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Free States and Automorphisms of the Clifford Algebra
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Abstract. We study automorphisms of the Clifford algebra which map the
set of quasi-free states onto itself. We show that they are quasi-free if the one-
particle space is infinite dimensional, and give counter examples in finite
dimensions.

In a recent paper [1], Hugenholtz and Kadison have shown an automorphism
of the CAR or Clifford algebra which maps the set of gauge invariant quasi-free
states onto itself to be quasi-free. The same result is known for automorphisms
which preserve the set of all quasi-free states [2]. We give simple, alterative proofs
of these two results when the one particle space is infinite dimensional and counter-
examples when it is not. Because of its economical description of non-gauge
invariant free states and of non-unitary Bogoliubov transformations, we have
worked in the real Hilbert space formalism of [3]. The connection between this
and the complex Hilbert space formalism used in [1] is found in Section 2 of [3].

Let (H,(,)) be a real Hilbert space of even or infinite dimension. The C*-
Clifford algebra N(H) over H is generated by the range of a linear map f —B(f)
of H into self-adjoint part of 2A(H), satisfying

B(f)B(9)+ B(g)B(f)=2(f. 9) .- 1

If H' is a subspace of even or infinite dimension we denote by (H') the C*-
subalgebra of A(H) generated by {B(f)|f € H'}. Every orthogonal transformation
O on H defines a *-automorphism o, of A(H) such that

%B(f)=B(Of).

Such an automorphism is called quasi-free.
Every anti-hermitian operator A in the unit ball of B(H) defines [3] a state
w4 such that

0if N is odd
o 4B(f1) ... B(fy)= {

N . N\ )
i=2 (= Vo (B(f)B(f))wB(f3)-.-B(f).. B(fy))
otherwise
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where” N means the entry is omitted and w (B(f)B(9)=(f, g)+i(Af,g). Such
states are called quasi-free.

The quasi-free state wy(A4=0) is the unique tracial state on () and so is
invariant under any automorphism [4].

The first lemma answers the question, “When is the convex combination of
quasi-free states quasi-free?” The proof is in the appendix.

Lemma 1. Let A, B, C be anti-hermitian operators in the unit ball of B(H);
let w4, g, w¢ be the corresponding quasi-free states and let 0< A< 1. Then,

wczlwA'F(l—A)wB (3)
if and only if C=AA+(1—A)B and there exists an orthonormal pair {f,g} and
u>0 such that

A-B=p(f®g—9®f).

If {f,g} is an o—n pair of vectors in H, we shall define the automorphism
o o(f, g) as follows.

e/, 9)S =exp((@/2)B(g)B(f))S exp(©/2)B(f)B(g)) VS eUH). (4)

Let P be a 2-dimensional projector on H and let J be a complex structure on H
commuting with P (i.e. J?=—1,J" = —J). Let P; denote the group of automor-
phisms generated by {ag(f, Jf)|Pf=0}; and let A(H, P; denote the algebra of
P-fixed points of U(H).

Lemma 2. Let P and J be as above. If H is infinite dimensional, then A(PH)=
A(H, P)).

The proof is in the appendix.

Theorem 3a. Let # be infinite dimensional; and, let o be a *-automorphism of
W(H#) which maps the set of all quasi-free states onto itself. Then o is quasi-free.

Proof. Let {f, f,} be an o—n pair of vectors in #. By a-invariance of w,,
Lemma 1 and linearity of the transpose & of &~ !, we have

(A=A + 80,01, 1,07, =80us05- 1050 0<A<L.

By hypothesis and Lemma 1, 6w, g1, 1,05, = @ug @92 - 9,04, LOF SOME positive
u and o—n pair {g,g,}. Now, if {h, k} is an arbitrary o—n pair and # a real
number (|5| < 1), it follows easily that

Oynek-rkew=(1+inB(h)B(k))-w, .

Since w, is faithful and invariant, it follows that o(B(f;)B(f,))=uB(g,)B(g,)-
Squaring both sides gives u=1. Now let {f3, f,} be an o —n pair, pairwise ortho-

gon;l to {f1, f>}, and let {g; g4} be so that a(B(f3)B(f4)) = B(g3)B(ga).
ow

0=wo(B(f1)B(f2)B(f3)B(/4))

=wo(B(g1)B(92)B(93)B(g4))= (91, 9a)g2- 93) — (91> 93)92, ga) -
And,

o[ B(f1)B(f2), B(/3)B(f4)] =0=[B(91)B(g,), B(g3)B(g4)] -
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Combining these two results, we have

0=wo(B((92> 93)94— (92, 94)93)B(g1) -
[B(91)B(92), B(g3)B(g)])=2{(g2, 95)* + (92> 94)*} -

Similary (g,,93)=(91,94)=0. Thus, {g,,g,} is pairwise orthogonal to {g;, g4}
Since o~ ! has this property as well,
[(B(f1)), B(h)B(h')]=0=[«(B(f)), B(h)B(I)]

for all o—n pairs {h, '} which are pairwise orthogonal to {g,,g,}. Let P be the
projector upon the subspace spanned by {g,,g,} and let J be a complex structure
commuting with P. Clearly «B(f;) and oB(f,) are P;-fixed points of U(H). By
Lemma 2, there exist numbers {XJ}JZ1>;->* such that

oB(f,))=X;B(g:)+ X7B(g,) + X7 B(g:)B(g,) + X7 .

Clearly wo(aB(f,))=wq(aB(f,)B(g:)B(g.))=0.
Hence X; =X7=0. It follows from self-adjointness that X and X2 are real

and from (1) that

aB(f1)=B(X 191+ X29,)

aB(f2)=B(—X,9: +X19,)
with X} +X3=1.

Now let {f;};.; be an o—n basis of H, and let {¢ f;} be the orthonormal basis
such that

aB(f))=B(Of).
Let O be the unique linear, continuous extension of the basis transformation.
O is orthogonal and, by linearity and by continuity,

aB(f)=B(Of) VfeH. Q.E.D.

Theorem 3b. Let H be finite dimensional (dim H >?2). There exists a *-auto-
morphism of W(H) which transforms the set of quasi-free states onto itself and which
is not quasi-free.

Proof. It suffices to exhibit a *-automorphism o which is non-free, which is
trivial on even monomials and commutes with o _,. Let { /;}?¥, be an orthonormal
basis of H, let

1 Nodd
gN=

] } and let
i  Neven

U=2"*1—gyB(f,) ... B(f,y). U is unitary and defines an automorphism with
the above properties.

UB(fU*=gxB(f){B(f1) ... B(fan)} k. Q.ED.

We now indicate a simpler, alternative proof of Theorem 3.1 of [1]. Let J be
a complex-structure on H, let H” denote the J-complexification of H and let C
denote a complex-conjugation on H/(C*=1,CJ=—JC,C*=C).
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A quasi-free state w, is said to be gauge invariant if [J, 4]1=0. It is easily
checked that u(f®g—g® f) defines a gauge invariant quasi-free state if and

only if l(f®g—9g®f)=+u(f®Jf—Jf®f). Thus, if « maps the set of gauge
invariant quasi-free states onto itself, there exists, for every f € H a g € H such that
«B(f)B(J f))= £ B(g)B(Jg). Now

I1B(g)B(Jg) + B(h)B(Jh)|
= |w,(B(g)B(Jg)+ B(h)B(J h))| = ||gl|* + || hl|*. Further, since the map f—a(B(/)B(J/))
is continuous, it follows that the two complementary subsets of { f|| f =&} =H®
H ={fIIf12¢& a«B(f)B(JSf)= £ B(g)B(Jg) forsome geH}

are both closed and open. Since H® is connected H% =@ or H®. Since ¢ is arbitrary,
either one of two cases is possible: For every f'e€ H there exists g € H such that
aB(f)B(J f)=B(g)B(Jg); or, for every feH there exists geH such that
acoB(f)B(J )= B(g)B(Jg). Consider the first possibility. As above aB(f) is a fixed-
point under the action of the group generated by {wg(k, JK)|{g, Jg}L{k, Jk}}.
By Lemma 2, aB(f) and aB(J f) are elements of the algebra generated by {B(g),
B(Jg)}. It follows as above that there exists an orthogonal transformation @ such
that a(B(f))=B(0 ) for all f € H. Further [¢,J]=0 implying that ¢ is unitary
on H’. In the second case, B(f)=B(0 f) with @ = CO’ and (' unitary.

It is a pleasure to acknowledge many useful discussions with P.N.M. Sisson and A. Verbeure. The
author is indebted to H. Araki for pointing out a fault in an earlier version of this work.

Appendix
Proof of Lemma 1. Suppose (3) holds. Clearly C=14+(1—21)B. Let D=A—B.
Then, for arbitrary {f;}¢.; CH, we have
0=(s4+(1- 15— (A0 4+ (1 = DHwp)(B(f1)-.. B(f4))
=—AMA=1)(f1, {(Dfs, f)D—D fu®D f3+D 3D f4} 13) -

Since f}, f, are arbitrary, we have

(D f3 fD=Df,&Df3—Df3®D f,
Necessity follows by antisymmetry.

Conversely, suppose that A —B=u(h®g—g®h) and C=14+(1—-21)B. It is
clear that, for N=2 or 2S+1 (S a positive integer),

(*) (@410 - np— (Ao +(1— Awp))(B(f1) ... B(fy)=0.

To prove (*) in general it suffices, by the anticommutation relations (1) to choose
{f;} from the elements of an orthonormal basis {k;} with k; =g, k,=h and no
entries repeated. We now proceed by induction: Suppose (*) holds for N=28S.
By (2) and the induction hypothesis, we have

(03441 -2p— (Ao, +(1— /IwB(B(fl - B(fys+1y)
=ipd(1—2) Y35V (= Y, filh, f)—(f1, 9 W]
(w4 —ap)(B(f3) - ﬁ - B(fas+ 1)
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We can assume S=1 and anti-commute on the left until f; &g and f; &5, con-
cluding that (*) holds for N =2(S+1). Q.E.D.

Proof of Lemma 2. Let C denote a complex-conjugation on H’ commuting
with P(C*=1,C*=C and CJ= —JC). Let {f,},.; be an orthonormal basis of

1+C 1+C .
(1-P) (+T>H and let f be a normalized vector in P(+T>H' A(1—P)H) is

the closed linear span of Ay {I} where

Wo={B(gy) ... Bl{guln-1 C{foo J filxez}

and A(H) is the closed linear span of the set A, of elements of the type
S= B(f)S1 + B(Jf)Sz + B(f)B(Jf)Sa + S4
where {S;}i-, C,.
Let
_ Oaape-n O %ogpty
2 2 '

For S e U,, we clearly have
S=M(S)+B(f)M(B(f)S)+ B(Jf)M(B(Jf)S)+ B(f)B(Jf)M(B(J)B(f)S) .

Since M is linear and continuous this identity holds for all S € A(H). Moreover
MU(H)=%((1— P)H). .
It is clear that S e A(H, P)) iff its coefficients in WA((1 — P)H) are P,-fixed points.
Thus, it is sufficient to prove that

A((1— PH)NA(H, P,)={CI} .

To this end define the orthogonal shift Ton H by Tf,= f.+; and TJf, =Jf 1,
TP=P. It is clear that for all 4 e, 0,4 = lim oy, A where [T;,J]=0, PT,=P
and Lmeo

M

Jfev1 xe[-L,L—-1]
T.fi=1 f-L x=L
fe x¢[—L,L].
By linearity and continuity o= Lh_’n;x0 oy, pointwise. By standard Fourier methods
one sees that
2L+1

aTL= n=1 o 2nn (km Jkn) Where
2L+1

1 L
V20417770
Thus, if S € A((1 — P)H)A(H, P,), then oS =S.

Similarly a,p_, = Llim TIE Lo fes JS2), 8O ayp_ 1 S=S. Now the algebra of

k,=

—2mJ(x+L+1)n/2L+ lf
-

oy +0pp—1

o, p_1-fixed points of A((1— P)H) is the range of the projector M - 5

and so it is the closed span U, of the even monomials in A,
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Let S be an A(H, P,)-fixed point of A((1 — P)H) and let S, be a Cauchy sequence
in A, converging to S. Now, for each n and Be U, lim |[o7S,, B]| =0. By
linearity, and a 3 —¢ argument,

lim [otpmS, B]=[S, B]=0 BeA(H).

Thus S=AI for AeC. QE.D.
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