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Abstract. Higher order estimates of the form

Π Nτi £ const{H(g) + /)", £ τ, < 1, τf ^ 0
1 1

are proved for the Yukawa2 models with and without SU 3 symmetry. We also prove norm convergence

ofnn

1N*i RaJ2 + iasκ-+ao where Rκ = (H{g,κ) +1)'1.

Introduction and Results

Higher order estimates, bounding powers of the fractional energy operator
by powers of the Hamiltonian, have proved useful in studying the &(φ)2 model [1].
In this paper we obtain similar estimates for the Yukawa2 model as well as for the
Yukawa2 model with internal SU 3 symmetry discussed in [2].

In the following we will use even, positive odd and negative odd values of ε
to label bosons, fermions and anti-fermions respectively. Thus b(k, ε) denotes
the annihilation operator for free particles of momentum k and type ε. The
fractional energy operator is:

Nτ = X N^ = Σ J dk μ{k, εf b*(K ε) HK ε),

where m(ε) = m for bosons, m(ε) = M for fermions. For convenience we define
E(k) = ]/k2 + 1. We will work with the dense domain Q) of vectors in Fock space
with finite numbers of particles and wave functions in Schwartz space.

Formally, the finite volume Hamiltonian H(g) has the form

^N,+λj dxg(x): ψψφ : - \bm2 J dxg2(x): φ2 : - E(g),

where ^ O e Q and δm2, E(g) provide infinite renormalizations. To define the
momentum cutoff Hamiltonian H(g, K) we multiply the momentum space kernels
wc(k,p1,p2\ w(k, Pι,p2) of the interaction term Hj(g) by a general momentum
cutoff function χκ(Kp1,p2) in the sense of [3]. The renormalization constants
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are then defined as:

λ2

δml=-—\dk ω(k)'ί \χκ(0, k/2, - k/2)\2 + const + o(l),

E(g, κ)=- $dk dpt dp2 |w
c(/c, pl9 p2) χκ(k, pu p2)\2 (μ(k) + ω{px) + ω{p2))~ λ

+ const + 0(1),

where μ(fc) = μ(fc,0), ω(k) = μ(k, 1). The SU 3 Hamiltonians involve slight gener-
alizations and are defined in [2]. Glimm and Jaffe [3] have shown that the
Hamiltonians, with a suitable choice of the constant in E(g, κ\ define positive
self-adjoint operators converging in the sense of resolvents to a positive self-
adjoint operator H(g) which satisfies:

Nτ ^ const(ff (#) + / ) , τ < 1 .

Furthermore the operators H(g, K) are essentially self-adjoint on Q) and satisfy
/odependent estimates of the form:

The proof of these estimates requires the essential self-adjointness of H(g, K, σ)n

on Q), where Hj(g, K, σ) and C(g, K, σ) have momentum space kernels in Schwartz
space converging to those of Hj(g,κ) and C(g,κ) as σ->oo, which follows by
techniques similar to those of Jaffe, Lanford, and Wightman [6]. For notation
and general techniques we refer to Glimm and Jaffe [3], Dimock [4], and McBryan
[2, 5]. Our main results are:

Theorem 1. Provided τ = Σ"= x τt < 1, τt ^ 0, then there is a constant, depending
on n, τ, g, such that

Y\ Nτι ^ const(H(g) + /)" . (1)
i = 1

The restriction τ < 1 is indicated by perturbation theory and so we expect that (1)
are the most general n^ order estimates. It is also useful to have estimates con-
trolling the inequality (1) as the momentum cutoff K is removed. With
Rκ = (H(g, K) + / ) " \R = Rao = {H{g) + / ) " \ we define δRβ = Rβ

K2 - Rβ

Kι where one
of κu κ2 may be infinite.

Theorem 2. Provided τ = Σ"= x τt< 1, τt^0, and δ>0, there is a constant and
an ε > 0 such that

(i) Π" = 1 N^ δRn/2 converges weakly to 0 as κ = min(κ1,κ2) tends to GO.
(ii) ||Πΐ Nξlδ δRn/2\\ ^ const κ~ε.

(iii) | | Π ; N* δRn/2 + δ\\ ̂  const κ~ε.

Theorem 1 follows from two lemmas:

Lemma 3. For xp e ^(Π"^ ί Nξ) and an arbitrary choice of εί5 τt:

n

y / _ j i ι . . . ι r \ 1 ? " * ? }•/

f = l 1 = i i < ir ^

||b(fe,.,ε ij...6(/c1,ε i l)φ||2,
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where P[;e..ir are homogeneous expressions of degree Σ " = 1 τ ; in μ(/ci; βj). Explicitly:

it + i ~ 1 ( t

ί = l s = it+l U = l

where for t = r we define ir+1 — ί=n and a vacuous product is always taken to be 1,
i.e.,n2

=3{ } = i.

Lemma 4. For any choice of εb Σ"= j 1/= τ < 1 and for any θ, there is a constant
independent of K with:

μkι...dknE
τί(ki)...Eτ»(kn)\\b(kn,ε,,)...b(k1,ε1)RnJ2θ\\2^const\\θ\\2. (3)

Proof of Theorem 1. From the form of f̂  E

 lV we have

π
7 = 1

Inserting this in (2) and applying Lemma 4 with ψ = R^2 θ we obtain:

2

^ const || 0| |2 (4)

with a constant independent of K. Since Rκ converges in norm to R, Y\{ N{

τ

ε.i)Ύ RnJ2

converges weakly on D(]Q"iV^ί)2) to f|" N^ l ) 2 Rn/2 and the uniform bounds (4)
then apply also to the case K = oo. This completes the proof of Theorem 1 and of
Theorem 2 (i).

Proof of Theorem 2. (ii) We use ||^4|| = ||A*^4||^. Thus

δRnl2lflNτ\ δR"nil

UNτι
1

< const

where we have used Theorem 1 in the form

δR "12
(5)

Γ ?»/2 ?n/2 < const.

The inequality (5) allows us to reduce the exponent j — δ to \ — 2α<5, 0 < α ^ 1.
By iterating m times and choosing m, α carefully we reduce the exponent to

i - (2α)w(5 with 0 g ^ - (2α)w(5 ̂  - | - , 7 < 1. Thus

Π^τ, δR"12 ^ const
/ n

y
\ In

j j δRn/2

2-m

^ const \\NJ'2δRn/2\\2'm

< const κ~ε for some ε:



O. A. Me Bryan

where we have used the norm convergence of N?/2δRk, γ< 1, which we have
proved in [2, Theorem 2.4.1]. There remains only the specification of m and α.
A suitable choice is i

»>log2*/log(i-l), .= 1
m+ 1

'<τ
(iii) We use the inequality, valid for τ ̂  0 and β ̂

I
Thus with 0 < δ < \ and β > 1:

We now choose β so that τ + τ/β<ί, i.e. β>max 1,
1 - τ

and we choose

δ>0 sufficiently small that 2nβδ = ί-2δ, i.e., δ = (2{nβ+ I))"1. Then defining
τn+ί =τ/β we have

n+ 1

1

n+ 1

and ^ ΐj<l
1

and with ',κ) — ζ) 1, ζ S — U we obtain by (ii):

n+ 1

< const κ~ε'[n+l)/2 (6)

(7)

However, by Theorem 1 we have

ι(«+D/2 ^ C onst I C Γ 1 .

Combining (6) and (7) using ||A\\ = \\A\\v\\A||2"v, 0 ̂  v ̂  1, we get

— CΌnSl |L,| K , o — c O ̂ > U ,

where δ > 0 has no relation to the δ used previously. Finally, using the identity,
valid for 0 < δ < \:

where

we obtain for (5>0:

\-(n+ί)/2
- 1

SΦ) ] dλλ
0

^ const κ~ε

which completes the proof of Theorem 2.
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Proof of Lemmas 3,4. Lemma 3 follows easily by induction from

b(K ε j N^ = (N^ + δεuε2μ(k, ejψ b(k, BX)

and
\\(N^ + afψ\\2=\\N^ψ\\2 + a\\ψ\\2.

The proof of Lemma 4 depends on the renormalized pull-through formula [5].
This expansion takes the form:

;(0= Σ Σ (-)*'••"
r = 0 ir> ••• > ί i ^ 1

where 0 < α ^ l and a slash denotes absence of a term. The indices δ\f Aί are
given by:

+ i 1

y fi.
/ = l

while the Ufy are defined inductively by:

- ( - ) ί 4 - i,κ(C - μ(/cn5 επ); /cn_ tsn_ 1 ?..., fc^J fc(fen? εΛ).

For a fuller treatment of these defining relations and of (8) see [5]. In [5] we
have proved that:

..dknE
ΐ»(kJ...F*(kι)\\U^ (9)

uniformly in K provided Σ"= ίτi<ί.
Returning to the proof of Lemma 4, we pull all of the b(kh εf) through the

first R* in (3) obtaining by (8):

r= 1 ί r > ••
Σ '

where we have supressed K for convenience and used

m l m

ί=l ί - 1
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The proof of Lemma 4 now follows by induction on n. We assume the result (3)
for all possible choices of τί5 i = 1,..., m with Σ?L J Ϊ ^ T and for all m, 1 ̂  m ̂  (n — 1).
The first term in (6) is

e»> + μτ-{kw εn))H(kn, εn) N£»

^ const || 01|2

by the induction hypothesis.
We have used the first order estimate in the form

f dknE*"(kn) \\R% -μ(K, ε n ) ) « " > + ^(/c n , εn)f b(kn, εn)iV^

^constf dknE
τ"(kn) \\b(kn, εn)N^'iχf

^ const HN^iV^-^χll 2 = const | |χ| |2.

For the remaining terms (rφO) in (10) we use the estimate (9) for U$. Thus

2»$dkn...dk1E(kny«...El>(kl) X £ ,

g const \dkn..Λ)^r...dJ^iχ...dklE
τn(kn)...EτirίJk$..^

^ const || θ | |2

by the induction hypothesis.
Since the induction hypothesis is certainly valid for n = 1:

S const ||J

^ const | |0 | | 2

by the first order estimate, Lemma 4 follows by induction.
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