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Abstract. We prove the existence of a von Neumann algebra of operators and hence the existence
of projections acting in any nested Hubert space. Some other algebras of operators are studied. All
those algebras are exhibited in a particular class of Nested Hubert Spaces, namely sequence spaces.

1. Introduction

Some time ago, Grossmann [1] introduced a generalization of Hubert space,
called a nested Hίlbert space. In a recent series of papers by the same author and
Antoine [2-4], that concept itself was extended further, thus leading to a structure
called a partial inner product space (PIP-space). Besides the mathematical interest
of this object by itself, the aim of that work was to determine the most general
framework suitable for the formulation of Quantum Theories. However, for
carrying out this reformulation, it is not sufficient to exhibit a larger space of
states; one should extend also some key theorems of Hubert space theory such as
Gleason's theorem, the spectral theorem for selfadjoint operators, and so on.
A common ingredient to all of these is the notion of projection operator. In
particular, a fundamental question is: Does a given PIP-space possess sufficiently
many projections?

A suitable definition of projection operators in a PIP-space was given in [3].
The main result is that the usual one-to-one correspondance between projections
and appropriately defined subspaces (the so-called PIP-subspaces) still holds.
However, there exists PIP-spaces which contain no non-trivial, infinite dimensional
PIP-subspaces, thus no nontrivial projections. In a Hubert space, a standard way
of showing the existence of many projections is to exhibit a von Neumann algebra
of operators (which is always generated by its projections). In this paper, we will
establish the same result for a large class of PIP-spaces, namely the class of nested
Hubert spaces (NHS) introduced earlier [1]. We shall prove that the set of operators
acting in any nested Hubert space contains a von Neumann algebra of operators.
Thus a NHS always contains projections. In all examples that we have studied,
that von Neumann algebra and thus those projections are non-trivial.

In order to understand the reason of this restriction to nested Hubert spaces,
we shall look first at the general case.

Essentially a PIP-space is a vector space V together with:
1) A family {Vr\rel} of vector subspaces of V which covers V (i.e. every f eV

is contained in some Vr); when ordered by inclusion, the family admits an order-
reversing involution Vr*-+Vτ.
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2) A Hermitian, positive definite form <.,.) defined exactly on [j(Vrx V7),
such that the subspace Vx = f]Vr separates vectors of V. reI

rel

For more details about that definition, see [2].
The last condition implies that, for each r e / , the form <.,.> puts the pairs

(Vr, V7) in duality. Thus, without additional assumption, Vr can be equipped with
all the topologies of dual pairs. The authors of [2] choose to consider on each Vr

its Mackey topology τ(Vr, V7). Thus each Vr becomes a topological vector space
with dual V7. However, there is no particular reason that there should be any
Hubert space topology around, and thus no direct way of relating this construction
to von Neumann algebras of operators.

Consider now the NHS case. This means, the PIP-space V satisfies the supple-
mentary conditions:

3) For each rel, Vr is a Hubert space (to be denoted by Hr from now on).
4) There is a unique element oe I such that Ho = HQ.
5) The family {Vr} is stable under intersection.
Remark. It follows from 1), 3), and 5) that {Vr\ r e 1} is a sublattice of the lattice

of all vector subspaces of V.
One can check easily that a PIP-space V satisfying those three conditions is a

NHS in the sense of the original definition [1]. When V is a NHS, we shall denote
it by Hj as in [1].

Thus, in the NHS case, we have a family of Hubert spaces {Hr\rel} and
automatically we have a family of von Neumann algebras {B(Hr)\reI} where
B(Hr) is, for each rel, the set of bounded operators from Hr into itself. From those
von Neumann algebras of operators acting in individual Hubert spaces Hr, we
shall construct a von Neumann algebra of operators acting in the NHS. But
before introducing operators in NHS and in general PIP-spaces, let us recall some
notations and results of [1] and [2] that will be needed in the sequel.

1) Consider the family {Hr\rel} ordered by inclusion. Then the index set
/ itself has a natural order, given by: r^soHrQHs. Whenever r^s, Esr will
denote the embedding of Hr in Hs. Esr is a linear, bounded, injective map from Hr

into Hs, with dense range in Hs and such that:
(i) For each rel, Err = tH the identity map on Hr.

(ii) If s^r^t,Est = EsrErt'
Those Esr are the "nestings" of [1].
2) For each re I, Hr and HT are Hubert spaces, dual of each other. So they are

mapped onto each other by a unitary map (by the Riesz theorem), to be denoted
by u?r:Hr-+H?.

3) The nestings Esr and the unitary maps u7r are related by the following
identity:

{Es£s = ur7E7ςUSs ( s^r) (1)

where (Esr)fs denotes the Hilbertian adjoint of the bounded map Esr. [Thus
(ESXS maps Hs into Hr~\.

Let us now return to operators and try to construct a von Neumann algebra of
operators acting in the NHS.

The general definition of an operator in a PIP-space is given in [3-4] and
contains the previous one of [1]. It can be formulated as follows: Let J be some
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subset of / x / and for each (r, s) e J, let Λsr be a continuous map from Vr into Vs

such that the two following conditions hold :
1) Coherence: If (r, s) and (V, s') e J are such that r' ^ r and s'^s then:

s'r
2) Maximality: Let J' be another subset of / x / to which is associated the

family {A's,r,} of continuous maps from Vr to Vs>, satisfying the coherence condition.
If J' 2 J and A'sr = Asr for every (r, s) e J, then J' = J.

When those two conditions are fulfilled, the family {Asr} defines a unique
operator A acting in V. The set J is then denoted J(A) and called the "domain" of A

J(A) = {(r,s)eIxI\A s r exists} .

Each Asr is called a representative of A between Vr and Fs.
Let us recall some useful properties of operators [1-3-4]:
1) An operator is uniquely determined by any one of its representatives.
2) For every operator A, there exists a uniquely defined operator^* called its

adjoint, such that A** = A. The domain of A* is:

J{A*) = {(s,r)eIxI\{r,s)eJ{A)}

and v4* is defined by (A*)-- = t(Asr) (t = transposed map).
In the NHS case, this relation becomes:

π 7 s £ s S s
(+ = Hilbertian adjoint).

3) However, an operator A need not be defined on the whole V and the
product of two operators need also not be defined.

Since we are looking for an algebra of operators, we must restrict ourselves
to smaller classes where the product is always defined and which are stable under
product and sum. We consider first the set of morphisms which are the operators A
such that prx {J(A)nJ(A)} —I = pr 2 {J(A)nJ(A)}. [pr x and pr2 denote the first
and the second projection of a set in the cartesian product Ixl and J(A)
= {(r,s)\(r,s)eJ(A)}.-]

Such morphisms are everywhere defined in V and the product of two mor-
phisms is a morphism; however the sum of two morphisms need not be a mor-
phism [3-5]. We are thus led to consider a smaller class yet, stable under addition;
a good candidate is the class of those operators which map each Vr continuously
into itself. This class will be denoted by s$. The class s$ is a *-algebra of operators
in any PIP-space.

Now, the second step is to define a topology on si or a subset of s$ in order to
obtain a von Neumann algebra. But as we have seen above, there is no obvious
way of proceeding, unless we restrict ourselves at this stage to a NHS. In that case,
any element A of si has a representative Arr, which belongs the von Neumann
algebra B(Hr); thus for all rel, \\Arr\\B{Hr) is finite. Using this family of norms, we
may now topologize srf in a standard way. We will define (Section 2) & as the
subset of those elements A e srf such that:

p
rel
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^ is a subalgebra of J / and || || is a norm on it. But in this way, we have identified
the element A with the family {Arr)reI, which is an element of [~[ B(Hr), the von

rel

Neumann algebra product of all the von Neumann algebras B(Hr) [6]. This von
Neumann algebra f]; 2?(iϊr) is itself a subalgebra of ΰ ί 0 i ί i the (larger) von

rel [rel )

Neumann algebra of all bounded operators on the direct sum (J) Hr. The idea is
rel

thus to consider a class of operators in a NHS, each of which can be identified with
an operator acting on a Hubert space (here the direct sum) where the notion of
von Neumann algebra makes sense. We will show then that $ is a Banach algebra.

By construction, $ is stable under the operation * of taking the adjoint (in the
NHS-sense) as defined by (3). We can thus ask under what conditions Si will be
a C*-algebra with this involution *. On the other hand, since S8 is also a subalgebra
of B [φ) H\, we can define for each A e & another adjoint A+ ~ ((Arr)fr)rel9 i.e. the

[rel I
(Hilbertian) adjoint of A in BI @ HA. Because the involution on a C*-algebra is

[rel )

necessarily unique, we obtain the theorem that Si is a C*-algebra if and only if the
two involutions * and + coincide on it. Since this is false in general, we are led to
consider the subalgebra if consisting of those elements of Si for which the two
involutions -f and * do coincide (Section 3). Then we prove that ^ is a C*-algebra
(and a C+-algebra) and also a von Neumann algebra. Moreover we show that all
the intersections ^r = ^nB(Hr) are isomorphic von Neumann algebras. Because
the two notions of adjoint coincide in if, the orthogonal projections contained
in ^ have particular properties; namely they are orthogonal projections both in
the NHS and in the Hubert space sense. Such projections will be called totally
orthogonal [3].

Finally we study, in Section 4, examples of algebras J / , Si9 #, and projections
in some concrete cases of NHS, namely sequence spaces.

2. Two *-Algebras of Operators

2.1. As said above, we consider the following *-algebra of operators acting
in the NHS Ή 7 :

and its subalgebra &:
3S = \AEJ/\S\XO | | A J L < ooi .

I rel J
For every i e J w e define:

= sup ||v4rr | |r. (4)
relIn that way, we identify the NHS-operator A e & with the family of its (r, /^-repre-

sentatives (diagonal). There is no ambiguity, since each representative by itself
suffices to determine A. But this family of {Arr}reI is an element of the von Neumann
algebra ]~] B(Hr\ which is an algebra of operators acting in the direct sum of all

rel

the Hubert spaces Hr:

rel [ rel
1 The sum of norms has only a countable number of terms different from zero, but the index set I

need not be countable.
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Indeed, the norm in the product von Neumann algebra ]J[ B(Hr) is precisely
rel

given by (4). In the sequel we shall need the following operators, acting in the
direct sum @ Hr:

rel

a) For each rel, the orthogonal projection on the subspace Hr:
p

r '• (fs)sei^(Qs)sei such that gs = 0 for s + r and gr = fr. In fact Pr =jrpr with:

Pr:φHr^Hr a n d jr:Hr^φHr
rel rel

fs)Sel"» fr fr *"» \Qs)seI _ r
r Jr '

The set of all these projections will be denoted by 9 = {Pr\r e /}.
b) For every r, se/, s^r:E{s>r) =jsEsrpr is the embedding of Hr into Hs, both

considered as subspaces of (J) Hr.

Define S = {£(s'r) | r, 5 e /Γs ^ r}.
C) 1/ : (fr)reI^((Uf)r)reI) = (UrP/F)Γ6/.

Remark. The operators defined in a), b), c) are elements of 5 / φ H^ but they

do not belong to \\ B(Hr) and a fortiori not to J*, i.e. they do not correspond to
rel

to NHS-operators.

We can now prove the following theorem:

2.2. Theorem. 3H is a Banach algebra.

Proof. In B /(J) Hr\, the elements of γ[ B(Hr) are precisely the operators which
\rel ) rel

commute with all the orthogonal projections defined in a) above, that
rel

In particular, the elements of ^ must satisfy the coherence conditions (2)
given above, since they are NHS-operators; these conditions can be written as:

EsrΛrr = AssEsr r,sεl, s^r.Ae^.

Lifted into B /@ Jϊ^ that last relation gives:
\rel )

Eis>r)A = AE{s>r) r,seI,s^r,Aeόg
so t h a t ^ = (^U(?y.

Thus 3$ is the commutant of a subset of B /(J) Hr\ and thus & is closed in norm
[rel I

in B /(+) Hr\ i.e. gg is a Banach algebra.
Ire/ /

Remark. The two norms \\A\\= sup ||^ r f.| | r and | |^| | = sup coincide
re/ /eΘH r || J ||

on J1 and already on Y[ B(Hr).
rel

2.3. J* is a Banach algebra and for A e J* the NHS-adjoint ,4* given by (3)
belongs to & too. A natural question to ask is: can J* be a C*-algebra with the
involution * so defined? This is not automatic since * is not the natural involution
on gβ considered as subalgebra of B / 0 Hr\. On the latter, the natural adjoint

Ire/ /
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Λ+ of an element A~(Arr)reI is given by the family {(Arr)fr)reI of Hilbertian
adjoints in individual H/s. Then for A e& we can consider also the adjoint A +

but it does not belong to & in general [it is not a NHS-operator since it does not
satisfy (2)].

Then we have:

2.4. Theorem. J 1 is a C*-algebra if and only if, for every Aeέffl and for every
re I: (A*)rr = {Ar£r (or equivalenty: Arr = ur7A77u7r).

Proof It is obvious that the condition is sufficient; we shall only prove the
necessity.

Assume 3§ is a C*-algebra, i.e. for every Ae£$, \\A* A\\ = \\A\\2.
Consider the set ^ + = {A +~ ((Arr)fr)reI\A~ (ArXeIe0S}.
We can extend the involution * on £$+ by putting for every A+eέ%+:

(A + )* = (yl*)+. J*+ is stable under * and the following identities are easily derived:

\\A+ || = | |(/I+)*| | (i.e. * is a continuous involution),

||04 + )*yl+|| = M + | | 2 (i.e. J> + is also a C*-algebra).

Consider now the C+-algebra Jί generated in B /ff) Hλ by J * u ^ + and extend

on Jt the involution * by linearity and continuity. Ji becomes thus a C*-algebra,
but since Jί is by construction a C+-algebra, the two involutions must necessarily
coincide on Jί [7] and in particular on ^ , i.e. A+ =A*,\ίAe&. In terms of
representatives this is precisely the assertion of the theorem.

3. A von Neumann Algebra of Operators in a NHS

The last theorem leads us to consider the subset of Si on which the two involu-
tions + and * coincide, i.e.:

) ( ) p M r r | | Γ r r V r r r r r }
rel

3.1. Theorem. ^ is a C*-algebra (or a C + -algebra) and a von Neumann algebra.
Proof
1) inBlφHλ we had @ = (0>\JS)'. Now, for AeSt, the supplementary

\rel j

condition in order that AeΉ is Aγγ — ur7A77u7r\/rel or AU=UA (with the
operator U defined in 2.i.c).

Finally we have: ^ = (^u^u{[/}) ' . This says already that # is closed in norm
in B /(J) Hr\ and thus since # is stable under +, ^ is a C+algebra.

\rel j

2) The relation between the nestings {Esr} and the unitary maps {ur-} in the
NHS, given by (1) can be rewritten in B /(J) Hr\ as:

\rel

^ U

From this relation, and the fact that the nestings {Esr} uniquely determine the
family {ur7} ([1], Proposition 3.1) we can conclude that any operator which
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commutes with two of the following three sets: $, $+ and {(7}, also commutes
with the third one. This means:

Thus:

Since & = &+, <& is the commutant of a self-adjoint subset of B / φ Hr\ and
\rel )

therefore, ^ is a von Neumann algebra [8].
Remarks. 1) This explains why J* is not a von Neumann algebra in general,

namely, & is the commutant of a non self-adjoint subset in B /(J) Hr)
\ rel

2) It follows t h a t ^ = ^ n ^ + .

3.2. Theorem. For βi erj; 4̂ 6 ^ απrf for all r, se I, we have:

Proof. For any r, consider the following ma,p qr:
(S-^B(Hr):A^*Arr. qr is

a +-algebra homomorphism and moreover it is injective since Arr = 0 implies
A = 0 (since A is uniquely determined by any one of its representatives). We have
an injective +-homomorphism between a C +-algebra and a normed involutive-
algebra lmqr [with the norm of B(Hr)~]. Then by Theorem 1.81 of [6] we have:

i.e. \\AJr^\\A\\ = sup \\Arr\\r.
rel

Thus || ̂ 41| = \\Arr\\r for every re I.
It follows from this theorem that ^r = lmqr^^nB(Hr) is a C + subalgebra

of B(Hr) and that all those ^r(Vr e /) are isomorphic C + -algebras and isomorphic
von Neumann algebras.

3.3. Conclusion. For an arbitrary NHS Hj, we have thus proved the existence
of a von Neumann algebra of operators, namely #. As usual, this algebra is
generated by its projections, which are all the projections in the NHS satisfying
the relation P = P2 = P* = P+. This means, P is orthogonal both in the NHS sense
(P = P*) and in the Hilbertian sense (P = P+). Going over to representatives, we get
for each r e / a projection operator Prr :Hr-+Hr which is self-adjoint, thus orthogo-
nal with respect to the inner product (.,.),. of Hr, in addition to the intrinsic inner
product <.,.> Ξ ( . , . ) 0 . Such projections will henceforth be called totally orthogonal.
The above results show that Hj always possesses totally orthogonal projections,
but not all projections are of this type. Counterexamples will be mentioned in
4.2. below.

4. Examples

In the previous sections we have obtained the three algebras s/2^2^
An obvious question is whether they are all distinct or not. We postpone a system-
atic discussion of that problem to another publication but we shall exhibit here
some examples (actually sequence spaces) which show that all cases are possible.
At the same time, it will turn out that the von Neumann algebra # can be either
Abelian or not Abelian. Again, general criteria will be given elsewhere.
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4.1. The Trivial Example: / = {0}, the NHS is reduced to one Hubert space Ho.
Then si — $ — <β = B(H0). This is indeed a von Neumann algebra and it is non-
Abelian.

4.2. The NHS Associated with an Orthonormal Basis (or the Sequence Spaces).

A detailed description of this NHS is given in [1]. We recall here only the prin-
cipal notations.

Take H0 = ί2, the space of square summable complex sequences, with an
orthonormal basis {h"}neN

The set / consists of all sequences of positive numbers:

Involution on /: r = (rn)nefi e 7<~>r = (r ~ \eΉ e I.

Hr= [f

In particular Vx = f] Hr consists of all finite sequences, whereas V, the algebraic
rel

inductive limit of all the spaces /2(r), r e / , may be identified with the space of all
complex sequences.

For every r, the space Hr is isomorphic to Ho by the following correspondence:
/-(/ n UeHo^/ d ^J B L N 6H r and || β\2

0 = \\Rf\\j = ξ \ff.
In the same way, we have an isomorphismen between the respective algebras

of bounded operators. If A s B(Hr) we have:

\ \ g \ \ 0 ]lR-lARll2

= S U P n p - 1 i|2 = WR ARWB(HO)

R-'geHo \\R g\\0

Thus: AeB(Hr)oR~1AReB(H0) or in terms of matrix elements:

(Amn)eB(Hr)o(r^Λmnrn)eB(H0).

a) The algebra sί. Ae^iϊϊA e B(Hr) for every re/, i.e. R-^ReBiH,) for
every R defined as above. This is equivalent to the fact that for every R, the
corresponding operator AR = R ~1AR satisfies the following three conditions [9]:

1) The rows of AR are in f2.
2) (AR AR)n is defined for n = 1,2, 3 ....
3) ^ ^

(The finite number given in condition 3) is equal to \\AR\\l{Ho)=\\A\\l{Hr)).
From condition 1) it follows that for every re I, π e N :

CO
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Thus each row of A must belong to Hr, for every r e / , that is must be of finite
length. Using the same argument for A*, we obtain that the columns of A must be
finite too. Thus Amn is a matrix such that every row and every column possesses
only a finite number of elements different from zero. It follows that AR and A^
have the same form and thus condition 2) is automatically satisfied. From condition
3) it follows (for n= 1) that sup |[^4^ A^\ti\ < oo i.e.

i

i/<°°- (5)

Because of condition 1), the sum has only a finite number of non-zero terms for
each ί. Now the inequality (5) is certainly satisfied if A is either a finite matrix or a
diagonal matrix with bounded elements. This is most easily seen by writing (5) as:

/ r\2

sup (BC)H < oo, with Btj = — Ί and Cjt = {A^2 .
* \ rj I

Now the point is that no other type of matrix can satisfy Eq. (5). Assume, indeed,
that for each i (or at least for an infinite number of indices) there exists j=j(i) + 0
and j φ i such that Aj{i)i Φ 0. Then:

But (ri/rj{i))
2 is an arbitrary positive sequence. Hence the rhs is infinite.

Finally, the most general element of s$ is represented by a matrix A which is
the sum of a finite matrix and a diagonal matrix with bounded elements.

b) The class J*. Consider the elements of J / , characterized above and require
that sup MI|B(Hr)< °° This implies for every n e N :

rεJ

svprlΣ\Amn\
2r-2<oo.

rel m

That condition can be only satisfied by diagonal matrices. The argument is the
same as above. Let Amn + 0, mφrc. Then the quantity (rn/rm)2 \Amn\

2 is unbounded
when r = (rn)neN varies over all positive sequences.

Thus A G &oAmn = λmδmn such that sup \λm\2 < oo.
m

c) The class (β. The additional condition to ask is: Arr = urΐAτ-u pr for all
rel. Since the unitary map ur- from Hr into its dual H-r is given by:
/ ~ ( Λ L N e Hro(r~2 f n ) n e Ή e H7, that condition becomes:

ΣΛmnfn=Σr2mAmnr;2fn, Vwi, V / G Hr, Vr 6 / .
n n

We see that this condition is already satisfied by the elements of &g. Thus,
J> = ^ = SAmn = λmδmn\ sup \λm\2 < ool, and this is a von Neumann algebra,

which is Abelian.
In particular, the totally orthogonal projections are exactly all projections

which are diagonal in the basis {h"}ne^. They are represented by all diagonal
matrices Pij = λiδij with λt = 1 or 0.

Some but not all of them have finite rank. It also follows from this, that any
projection which is not diagonal, cannot belong to %> and thus will not be totally
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orthogonal. For instance, a rank one projection Pφ = |φ> <φ|, where φ e Vx is not
proportional to any single basis vector h"9 such as φ= l/21/4(/i* +h%). This P^ is

represented by the matrix: (Pφ) =

υ
This is an orthogonal projection which is not totally orthogonal.
4.3. A large class of examples can be generated by taking the algebraic induc-

tive limit of a family of spaces {/2(r)\r e /x} where Ix is a suitable proper subset of
the index set / of Example 4.2., consisting of all sequences of positive numbers.
We will discuss this problem in full generality elsewhere; here we will consider
only two particular cases.

Consider first the set /x consisting of all sequences (rn)ne^ of the following form:
Let A be a fixed positive constant:
ί— For n even, rn may be any positive number between n~Λ and nA.
\— For n odd, rn = nR where R is any real number (independant of n).
Each such sequence is thus determined by a real number R which fixes all odd

components and by a sequence {rn}, n"Λ <rn<nA for the even components. The
set Iγ so defined, is a sublattice of /, stable under involution.

For all ra,neN, the matrices (F{m-n))m.n, = δmm,δnn, define elements F(m<n)

belonging to si. We have:

and thus F{m'n) e &os\xp (rjrm) < ooorn and n are both even.
rel

That proves sd~2>£$ strictly.
One sees also that F ( m ' n ) never belongs to Ή. Indeed:

l t=Ίo*^£^yi fm'nJri Z-,'m'\I fm'n'n' J ri

But this last condition is not fulfilled, since for every pair of even numbers m, n,
one can always find rel with r m Φr H .

Finally we have stfD^ϊjΉ, and one can show that ^ is the same Abelian von
Neumann algebra as in 4.2.

4.4. As a final example, we consider the inductive limit of the spaces /2(r)
with r e / 2 , defined as the set of sequences of positive numbers of the following

\rn = nR for n odd, R any real number as in 4.3.

[rn= t for n even.

Obviously I2 C I± C / and I2 has also the required properties. As in Example 4.3.
we have j / D J . Then it can be shown that & = (£, consisting of all matrices (Λmn)
such that Amn Φ 0 only if m and n are even (if m φ ή) and sup \Amm\ < oo.

m

But in this case, ^ is no longer Abelian.
4.5. Along the same lines, one can build many more examples, to the effect

that the three alternatives : j / = J ί o r j / Φ J t , J> = ^ o r < ^ Φ ^ , # Abelian or non-
Abelian, are mutually independant. Thus eight different classes of nested Hubert
spaces of sequences can be built. This classification will be discussed elsewhere.



Some Operator Algebras in Nested Hubert Spaces 193

5. Concluding Remarks

We have discussed at length the problem of finding a von Neumann algebra
of operators in a NHS, with a positive solution. The restriction from a general
PIP-space to a NHS was motivated by the necessity of having "individual" von
Neumann algebras B(Hr) as building blocks. But the results of Section 3 suggest
a way of waiving this restriction. Indeed, the lesson of Theorem 3.2. is that the only
possible operator norm giving rise to a von Neumann algebra is the original
norm on B(H0). Let now Vι be a general PIP-space, possessing a unique self-dual
space H0 = H-, which is necessarily a Hubert space (such a space need not exist
in general). Suppose we possess an algebra Jt of operators on Vl9 such that the
representative Λ00(Λ e Ji) form a von Neumann algebra Jί0. Then Jί is a good
candidate for the object we are looking for. Indeed Mo = {Λoo | A e Ji} is generated
by its projections, thus Ji is generated by the projections P eJi such that Poo e Ji0.
This provides a way of extending the results of this paper to general PIP-spaces.
Short of NHS's, the simplest case is a PIP-space F / ? where each Vγ is a reflexive
Banach space (V0=Vd still a Hubert space). This class contains all the examples
which seem useful for applications and it seems that our results can be extended
to it in a straightforward way.
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