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Abstract. We show that the action of the boosts on an infinite system can be described continuously
by bundle maps of Hubert bundles based on the manifolds G/Go, where G is the full relativity group
and Go its closed subgroup which can be unitarily implemented on the fibre, which is a Hubert space.
We then develop a general theory of group representations on product bundles M xjf, where M is
a manifold and Jf a Hubert space. We construct certain bundle representations of the Galilei and the
Poincare group and find that they correspond to various classes of elementary excitations. In particular,
we define nonrelativistic zero-mass systems and obtain an analogue of the Faraday effect for the
passage of hot electrons through matter. Our construction remains valid for the case when Go is the
product of a lattice translation group and the time translations. We conclude that many qualitative
features of the physics of condensed matter can be directly understood in terms of relativity group
action on a bundle space as state space, which also suggests some avenues for further work.
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§ 0. Introduction

In this article we will determine how the full Galilei or Poincare group acts
on an infinite system1. It is known that the boost operations on such systems
cannot be unitarily implemented in a reasonable Hubert space. It will turn out that
the state space is a Hubert bundle and the boost operations correspond to bundle
maps which carry the fibres continuously into other fibres. A point on the base
space describes a ''state" of the medium or the background. We will then investigate,
by an appropriate theory of group representations, the "elementary" quantum-
mechanical objects in a "medium".

* Present address: Department of Mathematics, Technion - Israel Institute of Technology,
Haifa, Israel.

1 By an infinite system we mean a system which is composed of an infinite number of massive
particles.
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In Chapter 1 we discuss the considerations which motivated our work. In
Chapter 2 we discuss symmetries and "broken symmetries" in the framework of
C*-algebras. We show how a continuous family of automorphisms of the algebra,
which does not admit a continuous unitary representation on a Hubert space,
does admit a continuous representation on a (natural) Hubert bundle. In Chapter 3
we develop a fairly general theory of group representations, by bundle maps,
on product bundles. In Chapter 4 we determine certain bundle representations
of the Galilei and the extended Galilei group. These representations appear to
correspond to various collective excitations and quasi-particles in many-body
systems: zero-mass excitations in superfluid helium, phonons in crystal lattices,
excitations with mass in continuous and lattice systems. The significant point
is that these excitations now appear as representations of the entire Galilei group,
and not of just a subgroup. In Chapter 5 we shift our emphasis to localizability
and discuss the "spin" 0, 1 and 1/2 representations of the Poincare group on a
bundle based on the boosts. The last two cases correspond precisely to electro-
dynamics in a medium". We obtain an analogue of the Faraday effect for electrons.
Finally, after having accumulated some material, we discuss in Chapter 6 the
significance of this work and list some problems. An appendix gives a resume
of fibre bundle theory which is sufficient for our needs.

§ 1. Motivations

Our motivations for this work were threefold. First of all, we were dissatisfied
with the present ideas regarding "broken symmetries". The subject came into
prominence during efforts to understand broken SU(3). One mechanism which
was extensively studied, the "spontaneous breakdown" of internal symmetries,
was shown to be equivalent to the non-implementability of the internal symmetry
operation in the Hubert space of the system. This non-implementability would
not have occurred if the system had only a finite number of degrees of freedom.
It was soon realised that systems with infinitely many particles should also display
similar features, for example regarding the boost operations. Because of the
mathematical similarities with the earlier example, this was also termed broken
symmetry".

However, an internal symmetry is physically so different from a boost that we
felt that the differences, and not the similarities, ought to be emphasized; the
more so because one still has very little physical insight into what a broken"
internal symmetry is. The difference is, of course, that a boost operation can be
"performed", in some sense; an internal symmetry operation cannot, almost
by definition. We felt that it should be possible to devise a formalism in which
this difference would be self-evident.

Secondly, we were interested in defining nonrelativistic zero-mass systems,
which essentially meant finding a suitable state space [1]. These systems appear
to exist, for example, as low-lying collective excitations in superfluid helium,
the so-called phonons and rotons. Since mass cannot be defined without the
boost operation, one has somehow to understand what it means to boost the
background. This question is not academic because the boost properties of
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phonons and rotons may be decisive in determining the phenomena of superίluid
flow. However, there exists no theoretical discussion of this suggestion, which
was made by Landau [2] in 1941. The reason is that any discussion beyond
Landau's original remarks would have to start from a more-or-less rigorous
definition of nonrelativistic zero-mass systems and a study of their elementary
properties, which so far have not been available.

Thirdly, we were interested in giving a precise formulation of the concept of
a "medium" in the following context. Recent progress in the theory of condensed
matter has derived largely from the picture of elementary excitations. In this
picture a many-body system can often be viewed as a collection of weakly inter-
acting excitations in the presence of a "background". The presence of the back-
ground or "medium" manifests itself in one way only; the elementary excitations
cannot be "isolated" from the background, even if they are localizable. One
might argue that this is no different from ordinary "atomistic" physics, because,
in the same sense as above, an elementary particle cannot be "isolated" from
the vacuum state. However, the vacuum state can be taken to be Poincare in-
variant, and an analogous hypothesis would certainly be unacceptable for the
ground state of a many-body system. Thus we still have to solve the problem of
describing the kίnematical properties of the ground state; a ground state is, by
definition, devoid of dynamics, but not of kinematics.

It will of course not escape the reader that the above looks suspiciously like
a prerequisite for studying the physics of elementary excitations ab initio and
as an independent branch, with some empirical inputs such as the interaction.
We were interested in finding out whether this prerequisite could be supplied.

We will terminate the discussion of motivations at this point because after
a while it is no longer meaningful to distinguish between initial motivations and
anticipated results. The three lines of thought raised here intersect at the same
point. At this point emerges the concept of a bundle of Hubert spaces based on
a manifold. The structure of the manifold contains a complete description of
the kinematics of the infinite system, or, in other words, the state of the medium.
The only remark which should be added here is that product vector space bundles
are physically interesting, despite their topological triviality, precisely when the
base space is not a linear vector space.

§ 2. Symmetries in the Frame of C*- Algebras

2.1. C*-Algebras and the Symmetry Group G

In the C*-algebra frame the set of observables & of a physical theory is iden-
tified with the symmetric elements of a C*-algebra srf. The set of states ίf of the
system is identified with the normalized positive linear functionals on j / . Then
there exists a natural map f'.SfxΘ ->R, and /(ω, a) = (ω, a), where ω e ^ α e Λ / ,
is called the expectation value of a in the state ω. Since the states generate the
topological dual of J</, £f and Θ separate each other under /

Let Aut (J/) be the group of all ^-automorphisms of J / 5 and let α e Aut (j/).
The dual of α which acts on £f is then α/ = (α~ 1)Γ, the superscript T denoting
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transpose. Let G be the symmetry group2 of the theory. For simplicity we will
take G to be either the Poincare or the Galilei group, excluding the space and
time reflections. We will assume that G is isomorphic to a subgroup of Aut {si\
and the element of Aut (si) corresponding to g e G will be denoted by ag. We will
assume that the family of maps ag\£f'-+£f is weakly continuous in g; otherwise
it seems hard to understand how one can recognize a continuous symmetry
group G from a finite number of observations which are made with finite accuracy.

2.2. Representations of C*Άlgebras

A representation π of a C*-algebra si is a *-homomorphism of si into the
algebra ^ ( ^ π ) of all bounded operators on the Hubert space 2tfn. We include
as part of the definition the requirement that π be non-degenerate, i.e. there exist
no common null vector for the family of operators {π(a)9 a e si). For every state ω
on si the G.N.S. construction gives a special representation of si denoted by π ω .

Two representations πγ and π 2 acting on the Hubert spaces J ^ and #C2

 a r e

said to be unitary equivalent if there exists a unitary map V: 3&Ί -> J4f2 such that

πι(a)=V*π2(a)V Vaestf.

Two representations π 1 and π 2 are said to be quasi-equivalent if the mapping
φ:πί(a)~^π2(a) is an isomorphism of the algebras πx and π 2 ? and if moreover
this mapping is continuous in the ultraweak topology; then the isomorphism φ
extends to an isomorphism of the von Neumann algebras generated by πλ(si)
and π2(si). Finally, two representations πί and π 2 are weakly equivalent (physically
equivalent in the language of Haag and Kastler [3]) if the algebras πx(si) and
π2(si) are isomorphic, i.e. if the two representations πγ and π 2 are equally faithful.

Unitary equivalence implies quasi-equivalence, which in turn implies weak
equivalence. The converse implications are not generally true, i.e. these three
notions of equivalence are ordered according to strength.

If one is not very familiar with the theory of C*-algebras it may be difficult
to follow the implications of the last statements. We shall remind the reader of
a few definitions and results in order to make this easier.

Let @&(#?) be the set of bounded operators acting on the Hubert space ffl. On
^ p f ) there exist several well-known topologies, namely the norm topology,
the strong and the ultrastrong topology and the weak and the ultraweak topology.
If π is a representation of si acting on Jf, then we can give π(si) the ultraweak
topology. The states which are also states of π(si) and which are continuous in
the ultraweak topology are called the normal states of π(si). The union of these
states is called by Kastler the folium of π(sί\ The folium of π(si) is the closure,
in the norm topology, of the convex combinations of the vector states of π(si).

The set of normal states of π(si) depends on π(si) and characterizes π(si)
up to quasi-equivalence. This set, as we shall see below, also plays a central role
in characterizing those automorphisms which can be implemented by unitary
operators on the representation space.

2 We will not discuss this concept, because our main aim in this chapter is to clarify the difference
between the conventional notions of symmetry and broken symmetry for infinite systems.
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23. The Action of G on the Representations of si

In order to avoid unnecessary complications we shall assume that our systems
are neither classical nor partly-classical and partly-quantum-mechanical, so
that our C*-algebra contains no centre. We will even go one step further and
assume that the algebra si is simple, which means that it contains no nontrivial
two-sided ideal. (This last assumption seems to be fulfilled in all concrete quantum-
mechanical systems and is partly proved for relativistic quantum systems [4].)
This means that the kernel of every representation π(si) vanishes, i.e. any two
representations are equally faithful or weakly equivalent3. That is, we shall be
dealing with representations which are all weakly equivalent to each other.

In such a simplified situation it seems unnecessary to investigate all represen-
tations. Since the algebra si has no centre we shall also assume that the von
Neumann algebra generated by a representation π(si) has no centre, or, in
other words, we shall deal only with factor representations. Summing or inte-
grating over such representations will be done only when required by special
circumstances.

We are now ready to begin discussing some situations which arise in physics.
Let π(si) be a given factor representation of si on J^π, and let geG. Then

for a e si the map

a-^π(ocga) = (ocgπ)(a)

defines another representation όtgπ on J^π. Since π and agπ are weakly equivalent,
there are two possibilities regarding their quasi-equivalence:

(A) π and otgπ are quasi-equivalent for all geG.
(B) There exists a g e G such that π and άgπ are not quasi-equivalent.
Since π and άgπ are factor representations, if they are not quasi-equivalent

then they are completely disjoint.
We shall call (A) and (B) the cases of π-preserved and π-broken symmetries re-

spectively, and shall discuss them in turn. (Usually one refers to "preserved"
and "broken" symmetries; we consider these terms unsatisfactory, because they
seem to have the wrong connotations.)

2.4. The Case of π-preserved Symmetries

Recall that we have excluded time reversal and that every representation is
faithful. Then, roughly speaking, in case (A) every representation of si is quasi-
equivalent to one in which the automorphisms corresponding to G are unitarily
implementable. More precisely:

Theorem 1 [5]. Let G be a locally compact group and ot an isomorphism of G
into Aut (si) for a given C*-algebra si. Let %(si) be a representation of si. Then
there exists a representation πγ(si) which is quasi-equivalent to π(si) and a conti-
nuous unitary representation U(g) of G such that

π(ocga)=U(g)πί(a)U(gΓ1, VαeA, geG

3 It is known that, according to Haag and Kastler (loc. cit.), two weakly equivalent represen-
tations contain the same physical information. However, as we shall see below, this does not imply
that they are equally well adapted to display certain features of the theory.
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if and only if the following conditions are satisfied:
(i) The transpose oίτ

g of the automorphism ag maps the set of normal states
ofπ(stf) into itself

(ii) The action of α^ is strongly continuous on the set of normal states. That is,
if ω is a normal state of%{sf) and ε > 0, then there exists a neighbourhood 21 of the
identity of G such that

| |αjω — ω | | < ε for ge2ί(ε, ω).

Earlier we restricted ourselves, by assumption, to factor representations and
we required the action of <xg to be weakly continuous on the algebra. Now let
us discuss this assumption in view of the last theorem.

Since two quasi-equivalent representations have the same set of normal states,
it is always permissible to pass to a quasi-equivalent representation so that
Theorem 1 applies. We therefore have only to discuss the conditions of this
theorem.

(i) As G is either Poincare or Galilei, it is locally compact.
(ii) The quasi-equivalence of π and άgπ is an assumption on the choice of π

which cannot be deduced from anything else. However, such a choice is natural
because we are mostly interested in representations having an invariant normal
(equilibrium) state. If this is the case then this assumption is automatically ful-
filled.

(iii) The continuity requirement of the theorem is somewhat stronger than
necessary. If we require only the expectation values (ω, aga) to be continuous,
then the stronger continuity assumption of Theorem 1 is implied if the representa-
tion space of π{sd) is assumed separable. This conclusion rests on the following
theorem:

Theorem 2 [5]. Let s$ be a C*-algebra and G a locally compact group acting
as a group of ^-automorphisms on si. Let π be a representation of srf and assume
that ocg maps the set of normal states of π(sfj onto itself Then each of the following
two conditions imply that the action of a'g is strongly continuous on the set of normal
states of π:

(i) For each normal state ω of π and each element x of the von Neumann
algebra generated by π(sf) the function (ω, π(agx)) is continuous on G.

(ii) There exists a representation π x(j/) which is quasi-equivalent to π(s$) and
acts on a separable Hilbert space. The functions (ω, π(ocgx)) are continuous for
x e stf and ω a normal state of π(sί\

Remark. Since the set of normal states is the norm-closure of the convex
combinations of vector states of %(s4) (or %Y(si% it is sufficient to require the
continuity only for vector states of π(stf) or πγ(sί\ or any other representation
quasi-equivalent to π(srf\

This concludes the discussion of π-preserved symmetries.

2.5. The Case of π-broken Symmetries

If the symmetry is π-broken the action άg on the space of weakly equivalent
factor representations is such that π is not quasi-equivalent to άgπ for at least one



Relativity Groups 107

g e G. Choose a representation π 0 and denote by M the orbit generated by the
action of the δcg on π 0 . Denote the elements of M by m and in particular the element
π 0 by m0. Furthermore let Gm, (Go) be the subgroup of G such that ά^πm, (ά^π0)
is quasi-equivalent to πm, (π0). If ra e M is different from m0 then there exist geG
such that πm = άgπ0. From this follows that the groups Gm and Go are conjugate
to each other:

(Since we have defined (άgπ) (x) = π(α^x) we will deal with right cosets. If one
prefers left cosets one should have defined (α^π) (x) = π(ocg-ix).

Let now gu g2εG such that agiπ0=όtg2π0 (= denotesquasi-equivalence).
Then π0(ocgιx)^π0(<xg2x). Replacing x by agIιx we obtain π0(ocgίg-ix)^π0{x),
so that όcgiπ0 = όcg2π0 if and only if g ^ 1 e Go. In other words, there exists a
pointwise correspondence between the orbit M and the space of right cosets
of Go. Since G is locally compact, the latter carries a Hausdorff topology if Go

is a closed subgroup of G. We shall assume this to be true.
We shall use the same letter m to denote the right coset of Go which corresponds

to the point m on M.
Let us now see what happens if we insist on looking for unitary group re-

presentations. Since G is not π-preserved, the orbit M must contain more than
one point. Therefore a unitary representation of G can be constructed (if the
situation is favourable) only in the Hubert space

3P= £ ®#>m (2.1)
meM

where 3tfm is the representation space of άgπ0 with gem (here m is a right coset
of Go). In most cases of interest M will be a continuum, so that ffl will become
a huge Hubert space. Assume now that there exists on ffl a unitary representation
U(g) implementing the automorphisms, i.e. U(g)n(x)U(g)~1 =n(<xgx), where π
is the representation π = ]Γ © πm. Let g be a group element which does not

m

belong to the "little group" Gw of the representation πm. Then U(g) must map
J^m onto 3tfmg-\, which is orthogonal to 3tifm. This holds even if g is arbitrarily
close to the subgroup Gm, from which we are forced to conclude that the unitary
representation U(g) cannot be continuous (except on the normal subgroup

p | Gm\. Since mathematically we are not used to dealing with discontinuous
meM I

representations, we are bound to lose information in cases in which the group
action displays some continuity (e.g. if the functions (ω, ocgx) are assumed con-
tinuous on G). We are convinced that such continuity assumptions should have
implications for the group representations. However, looking for such implications
requires techniques other than (unitary) representation theory, and we are forced
to search for better mathematical concepts.

Such a concept is provided by fibre bundles.
Instead of using the orbit M as an index set for summing Hubert spaces, we

shall view it as a base space and the representation space J^m as the fibre over
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m e M. It now becomes clear that we want M to be furnished with a nice topo-
logy, for two reasons. Firstly, we would like to work with Hubert bundles and
secondly we would like the action of G on M to be continuous. (We shall assume
this to be true for the time being and justify it at the end of this section.) Now
all our representations πm = άgπ0, gem are representations on the same Hubert
space Jfo = JfmQ, because άgπ0(x) has been defined by πo(agx). This means that
we are dealing with a product Hubert bundle M x / 0 . However, this could have
been expected, because (see Appendix) all Hubert bundles on paracompact
bases are equivalent to the product.

In order to complete this scheme it is necessary to define an action of the group
on the bundle space. This action must fulfil the following requirements. If g
belongs to a coset m then g must map the point m0 onto m. If g belongs to Go

then it acts only on the fibre J^o. We recognize this situation to be analogous
to the situation of induced representations. Therefore we choose from every
coset m an element η(m)em. Then it follows that moη(m) = m. For the action
of the group Go on J-f0 we shall assume that the conditions of Theorem 1 are
satisfied, so that we can assume (eventually after passing to a representation
quasi-equivalent to π0) that we have a continuous representation U(g) of Go

acting on $? and implementing the automorphisms ag for geG0. Now take a
point (m, ψ) in M x J>f, with me M and φ e Jf. Remark that ηfag'1) gη(m)~*
maps the right-coset m0 onto m0, so that the action of G on M x Jf is given by

g:{m, ψ)-^(mg~ \ U(η{mg~ ι)gη(m)~ x)ψ).

The unusual appearance of this formula is due to the use of right cosets. If we had
used left cosets we would have obtained

g:(m, ψ)-*(gm9 U(η(gm)~1 gη{m))ψ),

which looks much more familiar.
Thus the group action on the bundle space contains an arbitrariness in the

choice of the function η(m). That this choice is free is best seen by passing to the
"big" representation space Jf of (2.1). Identifying J^m with J*f0 requires fixing
a map from Jf0 onto Jί?m. Such a map is given in a natural manner by the action
άgπ0. Thus to identify J*fw with J^o we have to choose an element η(m) from each
co-class m for this identification. Any other choice will then result only in a unitary
transformation in the big Hubert space J*f which leaves every J^m fixed.

Since our basic idea was to display continuity it is natural to try to choose η(m)
as a continuous function on M with values in G. If the action of the group G
on the base space M is continuous, then we can begin constructing continuous
group representations on the bundle space M x / 0 . These questions are dis-
cussed in the next chapter.

Having constructed such a representation o f G o n M x / 0 we can pass easily
to the big Hubert space 2tf by making M x J^o into a Hubert space. Introduce
the scalar product

((m, ψ\ (m\ ψ')) = δmm, (ψ, ψ').
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Then we naturally recover a unitary representation of G on J f. But we also see
at which point we have lost continuity, namely we have now furnished the orbit
M with the discrete topology!

On the other hand, if we start from a unitary representation on Jf such that Gm

maps j ^ m onto itself, then we can work backwards and construct an action of G
on the bundle space M x / 0 , by identifying J4?o with U(η(rn))j4?0. However,
it is evident that not every unitary representation of G on • j f with the above
properties will lead to a continuous action o f G o n M x / 0 . Hence we see that
bundle spaces give a natural framework for displaying continuity properties.

Finally, it remains to discuss the continuity of the action of G on M. Recall
that we started our discussion of π-broken symmetries from a given represen-
tation π 0 acting on a Hubert space J^o. By definition all representations 6ίgπ0 act on
the same Hubert space. This allows us to introduce on the space

a topology τί by neighbourhoods characterized by xί...xmejtf and Ψi...ψn

e Jή?0 defined by

for ί = 1,... n, j = 1,... m).

It is known that this defines a Hausdorff topology if π 0 is non-degenerate ([6] see
also [7] IΠ.3.5 and IΠ.3.9.8); the latter was part of our assumptions.

If all functions (ψ,πo(agx)ψ) for x e i and ψe J-f0 are continuous on G in
its group topology τ 0 then we find that the action of G on (G, τ j defined by

is continuous.
For further discussion let us assume that the given representation has an

infinite commutant. In this case every normal state of π 0 is also a vector state and
moreover if π 0 and 6cgπ0 are quasi-equivalent then they are also unitarily equivalent.
Therefore passing from G to M = G/G0 is nothing but dividing the space (G, τ t )
by the unitary equivalence relation. Denoting the final topology on M again by
τ l 5 then it is known (see [7] IΠ.3.5.5) that the map

is open. Therefore the action of G on (M, τx) is again continuous.
The only problem which remains is the question of whether τί defines a

Hausdorff topology on M. We cannot expect that this will follow from general
principles, but in most cases of physical interest it will be true.

We end this discussion with a remark. We have constructed the base space M
in such a way that it coincides with G/Go as a set. But the topology τγ constructed
from the representation π 0 is not necessarily the same as the quotient space
topology of G/Go constructed from the group topology τ 0 .
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§ 3. Group Representations on Product Bundles4

3.1 Definition of Representation

Let G be a Lie group, H a closed subgroup of G and B = M x j f a product
bundle, where M = G/H is the homogeneous space (i.e. the space of left-cosets
with the quotient topology) and 2tf is a Hubert (sometimes a normed finite-
dimensional vector) space. We define a bundle representation of G on B to be a
family of (invertible) bundle maps

h { g ) : B - + B , geG (3.1)

satisfying:

a) h(g) is continuous in g;

b) h(e) = id, the identity map (3.2)

c) h ( g 1 ) h { g 2 ) = h ( g 1 g 2 ) 9 f o r a l l gl9g2eG.

It follows that h(g)~* = /i(gΓ *) is continuous in gf.
We will employ the notations x e M, φ e ffl and B3b = (x, φ). Let π\B-+M

be the natural projection π(b) = x. Since /z(#) is a bundle map, it induces a con-
tinuous base map h(g) under π:

π°h{b) = hoπ(b), (3.3)

and h satisfies h(gι)h(g2) = h(g1g2), h(e)x = xVxeM. The triple (G, M,/ϊ) is a G-
space; it is in fact a G-orbit, with stabilizers conjugate to H. It follows quickly
that h is the natural action of G on M:

)x = π(gπ~1(x)).

We will denote h(g)x by gx, and /zfe)b by gb.
In order to be consistent with (3.3), the representation h must be of the form

h(b) = g(x, φ) = (gx, u(g, x)φ), (3.4)

with u(g, x)φ satisfying
(i) u{e9 x)φ = φ VxeM and

(ii) u(gug2x)u(g29x)φ = u(gίg
Since we are working with a Hubert space J f we will require u(g, x) to take

its values in the group of unitaries on ffl. Then (i) and (ii) above are replaced by

(i) u(e9x) = ί VxeM;

(ii) u(gl9g2x)u(g2,x) = u(gίg2,x) Mgug2eG and xeM.

The continuity condition5 on the representation h requires that:

u(g, x)φ be continuous in g and x for all φ e Jf . (3.6)

Observe that if w(gf5 x) is independent of x for all g9 then the structure one obtains
is sometimes called a Hubert G-bundle in the literature.

4 A survey of the required material on bundles is given in the Appendix.
5 Sometimes, by abuse of language, we shall speak of a bundle representation even when this

representation is not continuous.
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The fundamental problem of the theory of bundle representations in the
following: Given G, H, G/H and h as above, find all solutions of the equations (3.5)
on a Hubert space J f subject to the continuity condition (3.6). We shall not attampt
to solve this problem in its generality, but rather shall display a class of solutions
which seems to have immediate physical relevance. This class of solutions is
obtained as follows.

3.2 The Canonical Representations

Let x0 be the point in M corresponding to the left-coset H itself, and define
a (1,1) map

η:M-+G (3.7a)

satisfying

πη(x) = x VxeM. (3.7b)

Then η(x)x0 = x. Now, using η, define a map

fe G x M-^G

by

gη(x). (3.8)

Then k(g, x) satisfies the Eq. (3.5), with u replaced by k and 1 replaced by e, and,
as one readily verifies, k(g, x) takes its values in H. Hence, a continuous unitary
representation U(g) of H on Jf yields a bundle representation of G by the identi-
fication

u(g9x)=U{k(g9x))9 (3.9)

provided that the condition (3.6) is satisfied. Now there are two possibilities:
a) The Bundle [G, π, M, H, if] is a Product. Then cross-sections exist, and a

continuous map η:M-^G satisfying (3.7b) is nothing but a cross-section of the
bundle [G, π, M] the inverse of a cross-section is also continuous, and hence
k(g, x) as defined by (3.8) is continuous and there is nothing more to discuss.

b) The Bundle [G, π, M, H, if] is not a Product. Since we have assumed G
to be Lie and H to be a closed subgroup of G, H has a local cross-section in G.
It is therefore always possible to choose a map η satisfying (3.7) whose disconti-
nuities lie on a set of measure zero in M. The discontinuities of k:G x M-^H
then also lie on a set of measure zero in G x M. However, the bundle representation
defined by (3.9) is still continuous, provided that we take for Jf the space L2(M, dμ),
where dμ is a measure on M invariant under the action h(g) of G. Then for any
vector φ e L2(M, dμ), the vector

U{k{g9x))φ

is by definition unchanged by changing its values on a set of measure zero in M.
Therefore the operator U(k(g, x)) is unchanged by changing k on a set of measure
zero on M. Hence it is possible to tolerate discontinuities in k, provided that they
can be traced to a set of measure zero in M.
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Suppose that H is Abelian. It may still happen that one can define a unitary
representation of H on L2(M, dμ). Then this representation is reducible, but it
yields a (continuous) bundle representation of G. In this case one cannot obtain
a continuous bundle representation of G from any irreducible unitary represen-
tation of H (except the identity).

3.3 Equivalence and Irreducibίlity

A canonical bundle representation h is synthesized out of two ingredients:
the natural representation h of G on G/H, which is defined in a coordinate-free
manner, and a representation U of H on Jf, which is not. Now let V.B-+B be a
bundle map which induces the identity map on the base space M = G/H. Then
V acts only as unitary transformations on the fibres. That is, (i) V is a bundle
equivalence, and (ii) V transforms the representation U of H to VUV'1. It is
therefore natural to define the representations h and h ° V to be equivalent. It
follows from a standard result in the theory of induced representations that
bundle representations h and h! constructed from the same manifold G/H, same
representation U of H but different η and η' are equivalent in this sense.

Finally, it remains to discuss reducibility and irreducibility. We assume that
H is of type I, so that the representation U, if reducible, is fully reducible. The
bundle B then splits under the action of G into a collection of disjoint invariant
subspaces, each of which is a product based on the same manifold G/H, and each
carries an irreducible representation of H on its fibre. It is natural to call these
bundle representation irreducible.

Conversely, given two irreducible bundle representations of G based on the
same manifold G/H, one can always form their "direct sum" in an obvious manner.
This operation is the trivial analogue of the formation of Whitney sums of vector
bundles with a common base space, trivial because the bundles here are products.

Lastly, we may relax the condition that M is a homogeneous space, and replace
it by an arbitrary G-space X. Then X splits under G into disjoint G-orbits. A
glance at (3.4) and (3.5) reveals that u(g,x) and therefore also k(g,x) respect
this splitting. Hence, if X is an arbitrary G-space, one may define an irreducible
bundle representation to be one which is transitive on the base and irreducible
on the fibre.

If M is a G-orbit with stabilizers conjugate to H and G is a product bundle
over G/H, it is easily proved that the manifolds M and G/H are homeomorphic,
and that this homeomorphism preserves the action of the group. In this case
there is no topological reason to distinguish between M and G/H. If G is not
a product bundle over G/H, then the continuity of the bundle representation
based on M must be discussed separately.

§ 4. Some Nonrelativistic Phenomena in the Presence of a Medium

In this chapter we will determine certain bundle representations of the Galilei
group and its extension which appear to correspond to (nonrelativistic) elemen-
tary excitations in continuous and lattice systems. These representations are
constructed on momentum space and we essentially avoid all questions concerning
localizability, which will be discussed for the relativistic case in the next chapter.
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We will denote by G3 the Galilei group and by G3 its central extension. The
elements g e G3 will be parametrized as g = (b, α, υ, R\ where b is a time trans-
lation, a a space translation, v a boost and R a (proper) rotation. The multi-
plication law in G3 is

(ft', a\ v\ R') (b, α, r, R) = (&' + h, α' + R'a + »'&, t/ + R'υ, RR).

An element of G3 will be denoted by g — (θ, g) = (θ, b, a, v, R). The multiplication

g'g = (θ\ g1) {θ, g) = (θf + θ + ξ(g\ g\ g'g)

law in G 3 is

where

We will denote by T the group of time translations, and by Sp Vp Rj, Ej re-
spectively the groups of space translations, boosts, rotations and Euclidean
operations in j dimensions (j = 2, 3). A* will denote the covering group of A,
which is two-sheeted for the rotation group. (The groups S2^ should not be
confused with the spheres S2>3.)

4.Ϊ Nonrelativistic Zero-Mass Systems

These systems appear to exist as elementary excitations on a translationally
invariant ground state. The most important of these is probably the phonon-
roton branch of the excitation spectrum of superfluid helium. They correspond
to bundle representations of G on G/H where G = G% and H = H£ x T. Clearly
GyE%xT=G3/E3xT^V3, which is paracompact and contractible. Hence
G3 is a product bundle over V3 and cross-sections exist.

Let we F3.The action of the group on the manifold is

(b9a,Ό,R)w=υ + Rw (4.1)

and there exists the natural cross-section

>/(HO=(0,0,W,1). (4.2)

Hence

,JR) (43)

where g = (£>, α, υ, R) and k is defined by (3.8).
We choose the following representation of the group E3 x T 3 (b, α,0, R):

U(b, α,0, R)φ(p) = expinr(ω,R)expi(bE-a-p)φ ° R~\p). (4.4)

Here (i) n is an integer or half-integer, positive, negative or zero; (ii) r(ω, R) is a
Wigner rotation corresponding to R and ω is the point p on the sphere S2(p2 = 1);
(iii) φ G L2(IR3, d 3 p ) = momentum space. This choice gives us a representation of
£f which contains all momenta on an equal footing; to obtain an irreducible
bundle representation we must take φ from L2(S2(P2\ dω) where S2(P2) is the
2-sphere P2 = p2 and dω an invariant measure on it; (iv) an irreducible represen-
tation of £f is characterized by the pair (P 2, ή). Hence in the representation (4.4)
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of £f x T we must specify which representation of T we are choosing for given
(P 2, n), i.e.

E = E(P2,n) (4.5)

in (4.4).
Finally, the explicit form of the bundle representation is:

{b,α, t>, R)(w, φ) = (v + Rw,Qxp i\_A + nr(ω, £)] (</> ° i T * )(/>)), (4.6)

where
Λ= - a -p + b{E(P2,n) + (v + Rw) - pϊ. (4.7)

The Landau excitations in superfluid helium correspond to n = 0 and E(P2)
the Landau spectrum in the rest frame.

These bundle representations have the following properties, (a) The background
- i.e. the state in the absence of excitations - is invariant under £f x T. Its "state"
is labelled by the single classical global observable w. (b) The excitations have the
boost properties characteristic of zero-mass in nonrelativistic physics, (c) The
symmetry principle does not impose a dispersion law; the possibility of a dispersion
law arises from the reducibility of the representation of £f x T. (d) In the presence
of excitations, there exists a unique fibre which is Euclidean-invariant; it is the
rest-fibre.

4.2 Quasi-Particles in Translation-invariant Backgrounds

We will now consider the situation in which the background remains £f x T-
invariant, but the elementary excitations have mass. One may keep an ideal
Fermi-liquid theory in mind as a model. The only change from the previous
section consists in replacing Gf by Gf and £f x T by Θ x £f x % where Θ is the
group which extends Gf. Since Θ is normal in Gf, the manifold M = G/H remains
unchanged. Again there exists a natural cross-section

(0,0,0,w,t) (4.8)

and (4.3) is replaced by

k(g, w) = (θ+ ^b(v + Rw)2 - (» + Rw) a,b,a-b(v + Rw\ 0, R). (4.9)

We choose the following representation of Θ x E% x T on L2(1R3, ά3p):

17(0, b, α, v,R)φ(p) = expimθexpi[nr(ω, R) + Eb-p-a]φ° R~ι{p) (4.10)

where all familiar symbols are as before, including E = E(P 2, n) and the only
new symbol m is a real number which characterizes a representation of Θ. By
arguments similar to those which led to (4.5), we have here

m = m(P2,n). (4.11)

We are interested only in the elements of the subgroup Gf in the representations
of Gf. For these elements, the explicit form of the bundle representation is

(0, b, a, v, R)(w, φ) = (υ + Rw, exp z[M + nr(ω, R)] (φ ° R~x)(/>)) (4.12)

where

M = - a {p + m{v + Rw) + b | E ( P 2 , n) = (υ + Rw) - p+γ{υ + Rw)2i. (4.13)
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One sees immediately that the energy and momentum now transform under
boosts in the familiar manner of particles with mass m, so that

2m

is independent of the fibre. However, it depends on p2 and n through E and m,
and therefore cannot be legislated away, as in ordinary nonrelativistic quantum
mechanics.

It is easy to verify that Bargmann's superselection rule still holds, so that a
dependence of m on P2 and n may have drastic consequences for localizability.

Since £, m and p are no longer related by the free-particle dispersion law,
one has the possibility of identifying these excitations with quasi-particles and
quasi-holes in systems with an Euclidean invariant ground state.

4.3. Lattice Systems; Phonons

We will now consider the bundle representations of G3 in which the subgroup
H = Lx T, where L is discrete. For simplicity this subgroup will be assumed
to have no rotation elements, i.e. it will be a group of lattice translations alone.

Let tι1,tt2,!f3 be the three fundamental translations of L, and uί,u2,u3 their
respective magnitudes. The generic element of L is l = n1u1+n2u2 + n2u3, where
nί,n2, n3 are integers, + ve, — ve or zero.

The homogeneous space Σ — S3/L is a three-dimensional torus. Let the co-
ordinates of a point σ e l b e σ1 ? σ 2 ? σ 3 , where

- i u ^ σ ^ i u i , Ϊ - 1 , 2 , 3 . (4.14)

Then Σ is mapped (1,1) into the half-open unit cell Q in S3. Denote by σ the
translation in Q which is the image of σ e Σ. Then σ has the components (σι, σ2, σ3).
Every translation a = (0, α, 0, 1) e S3 has a unique decomposition

α = σ(α) + J, (4.15)

where a{a)eQ and /e L. The map π^:S3->Γ given by

πΣ(a) = σ(a) (4.16)

is continuous. Define a map ηΣ:Σ-*S3 by

^(σH<x. (4.17)

This map is (1, 1), continuous except on the coordinate surfaces σί = ^u ί, and
satisfies

πΣηΣ(σ) = σ. (4.18)

Since S3 is not a product bundle over Σ, there exists no continuous map ηΣ:Σ-^S3

satisfying (4.18). Note that if σ{σ)eΣ then also σ( — σ)eΣ. Furthermore, σ(a)
satisfies

σ(-a)= -σ{a). (4.19)
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Every g e G3 can be factorized uniquely into an element of V3 Λ R3 (the carat
denoting semidirect product) and an element of S3 x T:

(ft, a, v, R) = (0,0, υ, R)(b, R-'ia- bv)A 1) (4.20)

Hence

M = G3/Lx T = {V3ΛR3) {S3 x T/Lx T) = (V3 Λ R3)-(S3/L).

Thus a point x e M can be written explicitly as

x = [>v,ρ;5] (4.21)

where we V3, ρεJR3 and s e l The natural projection π:G-+M is [cf. 4.20]

π (ft, α, ι>, R) = [ι>, # ; σ(R " * (α - &»))] (4.22)

where σ(a) is defined by (4.15). The natural action of G on M is

(f>, α, », R) [w, ρ s] = [v + Rw, Rρ σ{(Λρ)"x(a + Λρs -I- for - bRw)}] . (4.23)

Finally, let η: M-> G be defined by

^ [w> ρ 5 ] = (0, ρ 5, w, ρ). (4.24)

Then π °η[>v, ρ 5] = [w,ρ σ(s)]. But s e Σ, and therefore σ(s) = s, and hence

π?/(x) = x, V x e M .

Let g = (b, α, v, R% x be given by (4.21), and introduce the abbreviations

Ω = Rρ

W=v + Rw (4.25)

Then

k(g, x) = η{gxYιgn{x) = (b,A- σ(A), 0,1), (4.26)

which lies in L x T as A — σ(A) e L for all A.
The irreducible representations of L x T are characterized by points o n l x t

where the L is the Pontrjagin dual group of L (and f that of T). As is usual, we
shall denote a point on L by & and one on f by £. As G is noί a product bundle
over G/L x T, the canonical representations on (G/L x T ) χ J f discussed in § 3.2
will not be continuous if the representation of L x T on Jf is irreducible, i.e. one-
dimensional.

Continuous bundle representations can be constructed as follows. First
observe that G is not a product bundle over G/L x T only because S3 is not a
product bundle over Σ. However, the space Σ is homeomorphic to L, which also is
topologically a 3-torus. It follows from the remarks in Chapter 3 that, by ex-
ploiting this homeomorphism, we can construct continuous bundle representa-
tions with fibre Jf = L2(L, dμ), where dμ is an L-invariant measure on L. Hence
let φ ε L2(L, dμ) and choose the following representation of L x T:

(6, Z, 0, l)0(ft) = exp i\E(k)b -1 ft] 0(ft), (4.27)

where /ε L, k=(k1,k2,k3)eL and £(/c) is an arbitrary real function of k.
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The general formula for the bundle representation is cumbersome, and
therefore we write down the following special cases from which the transformation
properties of energy and momentum can be seen at a glance:

(fc, α, 0,1) {[0,1 0], φ} = {[0, 1 σ(α)], exp i[_E{k)b- ft (α -σ(α))] φ(k)}. (4.28)

(M,0,l){k!;0],«

Setting f> = 0 in (4.29) and comparing with (4.28) we see that the momentum is
unchanged by a boost. Setting a = 0 we find that the factor of k in the exponent
becomes

bw-\-σ( — bw).

This is not generally linear in b. However, to obtain the transformation proper-
ties of the energy under boosts it is sufficient to consider infinitesimal time trans-
lations. As the above term vanishes for infinitesimal b, we conclude that the
energy is invariant under boosts.

This conclusion is consistent with the usual "mechanical" interpretation of
phonons as quantized lattice vibrations. However, in the mechanical interpre-
tation the symmetry of the lattice ceases to be a rigorously valid concept at finite
temperatures, which does not appear to be the case in the present formulation.

4.4. Finite-Mass Excitations in a Lattice

The considerations of the previous section can easily be extended to G. Taking
H to be Θ x L x T, we see that the manifold M is unchanged. The same is true for
the action of the group on the manifold. The map π'.G-^M is now

π(0, b, α, υ, R) = [i>, JR; σ ( i T λ (a - bv)J]

and η: M -> G is defined by

η(x) = ή|>, ρ\ s~\ = (0, 0, ρs, w, ρ).

Then πή(x) = x. We employ the notations of (4.25) to write down

fc(g, x) = ήigxΓ'gήix) = (θ, b,A- σ(A)9 0, 1)

where

θ = (θ + ibv2 -a υ ) - w Ω ( A - σ(A)) + v Ω A .

Let us choose a one-dimensional representation of Θ x L x Γ:

where Eef.keL and / e L. Here

JE = JE(ft)

a n d

m = m(k).
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The complete representation of G on M x j f is given by the standard formula.
As before, we shall write down only special cases of interest.

Take ρ = 1 and s = 0 on M and v = 0 and R = 1 in g. Then

(0,M,0,1){[>,1;O], i} = {[w,

We see that the momentum fc in the rest-frame transforms to

k=k+mw

in the w-fibre. Considering, as before, only infinitesimal time translations, we
find again that

E' = E

i.e. the energy is also invariant under finite boosts. This is an effect of the lattice
structure.

One verifies that Bargmann's superselection rule remains valid.

§ 5. The Poincare Group and Homogeneous Media

If one restricts oneself to a fixed frame of reference there is no distinction be-
tween the Galilei and the Poincare group, when boosts are π-broken. A distinction
only appears for physics in moving media, that is if we have to compute dragging
coefficients.

In order to have some further motivation for this section we will touch upon
the question of localizability. This is the following. The subgroup which leaves the
medium at rest is the group of Euclidean transformations and time translations.
Its irreducible representations are classified by energy, (momentum)2 and helicity.
Thus the natural representations are obtained on the momentum space and
act locally on this space. However for applications we usually need a representation
where x-space functions appear and we would prefer to have the group act locally
on this representation as well. Therefore we have to produce a representation
"commuting" with Fourier transformations. That this can be done we know from
experience. We shall exploit this empirical fact and shall not present a theory for
this. Moreover we shall stick to the physically reasonable cases of spin 0, \ and 1,
and shall deal here with the Poincare group in order to avoid repetition.

5.1. Spin Zero Systems

The subgroup which leaves the background at rest is the Euclidean group
times the time translations E3x T. The quotient space P/E3 x T is the space of the
boosts, where P denotes the Poincare group. For obvious reasons we take the
first column of the Lorentz matrix to characterize a pure Lorentz transformation.
Then we have

P/E3x T^H1 = {b;b2 = ί,b0>0} (5.1)

where b = {b0, b} and b2 = b2

) — b2, the Minkowski square. On this manifold we
have a natural action of the group P

(a,Λ)b = Λb, (5.2)
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and a natural cross-section

η(b) = {0,Λ{b)) (5.3)

where Λ(b) denotes the pure Lorentz transformation defined by b. From this we
get according to (3.8)

k((a, A\ b) = (Λ-\Λb)a, A~ι(Ab)AA(b)). (5.4)

The irreducible representations of E3 x T without angular momentum are
characterized by the discrete eigenvalue ε of T and the continuous eigenvalues k
of the translations in E3 which lie on the sphere k2 = κ2. When κ2 φ θ our Hubert
space consists of the square integrable functions ψ(k) on the sphere.

Since we are dealing with the relativistic case it is natural to take ε and k
together as a four-vector p = boε + k where b0 represents the zero boost. Then we
have

p

2 = ε

2 _ κ 2 = m

2 . (5.5)

Now the three-vector k and the four-vector p are in one to one correspondence.
We have replaced the sphere by the intersection of the hyperboloid p2 = m2 with
the hyperplane (b, p) = ε. The advantage of this procedure is obvious since we are
now working with functions ψ(p) and have a natural action of the group P by

(α, A)ψ(p) = exp i(a9 A~ ιp)ψ{A" ιp)
so that we get

(α, Λ){b9 ψ(p)) = {Ab, exp i(a, A~γp)ψ(A~1 p)). (5.6)

In the frame characterized by b the function ψ(p) satisfies the equations

{b,p)ψ(p) = εψ(p)

and (5.7)

= m2ψ(p).

This is a description which remains local after Fourier transformation. This
description has taken such a simple form because we have not enforced the
product structure on the bundle space: the measure defining the Hubert space
over b is given by

δ(p2-m2)δ((bp)-ε)ά4p. (5.8)

5.2. Spin ί Excitations

In the general situation we have to look for irreducible representations of the
Euclidean group E3 or its covering group E%. Given a direction k on the sphere
k2 = κ2, its little group is the group of rotations around this direction. This is
an abelian group which has the representations

R(φ)ψ(k) = einφψ{k) (5.9)

where

n = 0, ± i ± 1 , . . .
and φ is the angle of rotation around the fc-axis.
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We are firstly interested in the cases n = ± 1. In order to obtain an action of
the rotation group which is independent of the choice of k one maps the function
ψ(k) onto a vector field F(k). To this end we choose two measurable real vector
fields ex(k\ e2(k) with (k,eί{k)) = {eί{k\e2{k)) = 0 and eί{k)2 = ί, which together
with (k/κ) form a right-handed coordinate system, and define

^ (k). (5.10)

Then we get for a rotation around the fc-axis

/cosφ - sinφ\ ί(F±(k))λ = + iφ ί(F±(k))λ

\sinφ cosφ) \(F±(k))2) l(F±(Λ))J' V ' '

Knowing F±(k) we obtain ψ(k) from the relations:

(5.12)
0 = (e1(k),F±(k))±i{e2(k)9F±(k))

The mapping ψ±(k)->F±(k) depends of the choice of the two vector fields ex{k)
and e2(k), but this is of no importance since the scalar product

l Fi2)(k)) (5.13)

is independent of this choice.
What counts is the fact that we can characterize the spaces of vector fields F

by the equations

(fc,F±(fc)) = 0 and [ft, F±(fe)] = + iκF±(k) (5.14)

(where [ 5 •] denotes the vector product) which go over into differential equations
after Fourier transformations. For the representation of the group E3 x T we
obtain

(a,R)F±(k)=Qxpi(aoε-(a,R-1k))(RF±)(R-1k) (5.15)

which also stays local after Fourier transformation.
In order to transform these equations into other frames, we have to pass to

quantities which live in the four dimensional Minkowski space. This procedure
is not unique, and we will choose such quantities for which the equations (4.14)
remain simple.

We introduce two skew-symmetric tensors of second rank which have the
following forms in the rest frame:

0

0

0

0

0

0

F2

0

0

-F, i0 /

/

and F*A

\

0

- F 2

- F 3

F t

0

0

0

F 2

0

0

0

F 3

0

0

0

(5.16)

) / \ - F 3 0 0 0

(F* denotes the dual tensor off).
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In terms of these quantities the equations of motion take the form

6 v F v ±=0 and εpvF%= ± ίκf(F±μ)* , (5.17)

and we obtain the bundle representation

1 Λ F ± ) { Λ - 1 p ) ) . (5.18)

With these Eqs. (5.17)—(18) we have obtained a scheme which stays local after the
Fourier transformation.

5.3. Hot Electrons

In this section we want to investigate spin \ representations in the presence of
a medium. Physically these representations have to be identified with electrons
which feel only a bulk interaction with the background matter. They appear to
correspond to the so-called "hot electrons".

Since we are dealing with spin \ systems, we have to map the function ψ(k) in
Eq. (5.9) onto spinor fields in order to get a representation which remains local
after Fourier transformation.

Let us denote by a the three Pauli matrices and ψ±(k) the two spinors corres-
ponding to the two eigenvalues + \. Then we conclude that in order to get the
correct transformation, ψ±{k) must be the eigenvectors of the matrix ^(k,σ)
with the eigenvalues + 1. This gives us the equation of motion:

(k,σ)ψ±{k)=±κψ±(k) (5.19)

and the action of Ef x T

(a,A)ψ±(k)=Qxpi(aos-{a,R'1(A)k)){Aψ±)(R-1(A)k). (5.20)

In order to transform into other frames we will pass from the two-component
spinors to four-component spinors by introducing

0\ (σt 0\ /I O1

0 1 ' H o - J aΠd

Setting

we obtain as equations of motion

y5Ψ±(p)=±Ψ±(p)

and (5.21)

The last equation is the usual Dirac equation for massless particles, except for
the replacement of p by p + b(κ — ε). (For free neutrinos we have κ = ε). The trans-
formation law is now as usual:

(a, A) (b, Ψ(p)) = {Λ(A)b, exp ί(a, A~ι (A)p) (Aψ) {A(A)p)). (5.22)
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As we remarked in the beginning of this section, the representations with
spin in the presence of matter will be interpreted in most cases as particles feeling
only a bulk interaction with the medium. The most striking consequence of this
theory is the fact that the spin lies either in the direction of the momentum or
opposite to it. Furthermore these two spin directions are completely decoupled.
This permits the possibility of having different dispersions for the two different
spin orientations. This effect is known to occur in nature for photons, for which
it is called the Faraday effect. But we should also expect the same effect to occur
for hot electrons when passing through matter composed of magnetically asym-
metric molecules.

Since, to our knowledge, this effect has not been observed, it might be of
interest to give a detailed description.

We shall assume that a beam of coherent electrons passes through a layer of
matter of thickness d, and that the direction of the beam is perpendicular to
the surface. Since we assume the matter to be at rest, we can work with the Fourier
transformed version of (5.19). For simplicity we shall assume that the direction
of the beam is also the z-direction.

Since the boundary conditions (which we do not need to know explicitly)
hold for all times, it follows that the energy is the same inside and outside of the
matter. Only the absolute value κ of k can change. Since we are working with
plane waves we get in the presence of matter the wave function

What one should observe is the spin component parallel to the surface. Com-
puting the expectation values of \σx and \ay we get

/ 1 \ T / — i(κ+— it~)z\

(ψ,^Gyψ) = — iϊϊiyψ + ψ-e { ').

So we find that the spin component parallel to the surface is rotated by the amount

proportional to the thickness of matter traversed.

§ 6. Concluding Remarks

In conclusion, we would like to remark upon the possible extensions and signi-
ficance of this work.

1. It clarifies certain ideas concerning symmetries and broken symmetries.
There is no need to discuss this further.

2. It provides a systematic approach to the study of phenomena in the presence
of a medium, in all cases in which the medium can be characterized by a π-broken
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symmetry. The following points supplement the detailed discussion of the previous
chapters:

(i) First, let only the boosts be π-broken. Then bundle representations
provide a systematic theory of drag coefficients. In superfluidity, they provide
the infrastructure for studying the Landau criterion. Among possible elementary
excitations in a superfluid there exist those with nonzero energy and angular
momentum, and zero linear momentum. These objects might correspond to
quantum vortices.

(ii) Next, consider lattice systems, in which most translations are π-broken.
The group of π-preserved symmetries being discrete, the product of two re-
presentations will decompose into a sum and not an integral. To us this suggests
the possibility of formation of Cooper pairs. The theory of superfluidity of 3 He
would, from this point of view, appear to be of exceptional interest.

(iii) Lastly, let some rotation elements be "missing" from the symmetry, due
to the presence of an external electric or magnetic field. Then ray representations
of translation groups become admissible. The resulting constraints on the motion
of a particle can be automatically incorporated via bundle representations the
fibre becomes smaller than the Hubert space of a free particle in just the right
manner.

In addition to the above, we would like to mention the following more general
questions.

3. In the quantum-mechanical measurement theory as developed by Hepp [8],
the "observer" is identified with an infinite system. Our formalism provides a
description of the boost operation on such systems.

4. Since many phase transitions are associated with a change of symmetry,
and since the bundle formalism appears to be well-adapted to describe the latter,
one should be able to study, for example, the solid-gas phase transition from the
change of symmetry aspect.

5. Since the success of the theory of condensed matter is based largely on the
picture of elementary excitations, and since the elementary excitations do appear
to have some fundamental significance, an ab initio study of condensed matter
as a gas of weakly interacting excitations ought to be rewarding. The first re-
quirement for such a programme is a precise definition of elementary excitations,
which as we have seen is provided by the relativity principle. The interaction be-
tween excitations will, of course, have to be an input, just as the van der Waals
interaction is in ordinary statistical mechanics. In the picture of condensed matter
as a gas of elementary excitation, a phase transition is associated with a breakdown
of the picture itself. This is clearly related to the phenomenon of instability of
elementary excitations, and is beyond the scope of our present considerations.

The sum up, it appears that the action of relativity groups can yield useful
information even when the state space is not a symplectic manifold or a Hubert
space.

Acknowledgements: This work was carried out during the year 1973-74. The second author
(R.N.S.) would like to thank the Deutsche Forschungsgemeinschaft for financial support, and the
members of the Institute for Theoretical Physics, University of Gδttingen for their warm hospitality
and stimulating company. He would like to acknowledge his indebtedness to J. Zak, F. R. Miller
and J. Yngvason for many useful discussions.



124 H. J. Borchers and R. N. Sen

Appendix: Fibre Bundles

The topological notion of a fibre bundle [8] is a generalization of the notion
of the product of two spaces: a fibre bundle is locally, but not always globally,
a product.

In a product there are two natural projections from the total (or product) space
onto the two component spaces. In a bundle, one of these is sacrificed, and the
other, π.B-^X, π continuous, is called the projection. B is the total or bundle
space a n d X is t h e b a s e space. T h e set Yx = π~1(x)= {b beB, π(b) = x}, xeX is
called the fibre over x. The analogue of the second component in the product is
recovered by making all the Yx homeomorphic to each other, and thus to an
abstract fibre Y

The local product structure is part of the axioms and is formulated as follows:
There exists an open cover {Vj} of X, where je J, an index set, such that for every
jeJ there exists a homeomorphism

φj:VjxY-+π-\Vj)

satisfying
πφj(x, y) = x, x e Vj, y e Y,

and the compatibility conditions described below on intersections of two Vs.
A φj is called a local triυialization.

The local trivializations are glued together by means of a topological group G,
called the group of the bundle. This is done as follows. Define a map φj x: Y-> π~1 (x)
by setting φjtX(y) = φj(x,y). Then if XE Vt f] Vj the map φjj °φiiX: Y-+Y is a
homeomorphism. This homeomorphism is identified with the action of a unique
element g EG on Y; that is, G must have an effective action on Y, or Y must be a
G-space. The resulting maps gji\Vi f] Vj-^G defined by

are assumed to be continuous in G. This completes the definition of the coordinate
bundle {£,π,X, Ϊ G, ̂ ,</>J.

Two coordinate bundles with the same bundle space, projection, base space,
fibre and group, but with coordinate neighbourhoods and local trivializations
(Vh φi) and (Vj,φ]) are called strictly equivalent if, for xe V{ f] VJ, the map ^ ( x )
Φ'ΰx1 ° Φi,x of Y into Y coincides with the operation of an element of G, and the
maps cjji'.Vi P| VJ-+G so obtained are continuous. A fibre bundle is a strict equi-
valence class of coordinate bundles.

Recall that a system of coordinate transformations in X with values in a topo-
logical group G is an indexed covering {FJ of X and a collection of continuous
maps gjt'.Vi f] Vj such that (no summation over repeated indices!)

9ji(x)gik(x) = 0jk(x),. xeVt(]VjC\Vk. (A.2)

Clearly (A.2) is satisfied by the gjt defined by (A.l), and therefore every bundle
over X with group G determines such a system of coordinate transformations.
There exists a converse, but before we state this result we must define a notion
of equivalence.

Let {β, π, X,...} and {B\ π', X\ ...} be two coordinate bundles with the
same group and fibre. A map h:B-^>B' is said to be a bundle map if (a) it carries
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a fibre Yx homeomorphically onto a fibre YxΊ(b) the base maph\X-+X' so induced
satisfies π'h = hπ; (c) the map gkj{x) = φ'k~xlhxφj,x of Y into Y coincides with the
operation of an element of G; and (d) the map gkj:Vj f] h~1(Vk')-*G so obtained
is continuous.

Two coordinate bundles having the same base space, fibre and group but
different B, B' are said to be equivalent if there exists a bundle map h:B-^Bf which
induces the identity map of the common base space.

Now we can state the (constructive) existence theorem of Steenrod: If G is a
topological transformation group of Y, and {Vt}, {gu} is a system of coordinate
transformations in X with values in G, then there exists a bundle with base space X,
fibre Y, group G, and the coordinate transformations {#i;-}. Any two such bundles
are equivalent.

It should be clear by now that a fibre bundle is a topologically interesting
structure precisely when it is not a global product. Therefore there exist a large
number of concepts and results which are aimed at clarifying the conditions
under which a bundle is a global product.

A bundle is called trivial if there exists a unique natural homeomorphism from B to
X x Y. In this case there is only one coordinate neighbourhood V = X, and G
consists of the identity alone. A more complicated case occurs when B is homeo-
morphic to X x X but not in any unique natural manner. Then one needs a
coordinate system to describe this homeomorphism. This at once introduces a
group, the group of coordinates transformations which preserve this homeo-
morphism, which now becomes the group of the bundle. In this case the bundle
is called not trivial but trivializable. We have used the term product bundle to
cover both cases.

A continuous map f:X-+B satisfying πf{x) — x is called a cross-section.
The notion of cross-section is a generalization of the notion of graph.

A bundle is called a principal bundle if the fibre is the same as the group (and
the group acts on the fibre by left-translations). A principal bundle can be ob-
tained from any bundle as follows. Keep the same base, coordinate neighbour-
hoods, coordinate transformations and group as the original bundle, replace
the fibre by the group itself, and use the Steenrod construction to obtain a (unique)
bundle. This bundle is called the associated principal bundle of the original.

A principal bundle is equivalent to the product if and only if it admits a cross-
section. Two bundles having the same base space, fibre and group are equivalent
if and only if their associated principal bundles are equivalent. Therefore a bundle
is equivalent to the product if and only if its associated principal bundle admits
a cross-section. (Note that a bundle may admit a cross-section even if its associated
principal bundle does not!)

A real vector bundle is a bundle in which the fibre is an n-dimensional real
vector space and the group is GL(n, 1R). A complex vector bundle has a complex
vector space as fibre and the group of unitaries upon it as group. A Hubert bundle
has (an infinite-dimensional) Hubert space as fibre and the group of unitaries
upon it as group. This group is not a limit (w-> oo) U(n).

The proofs of the following theorems depend on some of the deepest results
in fibre bundle theory.

(1) A bundle is equivalent to the product if its base space is paracompact and
contractible to a point.
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(2) A bundle is equivalent to the product if its base space is paracompact and
its group is contractible to a point.

It has been proved by Kuiper [10] that the unitary group of Hubert space
is contractible to a point. Therefore every Hubert bundle over a paracompact
base is equivalent to the product.

Finally, we will state a general result on topological groups. Let G be a topo-
logical group, H a closed subgroup of G, G/H the homogeneous space with the
usual topology, and π:G-^G/H the map defined by π(g) = gH. A local cross-
section f of H in G is a continuous (1,1) map from an open set V C G/H (containing
the point x0 = H) into G,f:V-+G, such that πf(x) = xVxeV.

It is a remarkable fact that if G and H are as above and H has a local cross-
section in G, then G is a fibre bundle over G/H with respect to the natural pro-
jection π.G-^G/H. The fibre of the bundle is H, and the group is H acting on the
fibre by left-translations. That is, G is a principal bundle.

This result is known as the bundle structure theorem.
It has been proved by Chevalley [11] that if G is a Lie group and H a closed

subgroup of G, then H has a local cross-section in G. Hence the bundle structure
theorem applies to every Lie group and every closed subgroup of it.

If G is a Lie group and H a closed subgroup of G, then G/H is paracompact.
Hence G is a product bundle over G/H if either G/H is contractible to a point,
or if H is contractible to a point. The bundle G over G/H has a global cross-
section if and only if it is equivalent to the product.

The maps η: G/H-^G which one encounters in the theory of induced represen-
tations have the property πη(x) = x of cross-sections. If G is Lie and H is closed,
H always has a local cross-section in G. Therefore one can always choose an η
which is piecewise-continuous. This result is sufficient to ensure continuity of the
representations in the inducing construction.
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