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Abstract. We derive a necessary and sufficient asymptotic condition assuring that a quantum
dynamical system in equilibrium is stable in linear response.

We prove, in particular, that if the Hamiltonian has no singular-continuous spectrum and zero
is the only eigenvalue, the dynamical system is stable.

Finally we prove that a dynamical system is strongly clustering, if and only if, it is weakly
clustering and stable in linear response.

Introduction

In a previous paper [1] we considered an operator representation in a Hubert
space, J-f, for the response, relaxation and correlation functions for any vector
state, ω 0, of a von Neumann algebra 9JΪ, acting on a Hubert space Jf, satisfying
the K.M.S. condition, and we proved the existence of the static admittance, and
the relaxation. In this paper we apply that technique to the study of the clustering
properties of a dynamical system, indicating the usefulness of linear response
theory.

Following the ideas of [2] we introduce (Definitions 1 and 2) the notion of
stability of a dynamical system under a perturbation of the Hamiltonian, Ho, by
a potential of the type λV, where Fis any selfadjoint element of SDΐ, and λ, a real
number, is the coupling constant. We derive (Theorem 3) an asymptotic condition
which is necessary and sufficient to have stability in linear response. We prove,
in particular, that if the Hamiltonian has no singular continuous spectrum and
zero is the only eigenvalue, the dynamical system is stable in linear response
(Theorem 4). Finally we give in Theorem 6 a necessary and sufficient condition
for a dynamical system to be strongly clustering, namely: a dynamical system is
strongly clustering if and only if it is weakly clustering, and stable in linear response.

Another relation between temporal cluster-properties and dynamical stability
for pure thermodynamic phases can be found in Ref. [3],

I. Stability in Linear Response Theory

Let us consider an infinite quantum dynamical system in equilibrium, described
by a von Neumann algebra, SCR, of observables, acting on a Hubert space, jf, and
a vectorial state, ω0:

ωo(x) = (Ω9xΩ),xeWl9

with Ω a cyclic element of Jf7.
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We suppose that ω0 satisfies the K.M.S. condition [4], i.e. it is an equilibrium
state. This implies, in particular, that Ω is separating for $R, and that ω0 is a statio-
nary state:

where

is the time evolution automorphism. The selfadjoint operator Ho is called the
Hamiltonian.

The strongly continuous map ί->α?, is an homomorphism of the additive
group of the real line (R) into the ^automorphism of 90Ϊ.

Let us introduce a perturbation of the time evolution automorphism αf°, by
a selfadjoint potential, K belonging to 9K, i.e. we consider a new time evolution
automorphism given by

at(χ) = e

iHtxe ~ iH\ x e 50Ϊ t e 1R,

where the perturbed Hamiltonian, //, is equal to H = H0 + λV, where V= F* e9Jί,
and λ e 1R is the coupling constant. It is easily checked that at can be developed
in a Dyson series,

and

XGΪR.

Moreover the series converges absolutely.
We are going to study the evolution given by the Dyson series up to the first

order term, i.e. the linear response. In this approximation the perturbed time
evolution is equal to:

α?'1 =a?(x) + λ$t

odsla°M «?(*)], *^0, x e 2R ,

and

We are interested in the asymptotic behavior of av

t

Λ as ί-> + oo. In particular
we will consider under which conditions the limits ωυ±1(x)= lim ωo(<xίlΛ(x)),

t-> ±00

exist for any xeVJl, and some V = V* e$Jl; because the existence of the limits
implies that the dynamical system tends, under the perturbation, to a new equi-
librium state, in first order:

ω^ 1, as ί-> + oo.

Moreover if the O/+1 exist it is obvious that

lim ωvιx(x) = ωo(x), x e 9JΪ,
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i.e. the new equilibrium state tends to the original one as Λ,-»0, which is in agreement
with the intuitive idea of stability.

So that, we define

Definition 1. A dynamical system (501, α?, ω0) is said to be stable in linear
response under the perturbation V, V = V* e 501, if the limits

ωvιi(x)= lim ωo(ocv

t

Λ(x)), exist for any xeffll.
t-> ± oo

Definition 2. A dynamical system (50Ϊ, αt°, ω0) is said to be stable in linear
response if it is stable in linear response under any perturbation K V= V* e 5DΪ.

In [1] we introduced the Hubert space J>f, as the closure 50Γof the von Neumann
algebra 50ί with respect to the scalar product (x, y)^=(TxΩ,TyΩ); x, ye5DΪ,

IA - no-
T= , Δ=Qxp( — H). It is proved that the operator U, defined by

Ux= TxΩxeWϊ extends to a unitary operator from Jf into J"f. Then we denote
H0 = U*H0U.

Theorem 3. A dynamical system (501, α°, ω0) is stable in linear response under
the perturbation V, V = V* e 50Ϊ, if and only if the sequence of operators e~itir°V is
weakly convergent in $ as ί-> + oo (the asymptotic condition).

Moreover if the ω+2 exist they are equal to ωv+1(x) = ωo(x) + λ(x*,(l — E^)V)^
where E^ is the projector on the null space of H~o.

Proof We give the proof for £-> + oo, the case ί-> — oo is similar. It follows
from the definition of av

t

Λ that

ωoία^M) = ωo(x) + iλ f0 dsωo([_a°M α?W]λ x e 501.

By Theorem II.5 of [1] this is equal to

ωo(av

t

Λ(x)) = ωo(x) - λ f0 ds ~ (αf°(χ*), α?(t;)).

Now suppose the system is stable. Then (x, e~ltH°V)*,converges when ί-> -f oo,
for every xe 50Ϊ. But as 501 is dense in jft and e~ ί ί / / s :Fis uniformly bounded this
implies that the sequence e~ιtH°Vis weakly convergent when t—> + oo.

If e~ιtH°Vis weakly convergent for ί-> + oo, then (1 — e~itH°)Vis also weakly
convergent, and the system is obviously stable. Finally suppose that the system
is stable, then

lim ( x * , ( l - e " I ί i / s ) F ) .
-* ±oo

because if w— lim e~itH°V exist it is equal to E^V by [51. ΓΛIJ TΛ

Theorem 4. Suppose that the Hamiltonian, Ho, has no singular continuous
spectrum and that zero is the only eigenvalue. Then the dynamical system (501, αf, ω0)
is stable in linear response.
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Proof. As HI is unitary equivalent to Ho [1], zero is its only eigenvalue and
it has no singular continuous spectrum, then 3ft = jfto + jfta.Cm, where jft0 is the
space spanned by the eigenvectors of HQ, and ̂ a c . is the subspace of absolutely
continuous vectors. Hence

v=vo®vΛmGm9

and

(x*, e-itH°Vl=(xt K0)L+(JC*, e-ίtH°Va.cX,

so that

lim (x*, e~itHZV)^=(xξ, Vo)^ where we applied the well known result that lim
f->±00 ί-+ ±00

(μ, e~ itmv) = 0 for any v ε £ac. Q.E.D.

II. Stability and Clustering Properties

Definition 5. A dynamical system (9W, α,0, ω0) is said to be weakly clustering if

9Kίωo(xαf

o(};)) = ωo(x)ωo(y), x, y e 9JΪ,

where Sffίf is the mean over t; and is said to be strongly clustering if

lim ωΌ(xa$(y)) = ωo(x)ωo(y), x, y e 9JI.
t^>±00

In the next Theorem we give a necessary and sufficient condition for a dynamical
system to be strongly clustering.

Theorem 6. A dynamical system ($R, αf°, ω0) is strongly clustering if and only
if it is weakly clustering and stable in linear response.

Proof Suppose that the system is strongly clustering. Then it is weakly clu-
stering, and as

the sequence eιIίotVΩ is weakly convergent as ί-» + oo. But this implies that
e~~ιtmVis weakly convergent as £-> + oo in Jf\ So that the system is stable, by
Theorem 3.

Suppose that the system is stable. Then e~itmy is weakly convergent as ί-> ± oo,
for any y = y* ε SDΐ. But as before, this implies that e~itHoyΩ is weakly convergent
as ί-» + oo. Hence

lim ωo(xαf°G0)= lim (x*Ω, eitHoyΩ)
ί^ ±00 ί-* ±00

= (x*Ω, EoyΩ),y = y* e 9W .

where Eo is the projector on the null space of Ho.
Suppose in addition that the system is weakly clustering. Then by [6] Eo is one

dimensional, hence
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and

lim
ί-> ± oo

) = ωo(x)ωo(y\. = y* e

But as any yeSOΐ, can be decomposed as y = y1 + iy2, where y1 and y2 are

selfadjoint this is true for any x, y e SDΐ. Q.E.D.
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