ(f®g — g®f) defines a gauge invariant quasi-free state if and
only if μ(f®g — g®f) = ±μ(f®Jf-Jf®f\ Thus, if α maps the set of gauge
invariant quasi-free states onto itself, there exists, for every/ e H a g E H such that
α(B(/)B(J/))= ±B(g)B(Jg). Now

\\B(g)B(Jg) + B(h)B(Jh)\\

^ \ωj(B(g)B(Jg) + B(h)B(Jh))\ = \\g\\2 + \\h\\2. Further, since the mapf-+«(B(f)B(Jf))
is continuous, it follows that the two complementary subsets of {/| \ \ f \ \ ^ ξ } = Hξ

Hξ

± = {f\\\f\\^ξ,a(B(f)B(Jf))=±B(g)B(Jg) for some gεH}

are both closed and open. Since Hξ is connected Hξ

+ =0 or Hξ. Since £ is arbitrary,
either one of two cases is possible : For every feH there exists g e H such that
aίB(f)B(Jf) = B(g)B(Jg)\ or, for every feH there exists geH such that
<x.cuB(f)B(Jf) = B(g)B(Jg). Consider the first possibility. As above aB(f) is a fixed-
point under the action of the group generated by {αΘ(k, Jk)\{g, J0}J_{k, Jk}}.
By Lemma 2, αJ3(/) and uB(J f ) are elements of the algebra generated by {£(#),
£(«/#)}. It follows as above that there exists an orthogonal transformation (9 such
that u(B(f)) = B(ΘJ) for all f EH. Further [0,J] = 0 implying that 0 is unitary
on HJ. In the second case, B(f) = B(Θf) with φ = CG' and G' unitary.

It is a pleasure to acknowledge many useful discussions with P.N.M. Sisson and A. Verbeure. The
author is indebted to H. Araki for pointing out a fault in an earlier version of this work.

Appendix

Proof of Lemma 1. Suppose (3) holds. Clearly C = λA + (\-λ)B. Let D = A-B.
Then, for arbitrary {//}jL i CH, we have

= -A(A-iχ/1,{(D/3,/4)D-D/4(8)D/3+D/3®D/4}/2).

Since/!, /2 are arbitrary, we have

Necessity follows by antisymmetry.
Conversely, suppose that A — B = μ(h®g — g®ti) and C = λA + (l — λ)B. It is

clear that, for N = 2 or 2S+ 1 (S a positive integer),

To prove (*) in general it suffices, by the anticommutation relations (1) to choose
{fj} from the elements of an orthonormal basis (kj with kl=g,k2 = h and no
entries repeated. We now proceed by induction: Suppose (*) holds for N = 2S.
By (2) and the induction hypothesis, we have

= iμλ(i - λ) Σ,215

2

+ 1} ( -mg, /jXΛ, /i) - (Λ, ffXΛ, Λ)]
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We can assume S^l and anti-commute on the left unt i l/ΊΦ0 and/iφ/z, con-
cluding that (*) holds for N = 2(5 +1). Q.E.D.

Proof of Lemma 2. Let C denote a complex-conjugation on HJ commuting
with P(C2 = 1,C+=C and CJ=-JC). Let {/x}xez be an orthonormal basis of

and let/be a normalized vector in p(-4—W.2I((1-P)#) is
2

the closed linear span of 9X0u{/} where

9I0 = {B(9l) . . . B(gN)\ {ftJJL ί C [fx,

and 2l(Ή) is the closed linear span of the set {Άί of elements of the type

S=B(f)Sι + B(Jf)S2 + B(J)B(Jf)S, + S4

where
Let

_

2 2

For S e 91 19 we clearly have

S = M(S) + B(f)M(B(f)S) + B(Jf)M(B(Jf)S) + B(f)B(Jf)M(B(Jf)B(f)S) .

Since M is linear and continuous this identity holds for all S 6 9I(//). Moreover

It is clear that 5 e 2l(#, Pj) iff its coefficients in 9ί((l - P)H) are Pj-fixed points.
Thus, it is sufficient to prove that

To this end define the orthogonal shift Ton H by Tfx = fx+1 and TJfx = Jfx+ί,
TP=P. It is clear that for all A ε2ί l 9α r^= limατ^ where [TL, J] = 0, PTL = P
and L"GO

Λ + 1 xe[-L,L-l]

fx xφl-L9L].

a

one sees that

By linearity and continuity α r= lim α τ _, pointwise. By standard Fourier methods
L->oo

where

Thus, if Se2ϊ((l-P)H)n2I(#, P,), then aτS = S.
Similarly u2p-ι= πm Ylx= -L^π(fx->Jfx\ so ot2P-ιS = S. Now the algebra of

L-+00

α2p_ι-fixed points of 2I((1 — P)H) is the range of the projector M•——2P~1

and so it is the closed span 2ί2 of the even monomials in 9I0.
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Let S be an 2I(#, P^-fixed point of 9Ϊ((1 - P)H) and let Sn be a Cauchy sequence
in 9I2 converging to S. Now, for each n and BeVl^ lim \\[aτ™Sn, β]|| =0. By

m-* oo

linearity, and a 3 — ε argument,

lim [ατmS, B] = [S, B] = 0 Be 2t(ff ) .
m-» oo

Thus S = λl for λ G C. Q.E.D.
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