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Abstract. The spontaneous loss of charge by black holes due to particle emission is discussed.
For large black holes (more massive than 10'7g) the process is shown to be governed by a Schwinger
type formula. For smaller black holes the method of calculating the process is described and asymptotic
forms for scattering and superradiant coefficients given.

Introduction

The purpose of this paper is to investigate under what circumstances a black
hole immersed in a vacuum may possess charge and the mechanism whereby
it loses by the spontaneous production of pairs of oppositely charged particles.
The motivation for the work is both conceptual — to understand particle produc-
tion processes in strong gravitational fields- and astrophysical. The astrophysical
interest is not so much in black holes of solar mass or above which may have
formed from the gravitational collapse of stars, star clusters or galaxies as in
black holes of small mass which Hawking [1] has suggested may have formed in
the early universe. If these are to be easily detectable than it will be by any charge
that they possess, since then they would show up in bubble chamber tracks and
possibly using etched track techniques etc.

It is clear that whether or not they may possess charge is crucial to any conside-
ration of searching for such objects. We shall not discuss the astrophysics of small
black holes further in this paper but merely note that the question of large black
holes is somewhat simpler to answer. One would not normally expect large
excesses of charge to occur in the universe and indeed an object of mass M and
charge Q will not gravitationally accrete particles of mass m, charge e, if the ine-
quality

eQ>Mm (1.1)

holds unless the particles are projected at the object with some initial velocity.
(Here we are using, as we shall throughout this paper unless the contrary is
stated “natural units”, n.u. in which A=c=G=k=1. The electrical units are
unrationalized. Since m/e~ 10~ 2! for electrons we see that a large black hole will
naturally acquire hardly any charge and will probably lose it by accreting particles
of opposite sign rather quickly. It will turn out that this implies that the amount
of activity due to pair formation will be quite negligible.
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When this work was embarked upon it was rather expected that the situation
with respect to quantum processes for non rotating black holes would be as
follows.

It is easily seen from a consideration of the charged particle orbits in the
Reisner-Nordstrom solution or using the “first law of black hole mechanics” [2]
that provided

Iy
it is energetically favourable for a pair of oppositely charged particles to form
in the vicinity of the hole, for one to fall into the hole and the other to escape to

infinity. r, is the radius of the event horizon and ;Q~ is the electric potential at the
+
event horizon.

Criterion (1.2) is necessary for both the existence of a “generalized ergosphere”
to exist in the Reisner-Nordstrom — ie a region where the exist orbits with negative
total energy cf. [3] and for “superradiant” scattering of waves obeying the charged
Klein-Gordon equation. This means that on the level of classical particles a
Penrose process [4] is possible and on the level of waves the corresponding
phenomenon occurs the so called “Klein Paradox” [5]. These are the comple-
mentary aspects of the “wave particle duality” a unified account of which is
obtained by an appeal to quantum field theory. Since Eq. (1.2) does not — when
conventional units are restored contain Planck’s constant one seeks a criterion
which governs the rate of this essentially quantum process. Such a quantity is
the so called “critical field strength”, and at least for large black holes such that

M>% (1.3)

that is the Schwarzchild radius is much larger than the Compton wavelength of
the particle we might hope to apply Schwinger’s well known result [6] for the
rate of particles created by a uniform electric field. Thus we expect the rate to be
very slow unless

2
Q. m (1.4)
e
and to rapid otherwise their being an exponential dependence of the form
m?r2
eQ

If we plot on a diagram of Q against M for black holes the lines Q=e; Q=M,
eQ=Mm, and eQ= M?*m* see Fig. 1 we come to the following conclusions [7]
(since M <r, <2M).

1) To possess even one electron charge for a reasonable length of time the

exp—

e
hold must have a mass greater than —=10'3g.
m
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Fig. 1. A diagram of Q against M for black holes (taken for simplicity as non rotating) all black holes

lie below the lines Q =M (otherwise there would be no event horizon) and above Q = e (since charge is
2 2

m - .
quantized). Above Q =— M itisenergetically favourable to form pairs. Above Q = this is a rapid
e

. . . m. . .
process. To make a sensible diagram the magnitude of — is much greater than its physical value
e

2) To possess a charge at all significant with its mass a hole must be more
. e
massive than R 10° M.
Where we have used the mass and charge of the electron since it is the lightest

and hence most easily emitted particle.
However it has now become clear from the remarkable work of Hawking that

. . . . 1
these results which will remain true for large black holes in the sense that M>—
m

they require substantial modification below that limit [8, 97.

In addition to the emission in superradiant modes (which has also been
discussed by Starobinsky [20] and Unruh [11] in the different but closely related
context of rotating holes) he has discovered the time dependence of a general
gravitational collapse is such as to cause even a neutral, non rotating black hole
to emit particles of all kinds as if it were a body with a temperature =% where k
is the surface gravity of the black hole [2]. This thermal emission means that any
hole with mass M will “evaporate” in a time ~M?>.

Thus if M3 <1t the Hubble time ~10°° n.u. it will have vanished or at least
diminished to the Planck mass by now. It is a direct consequence of the well
known Cosmological Coincidences [12] that the mass at which this occurs is
equal (in order of magnitude) to the value we have found above i.e. 10'3g.

Thus we now see that if M <% it will thermally emit particles of mass m at a
reasonable rate since the temperature of the Hole T~ $> m. If the hole is charged
then the emission factor is as if this we an additional contribution to the chemical
potential of ij—Q. This means that particles of the same charge to that of the

+

hole be emitted more readily than those of opposite charge and thus leading to a
net thermionic current and a neutralization of the hole.
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This process may be viewed as being due to a vacuum polarization effect and
it leads naturally to the question of how black hole responds to this pair produc-
tion. In ordinary electrodynamics not only are pairs formed but the external
electric field is altered [13, 14] thus producing modifications of Coulomb’s law.

This paper is mainly concerned with laying down a foundation for later
studies of such processes and the calculation of the emission process. In particular
we shall demonstrate that for large black holes we recover the Schwinger formula,
and we calculate superradiant scattering coefficients. We shall do this by first
considering the general theory of charged particles in an external gravitational
electromagnetic field. For simplicity we consider spin zero particles although the
extension to fermions is fairly straightforward. Then we proceed to consider the
particular geometry of the black hole situation. In the next section we calculate
some of the relevant scattering coefficients and in the final section make some
remarks concerning their application.

2. Theory of Vacuum Polarization in External Electromagnetic and Gravitational
Fields for Spin Zero Particles

In this section we consider a given space time with a given (¢ number) electro-
magnetic field. The theory is specified by giving field equations, commutation
relations and a definition of the vacuum state. In what follows we shall assume
that the spacetime possess a partial cauchy surface whose cauchy development
is the region of spacetime we are interested in. We shall be working throughout
the Heisenberg picture. Since we are dealing with quantum mechanical fields we
require a vector potential A, and we shall assume we are in a gauge in which

A% ,=0. @.1)

The particles are described by a quantum field ¢ which obeys the Klein-Gordan
equation

(V,— ied,)(V* — ieA")p +m>$p=0. 2.2)

V, denotes covariant differentiation. It will be convenient to introduce the gauge
invariant operator &, defined by

D,=V,—ieA, 2.3)

(2.2) implies the existence of a conserved current

Ji=5 16" 2,0 9(2,9)"}. 4

+ denotes hermitian conjugate, — will denote complex conjugate.
To write down the commutation relations we set

[$(x), ¢(x)]=[¢" (x), " (x)]=0

and note that [¢(x), ¢ *(x')] is a solution of (2.2) with respect to the variable x and
also the complex conjugate of (2.2) regarded as a function of x'. Thus we may set

[o(x), ¢ (x)]=il G(x, x)) (2.5)
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with the symmetry

G(x,x)= = G(x', x) (2.6)
and note that G(x, x') is completely specified by giving G(x, x") and t*2,G(x, x")
on an initial surface X with normal ¢* which passes through x'. We set

G(x,x)=0, 2.7

*9,G(x, x")=0d(x, x'), (2.8)
where 6(x, x) is the delta function on X. These properties completely determine
G(x. x') and in fact ensure that properties (2.7), (2.8) hold on any other surface
through x'. G(x, x') is of course a “c number”.

We note that both the commutation relations and the field equations and
Eq. (2.1) are invariant under both charge conjugation

o—d", e——e (2.9)
and gauge transformations

p—elp, A, —A,+V A (2.10)
provided

V,y*A=0. (2.11)

To procede further we need to define the vacuum state. We begin by defining
a scalar product between any two ¢ number solutions of (2.2) by:

1. _ N
(6 ) =51 (X — D, 0d2" 2.12)
which enjoys the properties

()=, x), (2.13)
(o pw)=aB(x. w). (2.14)

(3% x) is not positive definite nor does it vanish only if x vanishes, its sign however
cannot be altered by simply rescaling. We shall refer to (y, x) as the “norm” of y
though it does not have the usual properties of a norm as used by mathematicians.
Using this scalar product it is possible to introduce a complete set of ¢ number
solutions of (2.2) —{p;, n;} with the properties

(P p)=0;;;  (m,n)=—96;; (p;»n)=0. (2.15)

Such a set will be referred to as a basis. We have written (2.15) as if {p;, n;}
were a discrete set but in practice of course there will be a continuous range of
such functions.

One way of constructing a basis is as follows: chose a partial cauchy surface 2
with normal t* and upon it chose a complete set of functions ¢; normalized such that

f“'i&jdz =0;;. (2.16)
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To specify a p; we need only to give p;, and p,=t"P,p; on 2. This determines p;
by the Cauchy-Kowaleski theorem — at least in a neighbourhood of Z. Similarly
for the n;. The choice to be made is

1 e

= =1 — 0,
Di I/QZ i Di 2 i
1 .
n,=——0; n,:—i &O-i,
1/28; l/ 2

where o;, §; are positive numbers chosen for convenience (often in practice to
make simple separable solutions). To see that these are complete we note that any
solution y of (2.2) is specified by yp and 1 on X.

Let

w=Ziei6i; p=Y,f0;
if
1P=Z,~ app;+cn;  thenon X

These equations are sufficient to determine the @’s and ¢’s in terms of the e’s and f7s.
Having constructed a basis we may expand the quantum field operator as

¢=>(ap;+en). (2.17)

Where the @’s and ¢’s are position independent operators. In order to satisfy the
commutation relations it is sufficient to set

[a;, af 1=0; [eied 1= =0y (2.18)
or with ¢;=b;

[b;, b 1=0; (2.19)

and zero for all other commutators.

The a’s and b’s are of course annihilation and creation operators for “particle”
and “antiparticle” states described by the p’s and n’s respectively. However that
statement has no invariant meaning because one is at liberty to chose a new basis
{p;, n;} related to the old one by:

pi=y ek pi+ B ng (2.20)

=3 {ok; '+ B p} 2.21)
with

5lR_a<+)(x<+) ﬁ(+>ﬁ<+)’ (2.22)

Sin _a<.. o~ BB (2.23)

—al B — B (2.24)
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This induces a Bogoliubov transformation on the g; and b, leaving the commuta-
tion relations unchanged as follows

a=Ya ‘“a ‘“b“ (2.25)
b= ZJ B >a’° (2.26)
Had we defmed a vacuum state |0 by the conditions
a;|0>=0, (2.27)
b,j0>=0. (2.28)

These equations would not remain true in the new basis since provided f{;” and
Bi; <0 we shall have mixed in some creation operators into the new annihilation
operators.

If there exists a symmetry of the space time which is also a symmetry of the
electromagnetic field, generated by a killing vector K, say one may construct a
global, generalized momentum operator K which is well defined by the following
prescription. Let T,; be the symmetrized energy momentum operator-obtained
by functionally differentiating the lagrangian with respect to the metric then the
object

K=|T, K", (2.29)

where the integration extends over any partial cauchy surface is independent
of that surface provided ¢ falls off sufficiently rapidly at infinity since

(T,KPy*=0. (2.30)

It generates transformations on the operator ¢ in the sense that it is an infinitesimal
generator of unitary transformations on the space of operators and obeys:

i$,K]=% @ (2.31)

where ¢ is the Lie derivative.
One is also at liberty to chose solutions of (2.2) which have an exponential
dependence on the corresponding group parameter ie. such that

& ¢=ing, (232)

where « is a constant. These solutions will act as raising and lowering operators
in the sense that if |[K) is an eigenstate of K with eigenvalue K then ¢'|K) is a
field of eigenstates of K with eigenvalue K+« and ¢|K) a field of eigenstates with
eigenvalue K—oa. If L, is another commuting Kkilling vector we may consider
solutions which also obey:

%f o=ifo . (2.33)

If solutions of this type are chosen to make a basis then the creation operation
will create particle states with generalized momentum o and f. If the spacetime
and the electromagnetic field are invariant under an r parameter group G, which
is not necessarily abelian we can label the killing vectors with upper case latin
letters thus K¢%. A ranges from 1 to r.
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The structure constants of the group C defined by

(,gﬂg g)y)(/» CinZ

K4 Kp KpK

imply the commutation relations
(K. Kp]l= ngBKC

for the corresponding generalized momentum operators. Thus if » of the killing
vectors commute (r<4) we may take solutions with exponential dependence on
the r group parameters (if r=4 we have the field free, flat space case). We could
also consider operators which we built up quadratically from killing vectors.
For example if there is spherical symmetry we can consider the “total angular
momentum operator” L? defined by

L2=Lx2+l.y2+L22,

where L, etc. are the operators built out of the killing vectors generating rotations
about three orthogonal axes. Corresponding to Eq. (2.34) we can write

(D)=L Lo+L L+ L 29,

In the same way as before we can consider solutions of (2.2) which obey for example

{g AR .if}qb— U+ ).
And in a similar way as before these solutions will act as lowering and raising
operators for total angular momentum. The reason for doing this in flat space
field free is of course to construct a vacuum state which is invariant under the group
of motions of flat space — that is the Poincare group. This is done by fourier
analyzing, i.e. using the 4 commuting translation operators. However there is not
quite sufficient — one must also modify the definition (2.29) by subtracting off the
vacuum expectation value of the momentum operators (normal ordering). This
will of course not affect Eq. (2.31) An alternative procedure in flat field free space
is to use the time translations and generators of angular momentum about one
axis and total angular momentum. This choice of basis is equivalent to the usual
one since there is no mixing of positive and negative frequencies (f{;)=f{;’=0)
and Egs. (2.25) and (2.26) reduce to a unitary transformation of the anmhxlatlon
and creation operators. If on the other hand one uses a different timelike killing
vector — for example the generator of boosts in certain direction one will obtain
a basis which is not merely a unitary transformation of the usual one (i.e. fi{;’=0)
and one’s definition of the particle states is altered (cf. [15]).

In spacetimes which become in some sense asymptotically flat and field free
it is possible to use a basis which tends in the asymptotic region to the usual basis
in flat, field free space. This is the usual approach of S-matrix theory. If on the
other hand there is a lot of symmetry present one may be inclined to make use of
it in defining the vacuum. If there is no asymptotically flat region one may have to.
In any case the choice of the vacuum is something that has to be decided on
physical grounds and is not provided by the formalism. However once we have
chosen a vacuum we may procede to calculate for example the expectation value
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of the current. It is easy to see that this reduces to

O 10> =€}l D) — pdD,p) - (2.34)
If4,=0wehave 9, = 9” and 7; can be taken as p; so that the current vanishes.
The application of an external field effects the “virtual” particles and antiparticles
in the vacuum differently, causing currents to flow and charge distributions to
build up which will in turn modify the external field eventhough Eq.(2.15) guarantee
overall neutrality. It is of interest to calculate the vacuum current in terms of
another basis. A short calculation leads to:
OT,J0y = e {7, n;— Pi(@ap’)}
+ Y0k BB HAD 1, — 0Dy
Zl gk eﬁ(+)ﬁl(u+){p azpk - j azpk}
+ Zl Jk eﬁ( )O(H- ){n;@apllc - 5}'901";(}
+ Y5k B AT, — WD, i) (2.35)

3. Geometry of Collapse and Choice of Vacuum State

In order to determine whether the black hole loses charge and how fast it is
necessary to integrate the vacuum current over a surface at infinity. We could of
course use expression (2.34) directly but it is more convenient to introduce a new
basis at large future times which can be separated into a set of positive and negative
norm functions which are zero on the future horizon and purely outgoing at
infinity which we write as {p(# ", 17),n(#",1")} and a set which carry no flux
to infinity and are purely ingoing on the future horizon which we write as
{p{A*), n(A#")}. To completely specify them we chose them to have exponential
time dependence and to be multiples of spherical harmonics. Since near infinity
we expect the solution to look approximately like the exact Reisner-Nordstrom
solution this is permissible. If we then calculate the total charge lost to infinity
infinity using expression (2.35) we find it to be

2 ellBG1 =181 (3.1)

The i summation running only over the set {p(F*,I"), n(#".1")}. The impor-
tant question we have to answer now is what basis do we use to describe the
initial state? This depends upon amongst other things how one envisages the
collapse. One approach is to use the exact geometry of the Reisner-Nordstrom
solution whose Penrose diagram is shown in Fig. 2. Here we are only concerned
with the shaded exterior region. For this region X may be taken as a cauchy
surface. The basis is chosen to consist of functions which are outgoing on the past
horizon and carry no flux through past infinity (i.e. I~ u.# ") —{p,(:# ~), n(# ")} and
a set which on zero on J#~ and ingoing at past infinity — {p(¥ ~, 7)), n(F ", 17)}.
Since there is both time and spherical symmetry the solutions are also chosen
to be products of spherical harmonics and time dependence exp iwt. We find that

pI 1), p{F,I7) have >0

3.2
n(F 17, n(F,I7) have w<0. (3-2)
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Fig. 2. The Penrose diagram for the Reisner-Nordstrom solution. Each point represents a 2-sphere.

Null lines are at 45°. The dotted line 2 represents a possible cauchy surface for the shaded exterior

region #* and # ~ are the future and past event horizons, #* and #~ future and past null infinity
and I, I~ future and past timelike infinity

But
p{# ) have w+£>0
" (3.3)
n(#~) have a)+i—Q<0
+

as will be seen in the next section. Those modes with negative frequencies smaller

in magnitude than i—Q can be members of both the sets p,(# ) and n(F*,I7)
+
and will contribute to the sum in Eq. (3.1). In order to propagate to infinity we

must have
w?>m?*. (3.4)

Thus the modes in question are just the superradiant modes whose existence
depends on criterion (1.2). It is now possible on this picture to resolve the paradox
of how a static field can produce particles to infinity. Normally one says that
particle production is due to the mixing of positive and negative frequencies by a
time varying field, since particle states are defined by positive frequencies and
antiparticle states vice versa. If instead one includes the electromagnetic field
into ones definition of particle and antiparticle this will not be true — criterion
like (3.2) and (3.3) will hold and the paradox is resolved. This is the same pheno-
menon as was discovered many years ago by Snyder and Weinberg [16] in the
case of a deep, time independent well in flat space. There the situation was ascribed
to the failure of the Hamiltonian operator and the total charge operator,

Q=[JHdz,

to commute. This is just what is happening here.

The sum in Eq. (3.1) will, in practice be infinite but this will, as in [8, 9], corre-
spond to a steady rate of emission of particles. In this case the quantity — Y ;|{;|?
measures how much flux a unit wave at future infinity carries into the past event



Spontaneous Loss of Charge by Black Holes 255

singularity

~1

Fig. 3. The Penrose diagram for the gravitational collapse of a charged fluid

horizon — i.e. it is the absorption coeff., 4{. If we convert all the quantities to
rates by averaging the flux over a large time we obtain for the rate of loss of charge
the sum of the superradiant coefficients that is:

d
d_?zeZiAg—)' (3.5)

The summation being only over the superradiant modes. Since for superradiant
modes 4! is negative the hole loses charge.

The drawback with this method is that in a realistic gravitational collapse
the past event horizon will not exist. It is this which motivates Hawking’s choice of
the initial no particle state. This is best seen from Fig. 3 which is the Penrose
diagram of an idealized spherically symmetric collapse of a charged fluid. As
a cauchy surface he choses I~ U~ and as a basis the set of ingoing waves with
time dependence expiwt. The time dependence of the gravitational collapse
mixes the positive and negative frequencies and he obtains an expression similar
to (3.1), for the total charge emitted. The remarkable fact about his analysis is
that he is able to show that the expressions Y ;|8¢’|* and Y ;|\, ’|* when converted
to a rate as above has the form:

+ —
A A

0 and ¢0
exp(a),-—ke—)/ T-1 exp(a)i-——)/ T-1
i Fy

where A{*) and A{”) are the absorption coefficients for positive and negative
frequencies (that is positive and negative charges) in the exact Reisner-Nordstrom
geometry at a frequency w; and

K
T=—.
2n
The result that one obtains for the rate of loss of charge is then
d A A7)
E?:eg ' - ‘ (3.6)

e
ry T,

exp(wi+—Q)/ T-1 exp(wi—fgy T-1
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. .. e . .
note that 4{™) is positive for coi>—Q— and negative for the superradiant modes,
r

+
a)i<—er—Q-. As Hawking has pointed out in the limit of very low temperatures, for
+

example for very massive black holes the collapse is very slow and expression (3.6)
goes over into (3.5). It also agrees with the result one would get by applying
Schwinger’s formula as will be seen later. The advantage of deriving the results
in the way we have is that expression (2.29) for the vacuum current will be valid
everywhere in the region outside the hole and on the future horizon whereas
looking at the rate of particles emitted at future infinity gives no local information
about the vacuum current.

Contrasting the two methods, Unruh’s and Hawking’s we see that Hawking’s
corresponds to switching the interactions off at past infinity and Unruh’s to
keeping it on. As such both methods could be applied any problem in field theory.
On the whole it seems to the author that the latter (switching the interaction off at
past infinity) is more appropriate in most, “asymptotically flat problems” including
the production of pairs by a potential well. In a cosmological context where there
exists no asymptotically flat region the answer is less obvious.

4. Calculation of Superradiant Coefficients

From what has been said in the previous section it is clear that the calculation
of the absorbtion and superradiant coefficients is essential to understand the loss
of charge. In this section we provide some approximate forms for these coefficients
and derive some of the results quoted above. We begin by noting that the Klein-
Gordan equation is separable in the usual coordinates for the Reisner-Nordstrom
solution and we may consider solutions of the form

P=e""Y,, (0, PR(r) (4.1)

then R will obey the equation

2
ard (rzA flﬁ) +{(w +§) _ (m2 +M)A} FR=0 42)
dr dr r r
we are taking
2M Q?
A=goo=1-M2 43)
r r
ade=2ar (4.4)

’
Equation (4.2) has 2 regular singular points at r=r, ;r=r_, the 2 two roots
of 4 and an irregular singular point at infinity, surprisingly perhaps r=0 is a
regular point. (4.2) does not have solutions in terms of known or tabulated functions
apart from the exceptional case’s w?=m?=0 and w?=m*=e’Q*M ~? when the
singularity at r= o0 becomes regular and the equation may be solved in terms of
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hypergeometric functions. Since this case is a little interest we shall not do this
but turn to the boundary conditions to be satisfied by solutions of (4.2). At infinity
the asymptotic form of the solutions is

R=lexpii{kr—-oclog2Rr}. (4.5)
r

With R=]/w?—n? and a= — (MQw? —m?)+ewQ)k L. If k is real and we agree
to take the positive square root then for positive frequencies the positive sign
indicates ingoing waves and the negative sign outgoing waves. If the frequency
is negative then the contrary is true. If k is complex then one solution grows
exponentially and one decays exponential with r. Near r=r, the solutions are:

1
;expii<w+fg)y times analytic function of (r—r.) (4.6)
Fy
with
" dog )" log(r—r_) 4.7)
=r e —— —ry)———log(r—r_). .
YT =) =) %

As r ranges between r, and oo, y ranges between — oo and + co. To discuss the
boundary conditions at the horizons it is necessary to introduce a set of coordinates
and a new vector potential related to the old one by a gauge transformation which
are well behaved on the horizons. For the future horizon the new coordinate
required is the advanced time coordinate v defined by

v=t+y. (4.8)

The new vector potential A . 1s generated by the function

~ 1
A=—ggﬂ{Iog(r—r+)—log(r—r_)}. 4.9

+

The transformed function @ is given by:

. . , i [e r_\? i e

b= YemRexp{lwv+ lwr—}-ﬁ(g%—w(:) )log(r—r+)—ﬂ(aﬂrag)log(r—m)}.
(4.10)

Thus near #*
- —i eQ . .
docexp ™ w+r— (x1—-1log(r—ry)p X analytic function of (r—r,).
+

4.11)

@ will be analytic if we take the positive sign (ingoing waves). If we take the positive
sign (outgoing waves) the solution will be C? iff

w
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On the past horizon we introduce a retarded time coordinate u defined by
u=t—y (4.12)
and a new vector potential A . generated by the function
A=-A.
The new function & will be analytic near # ~ if we take the negative sign (outgoing)
and C?iff 7, ‘i;< p.

If [*(n*) are the future directed normals of the future (past) horizons then the
gauge invariant derivatives obey, up to an overall positive factor which depends
on the scaling of I* and n*

l"‘@l@fi =i (co +j—Q> d=ivd
* (4.13)
n@zszi(wﬁ‘%) $—ivd.
Fy
On the horizon the dependence of ®, & on the coordinates in the horizons is
ey, and €"Y,,.

Confining ourselves to real frequencies obeying w? > m?* we see that set {p(# =, 17)}
corresponds to w>m and R having asymptotic form:

1
R—»% exp(ikr)+ f* Hexp(—ikr) as r—oo
N (4.14)
R—»g—exp-f—i(a)+ﬁ)y as r-or, .
ry +
Using the Wronskian of (4.2) one can show that
1—|f+|2=(w+i—Q) lgT1P=A4". (4.15)
+
The set {n(#~, I )} have w < —m and R with asymptotic form:
1 . _1 :
R—»E; exp(—ikr)+ f R—rexp(ﬂkr) as r—owo
B (4.16)
R—>€‘—exp+i(a)+§)y
+
and
_ e _
1-1f |2=—<w+r——Q)|g 2. (4.17)
+

The normalization is such that

(pk(f—s I_)apk’(j—> I_))= B(k_ k,)émm'au’ etc. (418)
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The set {p,(# ", 17)} have: w >m and with asymptotic form:

R—»Lexp—ikr—kh+ Lexp(+ikr) as r—oo
kr kr

(4.19)
! 1 ‘( eQ)
R—j" —exp—ilo+—|y as r-r,
" "
and {n(#*,I")} have: o< —m
1 1
R—o—exp(+ikr)+h™ —exp(—ikr) as r—o0
kr kr
R—»J—exp—i<w+g)y as r—oo.
T roy
_ eQ
The set {p{(+# ")} have a)+r—>0 and
+
11 st :
R—>——expivy+——exp—ivy as r—r, (4.20)
r+‘ﬂ r+]ﬂ
and
t+e—ikr
R— e as rooo if w>0
R 4.21)
t e LKy
R— as r—oo if w<0.
kr
_ eQ
The set {n{(+# ")} have w+r— <0and
+
— +ikr
R—>t ¢ as r—oo
kr
Wronskian arguments yield:
L= ls7P=lP
(4.22)

1—|s*|>=signow|t*|?.

It remains to discuss solutions of (4.2) for values of w outside the range: real w and
w?>m?. That is we seek solutions which are exponentially damped at large r and
ingoing on the past or future horizon. If we assume that solutions exist for real w

. e
we make use of the Wronskian of (4.2) to show that (w +—Q) =0and so apart from
Fy
. . e .
the possible exceptional case = — — we have a contradiction. If we assume that
ry

there are solutions which decrease exponentially with r, are ingoing on #* and
grow exponentially with time we obtain by integrating Eq. (4.2) by parts and
taking the imaginary part:

I |2 (Rea)+eQ> IRIZdr_, 4.23)

e r) ot 4
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If eQ =0 this is sufficient to rule out such solutions. If eQ +0 we may rule out all
such solutions with Re(w)>0

eQ

or Re(w)<-—-——.
ry

We may also rule out solutions which outgoing on #~ exponentially decrease
with time under the same conditions.

These results may be looked at physically as follows. Equation (4.2) is of the
form of a wave equation with a potential well surrounded by the usual barrier
at infinity and another barrier in front of r=r . Thus one would expect solutions
corresponding to quasi bound states which trickle through the future horizon and
decay with time. These would represent particles moving in Bohr like orbits
around the black hole which eventually fall into it. Since the situation is time
symmetric we would also expect solutions representing waves being sent in
form the past horizon and growing with time. The results above do not
quite rigorously establish this but from now on we shall assume that
this is so, and that modes that are ingoing at # " but grow with time are
ruled out. Various work on wave equations in black hole backgrounds looking
for unstable modes lends indirect support to the idea that they do not exist. The
question now is whether “the quasi bound states” should be included in the basis
that defines the vacuum. If we use the Hawking picture the answer is no. If the
initial configuration is sufficiently dispered they will not exist if they do exist
then at large future times they will be negligible in magnitude and thus will not
contribute to the outward flow of particles at future infinity. On the alternative
Unruh picture the situation is perhaps not so obvious, but since the decaying
solutions will blow up at past infinity, they presumably will not be required in a
basis for well behaved solution at past infinity.

We now proceed to calculate the scattering coefficients in two separate regimes.

1. Large Black Holes Mm> 1

In this case we use the W.K.B. approximation. Setting R=§ we obtain:
d*s 2 I(1+1) 1d4
—3+ﬂw+—e—g) —<m2+(~i§—)+———)4}s=0. (4.24)
du ¥ r rdr
Since Mm> 1 we may replace this equation by

S e (425)

du? ‘
with

2
W= (w—l—?) —m*4. (4.26)

for superradiant modes W has 2 roots outside r=r,,a, f say. Waves which
penetrate the barrier carry negative flux down the hole. The superradiant
coefficient will thus be

A'7)=(—1) x(transmission factor)
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which is given by [17]
exp—2[¢)/ Wy . (4.27)

The barrier integral is easily done yielding

2.2
8/ wdy= ne(l—l/ __)%Nn?eQm’ since m?<e?
(4.28)

This approximation will be valid for

I(l+1
(i_ )<a)2 and e—Q—>m.
+ Fy

For values of greater than wr, the waves experience a centrifugal barrier and
eQ

Fi

the transmission factor will be much diminished. If —==m the W.K.B. approxima-

tion ceases to be valid.

d 0
—Q—ez,m re A w)dw
e4Q3 &,
r, BT
with éa—TQ, and &, —Kn—
ri e

This is the result you would expect on the basis of Schwinger’s formula.

2. Small Black Holes Mm <1

In this case the W.K.B. method is inappropriate and we shall adopt an appro-
ximation scheme introduced into Black Hole theory by Starobinsky [10, 16].

“_Eq. (4.2) takes the form:

. . . o r—
We begin by noting that with the substitution x =

Fy—
d R
x(x+1)—<x(x+1)i— —((I+1)+F*+W')R=0
dx dx
{ 0 (4.29)
[ ). =r+—r_. — (2 _y2)2
F—2x(w+r+)’ n . B=(w*—m)rs
and F ,
W w
e
K K

W'=(1+nx)*{F?+ Ax+ Bx(x+ 1)} — F2.
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Near x=0 and if F><1; xB<[ and x4 <1 we neglect W’ and solve (4.29) to give

iF .
Rz(l_) F(=1;14+1;1=2iF;x+1). (4.30)
x+1

This involves wM < 1. For large x Eq. (4.2) may be approximated as:

ld(g dR) {I(H-l) 2ro }R 0 431)

odo\” do 0*

with g =]/ ? — m?r whose solutions are non-relativistic Coulomb Wave functions.
Le) and K () whose definitions are given in [19],

R=AL(0)+BKe)

for large x we have:

1. !
Lz(Q)"E sin (Q —5n+ n;—alog 2@)

) l (4.32)
KI(Q)—>§ cos (Q — g +n;—alog 2@)
with
m=argl'(+1+io).
By matching these solutions to those in (4.30) we obtain:
B_ [t 22! Vo —m? 2+1
A 2P+ 1)!]2 [ (ry—r-)]
4F? )
- exp— o smhn [I32) (s*+o?) <1+S—2)—21F.
The absorbtion coefficient we require is:
A+iB]? B .
A,= 1_—'A~iB ~ —4Jm(z> since |F|<1.
Thus we obtain
4r2%  [1N*
A _ 21+1
“IRI+ DT [21!]2 Vol —mtr, —r)}
]_[ L(s?+ 1—|-4F2 sign(w) (4.33)
exXp — 7o smh 5% +o?) | sign(®). .
The absorbtion cross section ¢ is given by
—w Am
=315 m (434)

If we include just /=0 (“s wave”) term we obtain:

1
o=4nr’ (w-!- Q) e“""‘
r) Yk —n?

] .
sin hna| sign(®).
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To obtain the relevant formula for rotating charged black holes it is sufficient
1 .
to replace F by 2—};(@+e¢,,—n£2) where n is the angular momentum quantum

number, Q2 is the angular velocity of the black hole and @y the electrostatic of
the hole.

Note that as w—m the absorbtion coeff. A; tends to a finite limit althoug
the cross section diverges. The latter fact is typical of Coulomb cross sections and
in practice causes no problem since one considers a range of energies for the
incident particles. This is a rather different behaviour from the m=0, eQ =0 case
in which o— the area of the event horizon as the wavelengths tend to infinity,
as pointed out by Starobinsky in the rotating case. This shows that the belief
commonly expresses that particles whose de Broeglie or Compton wavelength
is large compared with the Schwarzchild radius cannot “fit” inside a black hole
is a mistaken one. If the charge is of the same sign as the black hole —i.e. w<0
then o can be +e and a strong Coulomb barrier reduces the absorbtion cross
section by an exponential factor — this is familiar from usual atomic situation (15).

To quantify this effect we introduce what we shall call a “Coulomb barrier
penetration factor” f(«) defined by

f(x)=exp — na|cosech el

which obeys 1 < f <2 for positive w and also for negative w if Mm > eQ. If however
Mm<eQ then f(x) is bounded above by 2 but falls sharply to zero as w— —m.
This means that the superradiant coefficients will be rather small. It is important
to note that it is this second case which will prevail in practice since any charged
hole whose mass is less than e?m ™! must have Mm<eQ as is clear from Fig. 1.

We shall not proceed further and compute detailed formulae for the charge loss,
but merely remark that even though the cross section 4™’ for modes which tend to
discharge the hole is diminished compared with the charging modes, A", crude
estimates indfcate that the net effect is to discharge the hole rapidly.

Conclusion

We have shown how a charged black hole can lose its charge by spontaneously
emitting particles, assuming that the back reaction of the quantum fields on the
external electromagnetic and gravitational field is negligible. For large black
holes this is probably a reasonable approximation — for holes smaller compared

1.. ) .
with - it is probably rather poor. We have seen that the external field will produce

a polarization of the vacuum which will produce a modification of the external
field. By analogy with the calculations for electrons one expects this effect to be

. . o1 .
important at distances smaller compared with — Unfortunately any calculation
m

of the effect is likely to prove rather difficult since the functions p; and n; cannot
be calculated exactly. An alternative approach would be to construct a Feynman
propagator for the fields but this is also not easy.
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Another, but less serious difficulty is that we have treated only spinless particles.
For spin half fermions the theory is similar but more complicated due to the extra
spin degrees of freedom. Also the classification of particle and antiparticle states
is rather different, since the natural norm one takes is positive definite. The method
one then adopts is to classify the states using the sign of the “energy”

[ 9y, KD pdz* .

Most of the general analysis can be done as before although the detailed form
of the scattering coefficients will of course be different. For higher spins the situa-
tion is less clear. There do not seem to be any obstacles with spin one particles
but for spins greater than one seem to be a variety of difficulties [20, 21].

The implications for the detectability of small black holes are rather dis-
sapointing since they will have evaporated by now if they are too small and those
that are not must be rather scarce. If their total density of black holes of mass
10'7g say is to be less than the so called “magic density” then fewer than one
would be expected to strike the earth in 10° years.

Acknowledgement. 1 should like to thank S. W. Hawking for helpful discussions.
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