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Abstract. We present a method of constructing the Fock representation of the canonical anti-
commutation relations in the Fock representation of the canonical commutation relations. An ex-
plicit formula for Fermi creation and annihilation operators in terms of Bose ones is given.

1. Introduction

The spinor theory of Heisenberg [1] is an example of the philosophy that a
fundamental theory of elementary particles must involve Fermi rather than Bose
fields in the basic formalism. Quite the contrary, there were many attempts [2, 3]
and references there-in to describe fermions in terms of bosons. Streater and
Wilde [2] have shown that in two-dimensional space-time fermion states of a
boson field do exist.

Kalnay, MacCotrina and Kademova [3] succeeded to show that in the case
of Fock representations, free Fermi field can be expanded into a sum of pairs of
Bose operators.

We want to present an independent investigation showing that certain homo-
mo rphisms of the rc-th power space K®n can be utilized to produce the Fock
representations of the CAR algebra expressed by infinite series in Bose creation
and annihilation operators.

2. Notations

Let Jf, 2tf be complex Hubert spaces with an involution *, Jf sf, g. Let
^ F ( j f) be a * representation of the CAR algebra over X acting in Jf = Jf F. The
generating elements b(f\b{g)* fulfill:

= 0 (2.1)

where ( , •) is a bilinear form in jf, 1 is the unit operator in <^Fpf). Let further
be a * representation of the CCR algebra over Jf acting in some

= JifB, ίB is a unit operator in °UB{^f). For generating elements a{f), a{g)*
we have

(2.2)
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If there exist vacuum vectors |0>F and |0>β respectively:

(2.3)

we say about Fock representations.
Let En be a bounded operator acting on the n-th tensor product (X)\ X = Jf n

with properties:

El = En, £* = En, P ^ = - EnPik (2.4)

where P ί k is an operator of permutation of ί-th and fe-th X in (X)" X. (For a more
detailed study of En as well as for examples, see [7, 8].)

Due to (2.4) El is a projector and provides the following decomposition

with:

= kn. (2.6)

Let us decompose additionally (X)"JΓ = Jfn into the irreducible parts with
respect to the symmetry group Sfn\

2?n = Σ>Vn (2-7)

where Yn denotes the Young's operator in tffn.
We are able to prove:

1 1

Lemma 1. En is an automorphism of ffln (a homomorphism 3tf?

n-*Jtf?

n with the

kernel ker En = jtj consisting of isomorphisms

En:Yjrn~Y*JrH (2.8)

where 7* ί 5 the operator corresponding to the dual Young's scheme.

Proof. Is given in [7], Section 2.
In totally symmetric (Yn = Sn) and antisymmetric (Yn = An) cases we have:

En:JrF

H=Ajrn~Jfΐ = sJ?n. (2.9)

In the present paper we assume (see also [7]):

Aj?n = 0. (2.10)

Let 3F be given by:

oo}=©S°jf l l . (2.11)

Now:

^ ^ kk (2.12)
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with:

i i i i

where:

ll/β||2 = Σ^oll/nβll2 ( 2 1 4 )

and:

l l / F l l 2 = Σ ^ o l l Λ Ί l 2 = Σ " = o l l A β l l 2 = llΛll2 (2.15)

if:

fn

F = EJn

B. (2.16)

Here the assumption (2.10) is used.

3. Results

All the considerations of the previous section are applicable without any
change to more complicated cases p Γ = ©¥>£) admitting internal degrees of
freedom in the theory. This fact was proved in [8]. Therefore we restrict ourselves
to the scalar case.

Let En(kn9 pn) be an integral kernel of the En introduced above, fnm{kn, pm) be
the n + m-point symmetric function, kn = (k1, ...,fcπ), pm = (Pι, ...,/>„,); /c, peIR3.

Theorem. Given a Fock representation °UB{CtC) of the CCR algebra acting in

β, (α*, a) = $dka*(k)a(k). Assume the properties (2.4) and (2.10) for En.
Operators b(f\ b(g)* with:

b(f)= :exp{ _(α*, a)} Σ*m rA=Sdkn\dpmfnm{K Pm)
]/nlml

'a(k1)...a{kn)a(p1)...a{pmy

, α ] : (3.1)

where:

/ ^ μ n ( k n , qn)f*(r) E1+n(r, qn, Pl +n) (3.2)

generate a Fock representation ^ F (JΓ) of the CAR algebra acting on the following
subspace of !FB\$FB — ©^°= 0E^JifB with the unit operator:

l f=:exp{-(α*,α)}£2[α*,α]:

• En(kn, rn)En(rn, pja*^)... a*(kn)a(Pi) -Φn)-

kn = dkx...dkn. (3.3)
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Proof. For the proof one can perform an explicit calculation using the Wick
rule and taking advantage of the properties of En. We will use a more elegant
method, based on the notion of functional representations of the CCR [4-6] and
CAR [8, 7]. The Theorem is formulated in a representation independent way.
Therefore it is enough to prove it for any Fock representation. Let us suppose,
the notion of functional derivative (Gateaux derivative) with respect to elements
of Jf = i?2(IR3) is established, see [4, 5,10]. For functional power series:

Fίz*, z] = Σnn,τΛ^ (fnm, Z*"zm) = Σ - W ^

•fnm(K ΛJΛfci) z*(K) Φ J ) Φ J (3-4)

where ze Jf, we assume the following action rule:

( F i ^ E z * ^ ] ^ ^ ! z * , — F2[j;*,z](y* = 0 . (3.5)

So these double power series can be treated as operators acting in the vector

space of single power series F[z*] = Yn —1= (vn, z
n) due to:

]/n\

lv* = o . (3.6)

How to provide these series a nonformal meaning, see [6]. In this place we mention
the following computational rules:

(i) F1=F2 if and only if the following holds for all n, m

S Λ ( / i U t Pn) = SmSn(f2)mn(km, pn) (3.7)

where Sm and Sn denote symmetrizations with respect to km and pn respectively,
(ii) The product F = F1F2 is given by

Ufo pn). (3.8)

We have:

Lemma 2. Let f0 e <C, <£2(IR3) = Jf 9 /, z.
ίπp/e {α, α*, /0} vv/ί/z

fl(/)|>*,z]=exp(z*,z) (z,/*)

α(/)*[z*,z]=exp(z*,z) (Z*,/) (3.9)

generates a functional Fock representation of the CCR algebra acting in some

Proof. By an explicit use of (3.5), (3.6) we are able to show:

W Λ βfo)*] - [ Λ z] = (/*, flf) exp(z*, z)

0. (3.10)

For details see [4,6].
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Lemma 3. Let f0 e <C, i f 2(1R3) = jf3zj.
The triple {b, b*9 f0} with

UίfWr?* ~Ί V0 0 ( ΐ r7*nrrm\ /o 1 1 \

V\J)VZ >ZJ-lJn,m = O ,/—. Λjnm>Z Z>> i-3'1!)

yn\m\

fnm(kn, pm) given by the theorem and:

b(f)*\_z*, z] = b(f) [z*, z]* (3.12)

generates a functional Fock representation of the CAR algebra in 3FB.

Proof. Is given in [7, 8], where functional representations of the CAR were
first introduced.

0. (3.13)

In the above Lemmas exp(z*, z) and £ 2 [z*, z] represent unit operators in ^ β p Γ )
and $rF(Jf) respectively.

Lemma 4. Given:

:/[α*, α]: =Σ»,m r ^ ( / « » , «*"«"") (3-14)

A functional representation of this operator is given by:

:/[«*, β]:[z*,z]=exp(2*,z)/[z ,z] . (3.15)

Proof. By an immediate application of Lemma 2 (see also [6]).

Collecting the Lemmas we are able to prove the theorem. We have by Lemma 4:

:exp{ -(α*, α)}/[α*, a] :[z*, 2] = exp(z*, z) exp{ -(z*, z)}/[z*, z]

= /[Λz] (3.16)

and:

:exp{ -(α*, α)} £ 2 [α*, α] :[z*, z] = £ 2 [z*, z] (3.17)

where the operator :exp{ —(α*, a)} E2[a*, a]: is the projection operator onto the
subspace J^B.

But:

/[z*,z] = fc(/)[z*,z] (3.18)

and therefore Lemma 3 implies the canonical anticommutation relations for
b(f). The Fock vacuum of 3FB is obviously annihilated by b(f). In the above, the
domain was 2c\!FB. Since b(f) is bounded (a general property of the CAR), its
closure is defined on the whole space ΦB. This complets the proof of the Theorem.
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