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Abstract. We present a method of constructing the Fock representation of the canonical anti-
commutation relations in the Fock representation of the canonical commutation relations. An ex-
plicit formula for Fermi creation and annihilation operators in terms of Bose ones is given.

1. Introduction

The spinor theory of Heisenberg [1] is an example of the philosophy that a
fundamental theory of elementary particles must involve Fermi rather than Bose
fields in the basic formalism. Quite the contrary, there were many attempts [2, 3]
and references there-in to describe fermions in terms of bosons. Streater and
Wilde [2] have shown that in two-dimensional space-time fermion states of a
boson field do exist.

Kalnay, MacCotrina and Kademova [3] succeeded to show that in the case
of Fock representations, free Fermi field can be expanded into a sum of pairs of
Bose operators.

We want to present an independent investigation showing that certain homo-
morphisms of the n-th power space K®" can be utilized to produce the Fock
representations of the CAR algebra expressed by infinite series in Bose creation
and annihilation operators.

2. Notations

Let A", # be complex Hilbert spaces with an involution *, & 5 f,g. Let
U(A") be a « representation of the CAR algebra over ) acting in J# = # . The
generating elements b(f), b(g)* fulfill:

[b(f), b(g)* 1+ =(/*,9) 1p

[b(f), b(g)]+=0 2.1

where (-, ) is a bilinear form in 2, 1 is the unit operator in %(¢). Let further
Ug(A) be a * representation of the CCR algebra over . acting in some
DCH =# g, 1y is a unit operator in U x(H). For generating elements a(f), a(g)*
we have

La(f), alg)*]-=(f*,9) 15
La(f),alg)]-=0. (22)
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If there exist vacuum vectors |0> and |0) 5 respectively:
a(/)0>p=0=>b(f)I0)F (2.3)

we say about Fock representations.
Let E, be a bounded operator acting on the n-th tensor product X)] # =,
with properties:

E}=E,, Ey=E,, PuE,=-EP, 24)

where P, is an operator of permutation of i-th and k-th " in (X); #". (For a more
detailed study of E, as well as for examples, see [7, 8].)

Due to (2.4) E? is a projector and provides the following decomposition
of A#,:

1 2
H,=H,DH, (2.5
with:
1 2
E2H,=H,, (1—EHH,=H,. (2.6)

Let us decompose additionally (X)} # =, into the irreducible parts with
respect to the symmetry group %,

Hy=Y Y H, 2.7)

where Y, denotes the Young’s operator in J#,,.
We are able to prove:

1 1
Lemma 1. E, is an automorphism of #, (a homomorphism # ,—H#, with the

2
kernel ker E,=#,) consisting of isomorphisms
1 1
E,; Y H#, oYEH, (2.8)

where Y is the operator corresponding to the dual Young’s scheme.

Proof. Is given in [7], Section 2.
In totally symmetric (Y,=S,) and antisymmetric (Y,=A,) cases we have:

E AP —AH HP=S K, 29)
In the present paper we assume (see also [7]):

A, 7,=0. (2.10)
Let & be given by:

F={f={dn=0,1,.0 [n€H | f| <00} =DT #,. (2.11)

Here s, =C.
Now:

1 2 1 2
Fy=F y@Fy, Fr=F ®F (2.12)
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with:

Fo=@gHE,  Fp=DE o HT 2.13)
where:

a2 =X ol £2)2 (2.14)
and:

Vel = o I FI2 =2 o | f212 = £ )12 (2.15)
if’;

FE=Ef2. 16)

Here the assumption (2.10) is used.

3. Results

All the considerations of the previous section are applicable without any
change to more complicated cases (# =@ #) admitting internal degrees of
freedom in the theory. This fact was proved in [8]. Therefore we restrict ourselves
to the scalar case.

Let E (k,, p,) be an integral kernel of the E, introduced above, f,.(k,., p,,) be
the n+m-point symmetric function, k,=(ky, ..., k), Pu={(01, ..., Pw); k, p€ R>.

Theorem. Given a Fock representation Ug(A") of the CCR algebra acting in
DC F g, (a*, a)=|dka*(k)a(k). Assume the properties (2.4) and (2.10) for E,.
Operators b(f), b(g)* with:

b(f): :exp{ _‘(a*s a)} an '_l—jdknjdpmfnm(km Pm)
J/nlm!

Sa(ky)... d(k,)a(py)-.. a(p,):

=:exp{ —(a*, a)} f[a* a]: (3.1)
where:
fnm(km pm) = L n+ lém,l +njdqnjdrEn(kn> qn)f*(r) El +n(r’ qn’ pl +n) (32’)

generate a Fock representation U(X") of the CAR algebra acting on the following
subspace of F y:F 5 =P Ei AT with the unit operator :

1= exp{—(a*, a)} E*[a*, a]:
exp{—(a*, a)} Y, % {dk,(dp,|dr,

: En(km rn) En(rns pn)a*(kl) oo a*(kn)a(pl) cee a(pn):
dk, =dk, ...dk, . (33)
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Proof. For the proof one can perform an explicit calculation using the Wick
rule and taking advantage of the properties of E,. We will use a more elegant
method, based on the notion of functional representations of the CCR [4—6] and
CAR [8,7]. The Theorem is formulated in a representation independent way.
Therefore it is enough to prove it for any Fock representation. Let us suppose,
the notion of functional derivative (Gateaux derivative) with respect to elements
of # = #*(R%) is established, see [4, 5, 10]. For functional power series:

* *n m 1
F[Z Z] anl/— fnm’ z ) anl/n'_,n'jdknjldpm

Som(Kws P2 (K1) . 2% (k) 2(py) ... 2(P) (3:4)

where ze A, we assume the following action rule:

(F(F,)[z* 2] =F1[Z*» Fyly*, z]jpe=0 - 3.5)

d
dy*
So these double power series can be treated as operators acting in the vector

1
space of single power series V[z*]=Y, —— (v, %) due to:
|/n!

FWV)[z¥]=V"z¥]= F[z* VIy*]e=o- (3.6)

d
d *
How to provide these series a nonformal meaning, see [6]. In this place we mention

the following computational rules:
(i) Fy=F, if and only if the following holds for all n, m

SmSn(fl )mn(km7 pn) = SmSn(fZ)mn(km’ pn) (37)

where S,, and S, denote symmetrizations with respect to k,, and p, respectively.
(ii) The product F=F,F, is given by

S Kms D) =Zl _f Aqi(f Dmikp> @) S f2)1ld1s P - (3.8)
We have:
Lemma 2. Let foeC, L*(R¥)=X">f,z.
The triple {a, a*, f,} with
a(f)[z*, z]=exp(z*, 2) - (z, [ *)
a(f)*[z*, z] =exp(z*, 2) - (z*, f) 39

generates a functional Fock representation of the CCR algebra acting in some
DCTF

Proof. By an explicit use of (3.5), (3.6) we are able to show:
La(f), algy*]-[z*, z]=(f*, g) exp(z*, 2)
La(f), a(g)]-[z*,z]1=0
a(f)fo=0. (3.10)
For details see [4, 6].
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Lemma 3. Let fo e C, Z*(R>)=A ">z, f.
The triple {b, b*, f,} with

1
b(f) [2*9 Z] =Zfl(,>m=0 m(fnm’ Z*nzm) 5 (311)

Sfoum(Kos D) given by the theorem and:
b(f)*[z*, 2] =b(f) [z*, z]* (3.12)
generates a functional Fock representation of the CAR algebra in 9'1*3.

Proof. Is given in [7, 8], where functional representations of the CAR were
first introduced.

[D(f), b)*] [2%, 1= (f*, ) E*[2%, ]
[b(f), blg)] . [%, 21 =0
b(f)fo=0. .

In the above Lemmas exp(z*, z) and E*[z*, z] represent unit operators in % p(#)
and % g(A") respectively.

Lemma 4. Given:
fla*,a]:=Y, m—l— (foums @*"a™) . (3.14)
T/ nim!

A functional representation of this operator is given by:
fla*, a]:[z* z]=exp(z*, 2) f[z*, 2] . (3.15)

Proof. By an immediate application of Lemma 2 (see also [6]).
Collecting the Lemmas we are able to prove the theorem. We have by Lemma 4:

rexp{ —(a*, a)} f[a*, al:[z*, z] =exp(z¥, z) exp{ —(z*, 2)} f[z*, 2]
= f[z*, z] (3.16)
and:
:exp{ —(a*, a)} E*[a*, a]:[z*, z]=E*[z*, z] (3.17)

where the operator :exp{—(a*, a)} E?[a*, a]: is the projection operator onto the
subspace & .
But:

SLz%, z]=b(f) [2*, 2] (3.18)

and therefore Lemma 3 implies the canonical anticommutation relations for
b(f). The Fock vacuum of # is obviously annihilated by b(f). In the above, the
domain was 9. Since b(f) is bounded (a general property of the CAR), its
closure is defined on the whole space . This complets the proof of the Theorem.
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