Higher Order Estimates for the Yukawa ${ }_{2}$ Quantum Field Theory*

Oliver A. Mc Bryan ${ }^{\star \star}$
Department of Mathematics, University of Toronto, Toronto, Canada

Received March 27, 1974

$$
\begin{aligned}
& \text { Abstract. Higher order estimates of the form } \\
& \qquad \prod_{1}^{n} N_{\tau_{i}} \leqq \operatorname{const}(H(g)+I)^{n}, \quad \sum_{1}^{n} \tau_{i}<1, \tau_{i} \geqq 0
\end{aligned}
$$

are proved for the Yukawa ${ }_{2}$ models with and without SU_{3} symmetry. We also prove norm convergence of $\Pi_{1}^{n} N_{\tau_{i}}^{\frac{1}{2}} \cdot R_{\kappa}^{n / 2+\delta}$ as $\kappa \rightarrow \infty$ where $R_{\kappa}=(H(g, \kappa)+I)^{-1}$.

Introduction and Results

Higher order estimates, bounding powers of the fractional energy operator by powers of the Hamiltonian, have proved useful in studying the $\mathscr{P}(\phi)_{2}$ model [1]. In this paper we obtain similar estimates for the Yukawa ${ }_{2}$ model as well as for the Yukawa ${ }_{2}$ model with internal SU_{3} symmetry discussed in [2].

In the following we will use even, positive odd and negative odd values of ε to label bosons, fermions and anti-fermions respectively. Thus $b(k, \varepsilon)$ denotes the annihilation operator for free particles of momentum k and type ε. The fractional energy operator is:

$$
\begin{aligned}
N_{\tau}=\sum_{\varepsilon} N_{\tau}^{(\varepsilon)} & =\sum_{\varepsilon} \int d k \mu(k, \varepsilon)^{\tau} b^{*}(k, \varepsilon) b(k, \varepsilon), \\
\mu(k, \varepsilon) & =\left(k^{2}+m(\varepsilon)^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where $m(\varepsilon)=m$ for bosons, $m(\varepsilon)=M$ for fermions. For convenience we define $E(k)=\sqrt{k^{2}+1}$. We will work with the dense domain \mathscr{D} of vectors in Fock space with finite numbers of particles and wave functions in Schwartz space.

Formally, the finite volume Hamiltonian $H(g)$ has the form

$$
\begin{aligned}
H(g) & =H_{0}+H_{I}(g)+C(g) \\
& =N_{1}+\lambda \int d x g(x): \bar{\psi} \psi \phi:-\frac{1}{2} \delta m^{2} \int d x g^{2}(x): \phi^{2}:-E(g),
\end{aligned}
$$

where $g \geqq 0 \in C_{0}^{\infty}$ and $\delta m^{2}, E(g)$ provide infinite renormalizations. To define the momentum cutoff Hamiltonian $H(g, \kappa)$ we multiply the momentum space kernels $w^{c}\left(k, p_{1}, p_{2}\right), w\left(k, p_{1}, p_{2}\right)$ of the interaction term $H_{I}(g)$ by a general momentum cutoff function $\chi_{\kappa}\left(k, p_{1}, p_{2}\right)$ in the sense of [3]. The renormalization constants

[^0]are then defined as:
\[

$$
\begin{aligned}
\delta m_{\kappa}^{2}= & -\frac{\lambda^{2}}{2 \pi} \int d k \omega(k)^{-1}\left|\chi_{\kappa}(0, k / 2,-k / 2)\right|^{2}+\mathrm{const}+o(1) \\
E(g, \kappa)= & -\int d k d p_{1} d p_{2}\left|w^{c}\left(k, p_{1}, p_{2}\right) \chi_{\kappa}\left(k, p_{1}, p_{2}\right)\right|^{2}\left(\mu(k)+\omega\left(p_{1}\right)+\omega\left(p_{2}\right)\right)^{-1} \\
& +\mathrm{const}+o(1)
\end{aligned}
$$
\]

where $\mu(k) \equiv \mu(k, 0), \omega(k)=\mu(k, 1)$. The SU_{3} Hamiltonians involve slight generalizations and are defined in [2]. Glimm and Jaffe [3] have shown that the Hamiltonians, with a suitable choice of the constant in $E(g, \kappa)$, define positive self-adjoint operators converging in the sense of resolvents to a positive selfadjoint operator $H(g)$ which satisfies:

$$
N_{\tau} \leqq \operatorname{const}(H(g)+I), \quad \tau<1 .
$$

Furthermore the operators $H(g, \kappa)$ are essentially self-adjoint on \mathscr{D} and satisfy κ-dependent estimates of the form:

$$
\prod_{i=1}^{n} N_{\tau_{i}} \leqq C_{\kappa}(H(g, \kappa)+I)^{n}, \quad \sum_{i=1}^{n} \tau_{i}<1
$$

The proof of these estimates requires the essential self-adjointness of $H(g, \kappa, \sigma)^{n}$ on \mathscr{D}, where $H_{I}(g, \kappa, \sigma)$ and $C(g, \kappa, \sigma)$ have momentum space kernels in Schwartz space converging to those of $H_{I}(g, \kappa)$ and $C(g, \kappa)$ as $\sigma \rightarrow \infty$, which follows by techniques similar to those of Jaffe, Lanford, and Wightman [6]. For notation and general techniques we refer to Glimm and Jaffe [3], Dimock [4], and McBryan $[2,5]$. Our main results are:

Theorem 1. Provided $\tau=\sum_{i=1}^{n} \tau_{i}<1, \tau_{i} \geqq 0$, then there is a constant, depending on n, τ, g, such that

$$
\begin{equation*}
\prod_{i=1}^{n} N_{\tau_{i}} \leqq \operatorname{const}(H(g)+I)^{n} \tag{1}
\end{equation*}
$$

The restriction $\tau<1$ is indicated by perturbation theory and so we expect that (1) are the most general $n^{\text {th }}$ order estimates. It is also useful to have estimates controlling the inequality (1) as the momentum cutoff κ is removed. With $R_{\kappa}=(H(g, \kappa)+I)^{-1}, R \equiv R_{\infty}=(H(g)+I)^{-1}$, we define $\delta R^{\beta}=R_{\kappa_{2}}^{\beta}-R_{\kappa_{1}}^{\beta}$ where one of κ_{1}, κ_{2} may be infinite.

Theorem 2. Provided $\tau=\sum_{i=1}^{n} \tau_{i}<1, \tau_{i} \geqq 0$, and $\delta>0$, there is a constant and an $\varepsilon>0$ such that
(i) $\Pi_{i=1}^{n} N_{\tau_{i}}^{\frac{1}{2}} \cdot \delta R^{n / 2}$ converges weakly to 0 as $\kappa=\min \left(\kappa_{1}, \kappa_{2}\right)$ tends to ∞.
(ii) $\left\|\Pi_{1}^{n} N_{\tau_{1}}^{\frac{1}{2}-\delta} \cdot \delta R^{n / 2}\right\| \leqq$ const $\kappa^{-\varepsilon}$.
(iii) $\left\|\Pi_{1}^{n} N_{\tau_{i}}^{\frac{1}{2}} \cdot \delta R^{n / 2+\delta}\right\| \leqq$ const $\kappa^{-\varepsilon}$.

Theorem 1 follows from two lemmas:
Lemma 3. For $\psi \in D\left(\Pi_{i=1}^{n} N_{\tau_{i}}^{\frac{1}{2}}\right)$ and an arbitrary choice of $\varepsilon_{i}, \tau_{i}$:

$$
\begin{align*}
\left\|\prod_{i=1}^{n} N_{\tau_{1}}^{\left(\varepsilon_{1}\right)^{\frac{1}{2}}} \psi\right\|^{2}= & \sum_{r=1}^{n} \int d k_{1} \ldots d k_{r} \sum_{1=i_{1}<\cdots i_{r}}^{n} P_{i_{1} \ldots i_{r}}^{\tau, \varepsilon}\left(k_{1}, \ldots, k_{r}\right) \\
& \cdot\left\|b\left(k_{r}, \varepsilon_{i_{r}}\right) \ldots b\left(k_{1}, \varepsilon_{i_{1}}\right) \psi\right\|^{2}, \tag{2}
\end{align*}
$$

where $P_{i_{1} \ldots i_{r}}^{\tau, \varepsilon}$ are homogeneous expressions of degree $\Sigma_{i=1}^{n} \tau_{i}$ in $\mu\left(k_{i}, \varepsilon_{j}\right)$. Explicitly:

$$
P_{i_{1} \ldots i_{r}}^{\tau, \varepsilon}\left(k_{1}, \ldots, k_{r}\right)=\prod_{t=1}^{r}\left[\mu^{\tau_{t}}\left(k_{t}, \varepsilon_{i_{t}}\right) \sum_{s=i_{t}+1}^{i_{t+1}-1} \cdot\left\{\sum_{l=1}^{t} \delta_{\varepsilon_{i}, \varepsilon_{s}} \mu^{\tau_{s}}\left(k_{l}, \varepsilon_{s}\right)\right\}\right],
$$

where for $t=r$ we define $i_{r+1}-1 \equiv n$ and a vacuous product is always taken to be 1 , i.e., $\Pi_{s=3}^{2}\{ \} \equiv 1$.

Lemma 4. For any choice of $\varepsilon_{i}, \Sigma_{i=1}^{n} \tau_{i}=\tau<1$ and for any θ, there is a constant independent of κ with:

$$
\begin{equation*}
\int d k_{1} \ldots d k_{n} E^{\tau_{1}}\left(k_{1}\right) \ldots E^{\tau_{n}}\left(k_{n}\right)\left\|b\left(k_{n}, \varepsilon_{n}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R_{\kappa}^{n / 2} \theta\right\|^{2} \leqq \text { const }\|\theta\|^{2} \tag{3}
\end{equation*}
$$

Proof of Theorem 1. From the form of $P_{i_{1} \ldots i_{r}}^{\tau, \varepsilon}$ we have

$$
\left|P_{i_{1} \ldots i_{r}}^{\tau, \varepsilon}\left(k_{1}, \ldots k_{r}\right)\right| \leqq \text { const } \prod_{t=1}^{r}\left[E^{\tau_{i_{t}}}\left(k_{t}\right) \prod_{s=i_{t}+1}^{i_{t}+1-1}\left\{\sum_{l=1}^{t} E^{\tau_{s}}\left(k_{l}\right)\right\}\right]
$$

Inserting this in (2) and applying Lemma 4 with $\psi=R_{\kappa}^{n / 2} \theta$ we obtain:

$$
\begin{equation*}
\left\|\prod_{1}^{n} N_{\tau_{i}}^{\left(\varepsilon_{i} \frac{1}{2}\right.} R_{k}^{n / 2} \theta\right\|^{2} \leqq \mathrm{const}\|\theta\|^{2} \tag{4}
\end{equation*}
$$

with a constant independent of κ. Since R_{κ} converges in norm to $R, \prod_{1}^{n} N_{\tau_{i}}^{\left(\varepsilon_{i}\right)^{\frac{1}{2}}} R_{\kappa}^{n / 2}$ converges weakly on $D\left(\prod_{1}^{n} N_{\tau_{i}}^{\left(\varepsilon_{i}\right)^{\frac{1}{2}}}\right)$ to $\prod_{1}^{n} N_{\tau_{i}}^{\left(\varepsilon_{i}\right)^{\frac{1}{2}}} R^{n / 2}$ and the uniform bounds (4) then apply also to the case $\kappa=\infty$. This completes the proof of Theorem 1 and of Theorem 2 (i).

Proof of Theorem 2. (ii) We use $\|A\|=\left\|A^{*} A\right\|^{\frac{1}{2}}$. Thus

$$
\begin{align*}
\left\|\left(\prod_{1}^{n} N_{\tau_{i}}\right)^{\frac{1}{2}-\delta} \delta R^{n / 2}\right\| & =\left\|\delta R^{n / 2}\left(\prod_{1}^{n} N_{\tau_{2}}\right)^{1-2 \delta} \delta R^{n / 2}\right\|^{\frac{1}{2}} \\
& \leqq\left\|\left(\prod_{1}^{n} N_{\tau_{2}}\right)^{\frac{1}{2}-2(1-\alpha) \delta} \delta R^{n / 2}\right\|^{\frac{1}{2}}\left\|\left(\prod_{1}^{n} N_{\tau_{1}}\right)^{\frac{1}{2}-2 \alpha \delta} \delta R^{n / 2}\right\|^{\frac{1}{2}} \tag{5}\\
& \leqq \mathrm{const}\left\|\left(\prod_{1}^{n} N_{\tau_{2}}\right)^{\frac{1}{2}-2 \alpha \delta} \delta R^{n / 2}\right\|^{\frac{1}{2}}
\end{align*}
$$

where we have used Theorem 1 in the form

$$
\left\|\left(\prod_{1}^{n} N_{\tau_{2}}\right)^{\frac{1}{2}-\delta^{\prime}} \delta R^{n / 2}\right\|^{\frac{1}{2}} \leqq\left(\left\|\left(\prod_{1}^{n} N_{\tau_{i}}\right)^{\frac{1}{2}} R_{\kappa_{1}}^{n / 2}\right\|+\left\|\left(\prod_{1}^{n} N_{\tau_{1}}\right)^{\frac{1}{2}} R_{\kappa_{2}}^{n / 2}\right\|\right)^{\frac{1}{2}} \leqq \mathrm{const}
$$

The inequality (5) allows us to reduce the exponent $\frac{1}{2}-\delta$ to $\frac{1}{2}-2 \alpha \delta, 0<\alpha \leqq 1$. By iterating m times and choosing m, α carefully we reduce the exponent to $\frac{1}{2}-(2 \alpha)^{m} \delta$ with $0 \leqq \frac{1}{2}-(2 \alpha)^{m} \delta \leqq \frac{\gamma}{2 n}, \gamma<1$. Thus

$$
\begin{aligned}
\left\|\left(\prod_{1}^{n} N_{\tau_{2}}\right)^{\frac{1}{2}-\delta} \delta R^{n / 2}\right\| & \leqq \operatorname{const}\left\|\left(\prod_{1}^{n} N_{\tau_{1}}\right)^{\frac{\gamma}{2 n}} \delta R^{n / 2}\right\|^{2-m} \\
& \leqq \operatorname{const}\left\|N_{\tau}^{\gamma / 2} \delta R^{n / 2}\right\|^{2-m} \\
& \leqq \operatorname{const} \kappa^{-\varepsilon} \quad \text { for some } \varepsilon>0
\end{aligned}
$$

where we have used the norm convergence of $N_{\tau}^{\gamma / 2} \delta R^{\frac{1}{2}}, \gamma<1$, which we have proved in [2, Theorem 2.4.1]. There remains only the specification of m and α. A suitable choice is

$$
\begin{aligned}
& \text { choice is } \\
& m>\log 2 \delta / \log \left(1-\frac{\gamma}{n}\right), \quad \alpha=\frac{1}{2}\left(\frac{1}{2 \delta}\right)^{\frac{1}{m+1}}, \quad \delta<\frac{1}{2} .
\end{aligned}
$$

(iii) We use the inequality, valid for $\tau \geqq 0$ and $\beta \geqq 1$

Thus with $0<\delta<\frac{1}{2}$ and $\beta>1$:

$$
N_{\tau} \leqq N_{\tau / \beta}^{\beta}
$$

$\prod_{1}^{n} N_{\tau_{i}}=\prod_{1}^{n} N_{\tau_{i}}^{1-2 \delta} \prod_{1}^{n} N_{\tau_{i}}^{2 \delta} \leqq \prod_{1}^{n} N_{\tau_{i}}^{1-2 \delta} \prod_{1}^{n} N_{\tau_{i} / \beta}^{2 \beta \delta} \leqq \prod_{1}^{n} N_{\tau_{i}}^{1-2 \delta} \cdot N_{\tau / \beta}^{2 n \beta \delta}, \quad \tau=\sum_{i=1}^{n} \tau_{i}$.
We now choose β so that $\tau+\tau / \beta<1$, i.e. $\beta>\max \left(1, \frac{\tau}{1-\tau}\right)$, and we choose $\delta>0$ sufficiently small that $2 n \beta \delta=1-2 \delta$, i.e., $\delta=(2(n \beta+1))^{-1}$. Then defining $\tau_{n+1}=\tau / \beta$ we have

$$
\prod_{1}^{n} N_{\tau_{i}} \leqq \prod_{1}^{n+1} N_{\tau_{i}}^{1-2 \delta} \quad \text { and } \quad \sum_{1}^{n+1} \tau_{i}<1
$$

and with $R_{\kappa}(\zeta)=(H(g, \kappa)-\zeta)^{-1}, \zeta \leqq-1$, we obtain by (ii):

$$
\begin{equation*}
\left\|\prod_{1}^{n} N_{\tau_{i}}^{\frac{1}{2}} \delta R(\zeta)^{(n+1) / 2}\right\| \leqq\left\|\prod_{1}^{n+1} N_{\tau_{i}}^{\frac{1}{2}-\delta} \delta R(\zeta)^{(n+1) / 2}\right\| \leqq \text { const } \kappa^{-\varepsilon^{\prime}} \tag{6}
\end{equation*}
$$

However, by Theorem 1 we have

$$
\begin{equation*}
\left\|\prod_{1}^{n} N_{\tau_{i}}^{\frac{1}{2}} \delta R(\zeta)^{(n+1) / 2}\right\| \leqq \mathrm{const}|\zeta|^{-\frac{1}{2}} \tag{7}
\end{equation*}
$$

Combining (6) and (7) using $\|A\|=\|A\|^{\nu}\|A\|^{1-v}, 0 \leqq \nu \leqq 1$, we get

$$
\left\|\prod_{1}^{n} N_{\tau_{1}}^{\frac{1}{2}} \delta R(\zeta)^{(n+1) / 2}\right\| \leqq \operatorname{const}|\zeta|^{-\frac{1}{2}+\delta / 2} \kappa^{-\varepsilon}, \quad \varepsilon=\varepsilon^{\prime} \delta>0
$$

where $\delta>0$ has no relation to the δ used previously. Finally, using the identity, valid for $0<\delta<\frac{1}{2}$:
where

$$
R_{\kappa}(\zeta)^{n / 2+\delta}=c(\delta) \int_{0}^{\infty} d \lambda \lambda^{-\frac{1}{2}-\delta} R_{\kappa}(\zeta-\lambda)^{(n+1) / 2}
$$

$$
c(\delta)=\left[\int_{0}^{\infty} d \lambda \lambda^{-\frac{1}{2}-\delta}(1+\lambda)^{-(n+1) / 2}\right]^{-1}
$$

we obtain for $\delta>0$:

$$
\begin{aligned}
\left\|\prod_{1}^{n} N_{\tau_{i}}^{\frac{1}{2}} \delta R(\zeta)^{n / 2+\delta}\right\| & \leqq c(\delta) \int_{0}^{\infty} d \lambda \lambda^{-\frac{1}{2}-\delta}\left\|\prod_{1}^{n} N_{\tau_{i}}^{\frac{1}{2}} \delta R(\zeta-\lambda)^{(n+1) / 2}\right\| \\
& \leqq c(\delta) \int_{0}^{\infty} d \lambda \lambda^{-\frac{1}{2}-\delta} \operatorname{const}|\zeta-\lambda|^{-\frac{1}{2}+\delta / 2} \kappa^{-\varepsilon} \\
& \leqq \operatorname{const} \kappa^{-\varepsilon}
\end{aligned}
$$

which completes the proof of Theorem 2.

Proof of Lemmas 3, 4. Lemma 3 follows easily by induction from

$$
b\left(k, \varepsilon_{1}\right) N_{\tau}^{\left(\varepsilon_{2}\right)^{\frac{1}{2}}}=\left(N_{\tau}^{\left(\varepsilon_{2}\right)}+\delta_{\varepsilon_{1}, \varepsilon_{2}} \mu\left(k, \varepsilon_{1}\right)^{\tau}\right)^{\frac{1}{2}} b\left(k, \varepsilon_{1}\right)
$$

and

$$
\left\|\left(N_{\tau}^{(\varepsilon)}+a\right)^{\frac{1}{2}} \psi\right\|^{2}=\left\|N_{\tau}^{(\varepsilon)^{\frac{1}{2}}} \psi\right\|^{2}+a\|\psi\|^{2}
$$

The proof of Lemma 4 depends on the renormalized pull-through formula [5]. This expansion takes the form:

$$
\begin{align*}
& b\left(k_{n}, \varepsilon_{n}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R_{\kappa}^{\alpha}(\zeta)=\sum_{r=0}^{n} \sum_{i_{r}>}^{n}(-)^{\delta_{i_{i}, \ldots t_{1}}^{r_{1}, \varepsilon}} \\
& \cdot U_{r, \kappa}^{(\alpha)}\left(\zeta-\mu\left(k_{n}, \varepsilon_{n}\right) \cdots-\mu\left(k_{i_{r}}, \varepsilon_{i_{r}}\right) \cdots-\mu\left(k_{i_{1}, \varepsilon_{i_{1}}}\right) \cdots-\mu\left(k_{1}, \varepsilon_{1}\right) ; k_{i_{r}} \varepsilon_{i_{r}}, \ldots, k_{i_{1}} \varepsilon_{i_{1}}\right) \tag{8}\\
& \text { - } b\left(k_{n}, \varepsilon_{n}\right) \ldots b\left(k_{i_{r}}, \varepsilon_{i_{r}}\right) \ldots b\left(k_{i_{1}}, \varepsilon_{i_{1}}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) \text {, }
\end{align*}
$$

where $0<\alpha \leqq 1$ and a slash denotes absence of a term. The indices $\delta_{i_{r} \ldots i_{1}}^{r, \varepsilon}$ are given by:

$$
\delta_{i_{r} \ldots i_{1}}^{r, \varepsilon}=\sum_{s=1}^{r}\left(\sum_{j=i_{s}+1}^{i_{s+1}-1} \varepsilon_{j}\right)\left(\sum_{l=1}^{s} \varepsilon_{i_{l}}\right),
$$

while the $U_{n, \kappa}^{(\alpha)}$ are defined inductively by:

$$
\begin{gathered}
U_{0, \kappa}^{(\alpha)}(\zeta)=R_{\kappa}(\zeta)^{\alpha}, \\
U_{n, \kappa}^{(\alpha)}\left(\zeta ; k_{n} \varepsilon_{n}, \ldots, k_{1} \varepsilon_{1}\right)=b\left(k_{n}, \varepsilon_{n}\right) U_{n-1, \kappa}^{(\alpha)}\left(\zeta ; k_{n-1} \varepsilon_{n-1}, \ldots, k_{1} \varepsilon_{1}\right) \\
-(-)^{\varepsilon_{n} \sum_{\Gamma}^{n} \varepsilon_{i}} U_{n-1, \kappa}\left(\zeta-\mu\left(k_{n}, \varepsilon_{n}\right) ; k_{n-1} \varepsilon_{n-1}, \ldots, k_{1} \varepsilon_{1}\right) b\left(k_{n}, \varepsilon_{n}\right) .
\end{gathered}
$$

For a fuller treatment of these defining relations and of (8) see [5]. In [5] we have proved that:

$$
\begin{equation*}
\int d k_{1} \ldots d k_{n} E^{\tau_{n}}\left(k_{n}\right) \ldots E^{\tau_{1}}\left(k_{1}\right)\left\|U_{n, k}^{\left(\frac{1}{2}\right)}\left(\zeta ; k_{n} \varepsilon_{n}, \ldots, k_{1} \varepsilon_{1}\right)\right\|^{2} \leqq \text { const } \tag{9}
\end{equation*}
$$

uniformly in κ provided $\Sigma_{i=1}^{n} \tau_{i}<1$.
Returning to the proof of Lemma 4, we pull all of the $b\left(k_{i}, \varepsilon_{i}\right)$ through the first $R_{\kappa}^{\frac{1}{2}}$ in (3) obtaining by (8):

$$
\begin{align*}
& \int d k_{1} \ldots d k_{n} E^{\tau_{n}}\left(k_{n}\right) \ldots E^{\tau_{1}}\left(k_{1}\right)\left\|b\left(k_{n}, \varepsilon_{n}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R^{n / 2} \theta\right\|^{2} \\
& \leqq 2^{n} \int d k_{1} \ldots d k_{n} E^{\tau_{n}}\left(k_{n}\right) \ldots E^{\tau_{1}}\left(k_{1}\right) \| R^{\frac{1}{2}}\left(1-\mu\left(k_{n}, \varepsilon_{n}\right) \cdots-\mu\left(k_{1}, \varepsilon_{1}\right)\right) \\
& \quad \cdot b\left(k_{n}, \varepsilon_{n}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R^{(n-1) / 2} \theta \|^{2} \\
& \quad+2^{n} \int d k_{1} \ldots d k_{n} E^{\tau_{n}}\left(k_{n}\right) \ldots E^{\tau_{1}}\left(k_{1}\right) \sum_{r=1}^{n} \sum_{i_{r}>}^{n}, \ldots>i_{1} \geqq 1 \tag{10}\\
& \quad \cdot \\
& \left\|U_{r, \kappa}^{\left(\frac{1}{2}\right)}\left(1-\mu\left(k_{n}, \varepsilon_{n}\right) \ldots-\mu\left(k_{i_{r}} \varepsilon_{i_{r}}\right) \ldots-\mu\left(k_{i_{1}} \varepsilon_{i_{1}}\right) \ldots-\mu\left(k_{1}, \varepsilon_{1}\right) ; k_{i_{r}} \varepsilon_{i_{r}}, \ldots, k_{i_{1}} \varepsilon_{i_{1}}\right)\right\|^{2} \\
& \left\|b\left(k_{n}, \varepsilon_{n}\right) \ldots b\left(k_{i_{r}, \varepsilon_{i_{r}}}\right) \ldots b\left(k_{i_{1}, \varepsilon_{i_{1}}}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R^{(n-1) / 2} \theta\right\|^{2},
\end{align*}
$$

where we have supressed κ for convenience and used

$$
\left\|\sum_{i=1}^{m} a_{i}\right\|^{2} \leqq m \sum_{i=1}^{m}\left\|a_{i}\right\|^{2} .
$$

The proof of Lemma 4 now follows by induction on n. We assume the result (3) for all possible choices of $\tau_{i}, i=1, \ldots, m$ with $\sum_{i=1}^{m} \tau_{i} \leqq \tau$ and for all $m, 1 \leqq m \leqq(n-1)$. The first term in (6) is

$$
\begin{aligned}
& 2^{n} \int d k_{n} \ldots d k_{1} E^{\tau_{n}}\left(k_{n}\right) \ldots E^{\tau_{1}}\left(k_{1}\right) \\
\cdot & \left\|R^{\frac{1}{2}}\left(\zeta-\mu\left(k_{n}, \varepsilon_{n}\right) \ldots-\mu\left(k_{1}, \varepsilon_{1}\right)\right) b\left(k_{n}, \varepsilon_{n}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R^{(n-1) / 2} \theta\right\|^{2} \\
= & 2^{n} \int d k_{n-1} \ldots d k_{1} E^{\tau_{n-1}}\left(k_{n-1}\right) \ldots E^{\tau_{1}}\left(k_{1}\right)\left\{\int d k_{n} E^{\tau_{n}}\left(k_{n}\right) \| R^{\frac{1}{2}}\left(\zeta-\mu\left(k_{n}, \varepsilon_{n}\right) \ldots \mu\left(k_{1}, \varepsilon_{1}\right)\right)\right. \\
& \left.\cdot\left(N_{\tau_{n}}^{\left(\varepsilon_{n}\right)}+\mu^{\tau_{n}}\left(k_{n}, \varepsilon_{n}\right)\right)^{\frac{1}{2}} b\left(k_{n}, \varepsilon_{n}\right) N_{\tau_{n}}^{\left(\varepsilon_{n}\right)-\frac{1}{2}} b\left(k_{n-1}, \varepsilon_{n-1}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R^{(n-1) / 2} \theta \|^{2}\right\} \\
\leqq & \text { const } \int d k_{n-1} \ldots d k_{1} E^{\tau_{n-1}}\left(k_{n-1}\right) \ldots E^{\tau_{1}}\left(k_{1}\right)\left\|b\left(k_{n-1}, \varepsilon_{n-1}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R^{(n-1) / 2} \theta\right\|^{2} \\
\leqq & \mathrm{const}\|\theta\|^{2}
\end{aligned}
$$

by the induction hypothesis.
We have used the first order estimate in the form

$$
\begin{aligned}
& \int d k_{n} E^{\tau_{n}}\left(k_{n}\right)\left\|R^{\frac{1}{2}}\left(\zeta-\mu\left(k_{n}, \varepsilon_{n}\right)\right)\left(N_{\tau_{n}}^{\left(\varepsilon_{n}\right)}+\mu^{\tau_{n}}\left(k_{n}, \varepsilon_{n}\right)\right)^{\frac{1}{2}} b\left(k_{n}, \varepsilon_{n}\right) N_{\tau_{n}}^{\left(\varepsilon_{n}\right)-\frac{1}{2}} \chi\right\|^{2} \\
& \quad \leqq \mathrm{const} \int d k_{n} E^{\tau_{n}}\left(k_{n}\right)\left\|b\left(k_{n}, \varepsilon_{n}\right) N_{\tau_{n}}^{\left(\varepsilon_{n}\right)-\frac{1}{2} \frac{1}{2}} \chi\right\|^{2} \\
& \quad \leqq \mathrm{const}\left\|N_{\tau_{n}}^{\left(\varepsilon_{n}\right)^{\frac{1}{2}}} N_{\tau_{n}}^{\left(\varepsilon_{n}\right)-\frac{1}{2}} \chi\right\|^{2}=\mathrm{const}\|\chi\|^{2} .
\end{aligned}
$$

For the remaining terms $(r \neq 0)$ in (10) we use the estimate (9) for $U_{r, \kappa_{k}}^{\left(\frac{1}{2}\right)}$. Thus

$$
\begin{aligned}
& 2^{n} \int d k_{n} \ldots d k_{1} E\left(k_{n}\right)^{\imath_{n}} \ldots E^{\tau_{1}}\left(k_{1}\right) \sum_{r=1}^{n} \sum_{i_{r}>}^{n} \sum_{i>i_{1} \geqq 1}^{n}, \\
& \quad\left\|U_{r, k}^{\left(\frac{1}{2}\right)}\left(1-\mu\left(k_{n}, \varepsilon_{n}\right) \ldots-\mu\left(k_{i_{r}} \varepsilon_{i_{i}}\right) \ldots-\mu\left(k_{i_{1}} \varepsilon_{i_{1}}\right) \ldots-\mu\left(k_{1}, \varepsilon_{1}\right) ; k_{i_{r}} \varepsilon_{i_{r}}, \ldots, k_{i_{1}} \varepsilon_{i_{1}}\right)\right\|^{2}, \\
& \quad\left\|b\left(k_{n}, \varepsilon_{n}\right) \ldots b\left(k_{i_{r}}, \varepsilon_{i_{r}}\right) \ldots b\left(k_{i_{1}}, \varepsilon_{i_{1}}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R^{(n-1) / 2} \theta\right\|^{2} \\
& \quad \leqq \text { const } \int d k_{n} \ldots d k_{i_{r}} \ldots d k_{i_{1}} \ldots d k_{1} E^{\tau_{n}}\left(k_{n}\right) \ldots E^{\tau_{i r}}\left(k_{i_{r}}\right) \ldots E^{\tau_{i_{1}}}\left(k_{i_{1}}\right) \ldots E^{\tau_{1}}\left(k_{1}\right) \\
& \quad \cdot\left\|b\left(k_{n}, \varepsilon_{n}\right) \ldots b\left(k_{i_{r}} \varepsilon_{i_{r}}\right) \ldots b\left(k_{i_{1}} \varepsilon_{i_{1}}\right) \ldots b\left(k_{1}, \varepsilon_{1}\right) R^{(n-r) / 2} \theta\right\|^{2} \\
& \quad \leqq \text { const }\|\theta\|^{2}
\end{aligned}
$$

by the induction hypothesis.
Since the induction hypothesis is certainly valid for $n=1$:

$$
\begin{aligned}
\int d k E^{\tau}(k)\left\|b(k, \varepsilon) R_{\kappa}^{\frac{1}{2}} \theta\right\|^{2} & \leqq \int d k \text { const } \mu(k, \varepsilon)^{\tau}\left\|b(k, \varepsilon) R_{\kappa}^{\frac{1}{2}} \theta\right\|^{2} \\
& \leqq \mathrm{const}\left\|N_{\tau}^{(\varepsilon) \frac{1}{2}} R_{\kappa}^{\frac{1}{2}} \theta\right\|^{2} \\
& \leqq \mathrm{const}\|\theta\|^{2}
\end{aligned}
$$

by the first order estimate, Lemma 4 follows by induction.

References

1. Rosen, L.: The $\left(\phi^{2 n}\right)_{2}$ quantum field theory: higher order estimates, Commun. Pure Appl. Math. 24, 417-457 (1971)
2. McByan, O.: Vector currents in the Yukawa ${ }_{2}$ quantum field theory. University of Toronto (preprint)
3. Glimm, J., Jaffe, A.: Quantum field theory models. In: Dewitt, C., Stora, A. (Eds.): Statistical mechanics and quantum field theory. Gordon and Breach 1971
4. Dimock, J.: Estimates, renormalized currents, and field equations for the Yukawa ${ }_{2}$ field theory. Ann. Phys. 72, 177-242 (1972)
5. McBryan, O.: The n-th order renormalized pull-through formula for the Yukawa ${ }_{2}$ quantum field theory. Rockefeller University (preprint)
6. Jaffe, A., Lanford, O., Wightman, A.: A general class of cut-off model field theories. Commun. math. Phys. 15, 47-68 (1969)

Communicated by A. S. Wightman
O. A. Mc Bryan

Department of Mathematics
University of Toronto
Toronto M5S 1A1, Canada

[^0]: * Supported in part by the National Research Council of Canada and by the National Science Foundation, grant NSF-GP-31239X.
 $\star \star$ Present address: Department of Mathematics, Rockefeller University, New York, N. Y. 10021.

