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Abstract. It is shown that the set of Case's eigenfunctions of the one speed transport equation is
complete in the rigged Hubert space W± ([- 1, 1])C L2(- 1, 1)C W2~

l ([- 1, 1]).

1. Introduction

Case's method of singular eigenfunction expansions for solving the transport
equation [1] seeks, by separation of variables, to construct a sufficiently rich set of
solutions, called elementary solutions, which would enable one to expand an
"arbitrary" solution of the equation into a Fourier series in terms of this set.
An important point in this method is the completeness proof for the set of ele-
mentary solutions. Originally it was shown [2], by means of the theory of singular
integral equations, that the expansion coefficients are uniquely determined for the
class of Holder-continuous functions, which, within this class, proves the com-
pleteness. An alternative to this constructive approach is the demonstration of the
closure relation for the set of elementary solutions [1]. Unfortunately, either
proof has to be carried out separately for each particular from of the transport
equation under consideration, and moreover, there remains some doubt as to
whether the obtained result is the strongest possible.

According to an idea by A. Skumanich, commented upon in Ref. [1], the
completeness proof for Case's elementary solutions should be based on more
general arguments, provided by the functional-analytic properties of the under-
laying transport operator. This would lead to the completeness proof for a whole
class of operators which have certain common properties.

The functional analytic approach to the problem was considered by Hangel-
broek [3] and by Larsen and Habetler [4], where it was essentially shown that the
Case eigenfunction expansion formula represents the resolution of the identity
of a transport operator, but again only after resorting to a kind of Holder con-
tinuity requirement. There remains some ambiguity about the notion of the eigen-
function, which is also referred to by Baird and Zweifel [5], and the structure of
the space of eigenfunctions remains unclear.

Here we propose a completeness proof which is based on the theory of eigen-
function expansions for self adjoint operators in rigged Hubert spaces, as ex-
pounded in the treatise by Berezanskiϊ [6]. A rigged Hubert space, of the type
to be considered, is a triple of separable Hubert spaces H+ C H C H_, where H+,
the positive space, is dense in H, and H_, the negative space, is isometric to the
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dual space of H+ and contains H as a dense subspace. Rigged Hubert spaces are
the most appropriate spaces for spectral decomposition of self adjoint operators
[7], this being due to the following properties. Any continuous linear functional
on H+ may be represented by some element of H_ by means of the scalar product
in //, instead of the scalar product in H+ itself. If H+ consists of finitely differentiable
functions, then the elements of H_ are generalized functions of finite order. If the
embedding of H+ into H is quasi-nuclear, i.e. the embedding operator is Hubert-
Schmidt, then any self adjoint operator in H, which admits the so called rigged
extension, possesses a complete set of eigenfunctions which are elements of //_.

The proposed approach is undertaken here for the special case of the one-
speed transport equation with isotropic scattering, and c, the number of seconda-
ries per collision, smaller than 1. We were unable to extend it to the case with
c = 1? even though no difficulties are encountered here in the constructive proofs.
It is applicable to the self adjoint eigenvalue problem of the form Tf = v/, or to the
eigenvalue problem Af = vB, with self adjoint A and positive definite B.

2. The Eigenvalue Problem

Consider the one-speed steady-state transport equation with isotropic
scattering in plane-parallel geometry [1,2]

μ-j-ψ(χ,μ)+ψ(X9μ)=j- } Ψ(x,μ)dμ9 (1)

with 0<c< 1.
By seeking its solutions in the form

where v is a separation parameter to be determined, the task of solving Eq. (1) is
reduced to the formal eigenvalue problem posed by the equation

c
(Pv(μ)- γ ί Ψv(p)dμ\. (2)

c

-i

It may be shown that the integral of φv cannot vanish unless this function is
identically equal to zero.

The eigenvalue problem (2) will be placed into the Hubert space L2(— 1, 1),
with the usual scalar product to be denoted by ( , )0 . By introducing two operators
A and 5,

Af=μf(μ)

Bf = f(μ)--^ } f(μ)dμ,
z -i

where / is in L2(— 1, 1), the solutions of Eq. (2) may be sought as eigenfunctions
of the eigenvalue problem

Aφ = v Bφ . (3)
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The operator A, multiplication by the independent variable in L2(— 1,1),
is continuous and self adjoint, and has a purely continuous spectrum consisting
of the closed interval [—1,1].

The operator B is continuous, one-to-one, and, for 0 < c < 1, positive definite,
since (Bf, /)0 >(1 — c)(f, /)0. By writing B as E — cP, where E is the identity
operator and P the projection

the positive square roots B* and B~ ^ may be evaluated by means of the Neumann
series, and one gets

This enables us to rewrite Eq. (3) in the form of an equivalent self adjoint
eigenvalue problem

TΦ = vΦ, (4)
where

and Φ = B^φ. Explicitly this equation reads as

l-c)-*-l] } (μ + μ')Φ(μ')dμ' = vΦ(μ). (5)

The continuous and self adjoint operator T is, as evident from Eq. (5), equal
to the sum of the operator A and a completely continuous integral operator. The
operator T has the same continuous spectrum as the operator A, since this part
of the spectrum is conserved under completely continuous perturbations ac-
cording to the Weyl-von Neumann theorem [8]. The integral operator in Rq. (5)
contributes two real eigenvalues to the spectrum of T, and it may be shown that
these eigenvalues satisfy the equation

l - C v l o g - - = 0 . ( 6 )

To summarize, the spectrum of T consists of a continuous part, being the
closed interval [—1, 1], and of two eigenvalues, to be denoted by v0 and — v0,
which are the roots of Eq. (6).

The eigenfunctions Φvo and Φ-V o of T, which correspond to eigenvalues v0

and — v0, are orthogonal, and the orthogonality relation may be written as
(BφVQ, φ_ v o)o = 0, where φ±VQ = B~*Φ±VQ are the eigenfunctions of the eigen-
value problem (3). By taking into account Eq. (3), this relation may be written in
the familiar form of

The operator Tdoes not have a complete set of eigenfunction within L2(— 1, 1).
However, such a set may be found in the more general setup of a rigged Hubert
space.
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3. The Rigged Hubert Space

The self adjoint eigenvalue problem (4) will now be considered in the rigged
Hubert space

-UX^MC-U]). (7)

The Sobolev space W^ ([—1,1]), the positive space of the rigged Hubert space (7),
is a Hubert space obtained by completion of the space C1 ([— 1, 1]) of functions
with continuous first derivative on the closed interval [— 1, 1], by means of the
scalar product

(u, v)+ = (u, V)Q + (u'9 ι/)0 ,

where u and v are in C1 ([— 1, 1]). The space W^1 ([— 1, 1]), the negative space of
the rigged Hubert space (7), is isometric to the dual space of W^ ([ — 1,1]). It is
obtained by completion of L2(— 1, 1) by means of the sclar product [9]

i i

ί ί
-1 -1

(/,£)_= ί f G(μ,μ')f(μ)g(μ')dμdμ',

where / and g are in L2(— 1, 1), and G is the Green function of the boundary
value problem

— u"(μ) + u(μ) = 0,

The space W/

2

1([— 1, 1]) is dense in L2(— 1, 1), and its embedding is quasi-
nuclear [10]. The same holds for L2(— 1, 1) with respect to PF2~

1([— 1, 1]). Ac-
cording to the Sobolev embedding theorem [11] ^([—1, 1]) is a subspace of
C([— 1,1]), the space of continuous functions on the closed interval [—1,1].
The elements of H7

2

1([— 1,1]) are characterized as follows [12]: a function is in
W\ ([—1,1]) if and only if it is in L 2(— 1, 1), and has a derivative, in the generalized
sense of Sobolev, which is in L2(— 1,1). The elements of W/

2~
1([— 1, 1]) are

generalized functions of the first order. Any continuous linear functional on
^(["l* 1]) can t>e uniquely represented by some element α of H^"1^— 1, 1])
by means of the scalar product (w, α)0, where u is in VF 2 ([— 1, 1]). The space
H/

2~
1([— 1, 1)] contains the Dirac delta-function δ(μ — v), which is continuous

with respect to v on [— 1, 1], and whose operation on elements of W^(\_— 1, 1])
is given by (u, δ (μ — v))0 = u (v), v e [ — 1,1] [13]. The scalar product (δ(μ — v),
δ(μ— v'))_ is equal to G(v, v'), where G is the above mentioned Green's function.
The space spanned by delta-functions δ(μ — v), with v in a dense subset of the inter-
val (-1, 1), is dense in WΓ *([-!, 1]). The space H^2~

1([- 1, 1]) contains the set
of all real-valued measures of bounded variation defined on the Borel subsets
of the closed interval [— 1, 1] [14].

The choice of the rigged Hubert space (7) was motivated by the desire to keep
it as tight as possible, so that the negative space is only as big as necessary. Since
the functions in the positive space are only continuous on [—1, 1], the negative
space does not contain generalized functions of higher order, such as the derivatives
of the delta-function.
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4. Eigenfunctions and Completeness

The self adjoint operator T admits a rigged extension [15] in the rigged
Hubert space (7): it continuously maps the space W^d— 1,1]) into itself. There
exists the rigged extension f of T, which continuously maps Wf 1 ^— 1? 1])
into itself, so that

for all u in W\ ([-1,1]) and all Φ in W^1 ([- 1, 1]). This extension is defined by

)o], (8)

with Φ in W^d -l, 1]).
Analogously, the operators A, B, and B±^ have rigged extensions which are

given by
AΦ = μΦ ,

Φ-i( l ,Φ)o, (9)

The operator f is then equal to B * AB % and the inverse of β** is
To the self adjoint operator T in the rigged Hubert space (7) then apply the

completeness and eigenfunction expansion theorems [16], which can be sum-
marized as follows.

There exists a non-negative finite measure ρ, the spectral measure of the
operator T, defined on the Borel subsets of the real line, with support on the
spectrum of T, and ρ-almost everywhere there exists the operator-valued function
P(v) from W^ft—i, 1]) into W2~

1(l—i9 1]), whose values are positive Hubert-
Schmidt operators. The operator P(v) is the derivative, in terms of the Hubert
operator norm, of the resolution of the identity Ev of T with respect to the measure
ρ. Operators P(v) project W^d—i, 1]) into W 2 ~ 1 ( [ — i , 1]), and this projection
is orthogonal: if (P(v) v9 u}Q = 0 for all v in W%([- 1,1]), then P(v) u = 0.

The range of P(v) is the generalized eigenspace of the operator T corre-
sponding to the eigenvalue v. Its elements Φv = P(v) v,ve W\ ([— 1,1]), are such
that

(Φv,(Γ-vE)ιι)0 = 0 (10)

for all u in W^ίE—1,1]). Equivalently, they are eigenfunctions of the rigged
extension T,

TΦv = vΦv. (11)

The set of eigenvalues of f is the spectrum of T. The eigenvalues are non-
degenerate, as can be verified from Eq. (8), so that the range of P(v) is one-di-
mensional.

Equation (11) has two continuous solutions Φvo and Φ_ v o which correspond
to eigenvalues v0 and — v0, respectively. For v on [—1,1] the solutions Φv are
generalized functions from W^1^— 1,1]).
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The set of eigenfunctions Φv of Eq. (11) is complete in the sense that any
function u from W^(\_— 1, 1]) can be expanded in terms of this set as

+ 00

«= j (u, Φv)0 Φv dρ , (12)
- oo

with (Φv, Φv)_ = 1, where the expansion coefficients satisfy the closure relation

(u,u)0=
+f (u,Φv)0

2dρ. (13)
- oo

Analogous results may be formulated for the original eigenvalue problem,
Eq. (3), where we obtain that the functions

which also belong to W^1 ([— 1, 1]), are solutions, in the sense of Eq. (10), of the
eigenvalue problem

Aφv = vBφv.

If Eq. (12) is_written for functions of the form B^u, u e W^ ([— 1, 1]), and then
multiplied by 5~% we obtain the corresponding eigenfunction expansion and
closure relation as

+ 00

u= J (Bu,φv)0φvdρ, (14)
- oo

and
- oo

(Bu,u)0= J (Bu,φv)0

2dρ.
— oo

A comparison of Eq. (14) with the explicit Case's eigenfunction expansion
formula [1,2] and taking into account that (Bu, φv)0 = (1/v) (Au, <pv)0, shows that
{?(+ v0) = VO/N (v0), dρ = v dv/N(v), for v in (— 1, 1), and dρ = 0 everywhere else.
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