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Abstract. We consider a massive, charged, scalar quantized field interacting with an external
classical field. Guided by renormalized perturbation theory we show that whenever the integral
equations defining the Feynman or retarded or advanced interaction kernel possess non perturbative
solutions, there exists an ^-operator which satisfies, up to a phase, the axioms of Bogoliubov, and is
given for small external fields by a power series which converges on coherent states. Furthermore this
construction is shown to be equivalent to the one based on the Yang-Kallen-Feldman equation.
This is a consequence of the relations between chronological and retarded Green's functions which
are described in detail.

Introduction

Numerous papers have been devoted to the study of the interactions of
particles with external fields, within the framework of quantum field theory.

The formal aspects were well developped twenty years ago, in particular
through the work of Feynman [1], Matthews and Salam [2] and Schwinger [3].
A good summary can be found e.g. in Thirring's book on Quantum Electro-
dynamics [4].

Mathematically rigorous non perturbative treatments were given in some
particular cases by several authors. Capri [5] has explained lucidly "the reduction
to c-number problem" (cf. also Wightman [6]). Bongaarts [7] has treated the
case of spin 1/2 particles in a stationary external field. Seller [8], using the results
of a paper by Schroer, Seller and Swieca [9], proved the existence of a fixed time
evolution operator in the following cases: scalar and pure electric external fields
for spin 0 and spin 1/2 fields. Wightman [6] has given necessary and sufficient
conditions for the existence of a unitary S-operator for arbitrary spins, in the case
of external field coupled with quantized fields which fulfil a first order system
of partial differential equations.

The perturbative aspects of quantum field theory described for instance in
Bogoliubov and Shirkov's classical book [10] have recently been further devel-
opped by Epstein and Glaser [11], Steinmann [12] and Zimmermann [13].

These authors have proved the existence of an S-operator as an operator
valued formal power series, for arbitrary Wick polynomial Lagrangeans.

The aim of this paper is to exhibit the connection between Bogoliubov's
version of perturbation theory and non pertubative methods developped by the
above mentioned authors. For the sake of simplicity we shall consider the
problem of a charged scalar boson field interacting with a classical external field.
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Possible extensions to more general cases will be mentioned at each step. The
main problem is to construct a solution of the Bogoliubov axioms as an operator
in the Fock space of the in-field.

In Section I, we first consider S as a formal power series with respect to the
external field. We show (Theorem 1.1.1, Section 1.2 and Proposition 1.3.3) that S
is, up to a phase, equal to an explicit function S0(J) of the two-point interaction
kernel"/". This is, in the present framework, "the reduction to onumber problem".
It can be seen that "/" is defined, in perturbation theory by an integral equation
[cf. Eq.(II.O.l)].

It seems therefore reasonable, in order to formulate a non perturbative
treatment, to find exact solutions of this equation, which allow to construct
S0(/). The actual existence of such suitable solutions will be studied in a number of
cases in Part II [16] of this work.

In fact we shall first define a class of two point functions, which we call NP
kernels, and assuming the existence of NP solutions of Eq. (II. 0. 1), we shall study
some of their properties:

In particular we explicitly establish the connection between methods using
the hamiltonian formalism [8] the Yang-Kallen-Feldman equation [5,6,14],
and the perturbative theory [1,2,3,4] (cf. Theorem II.4.1, and Section II.5).
As a corollary, the two-points function "/" can be computed by solving the
Cauchy problem for the Klein-Gordon equation in an external field
(Theorem IL4.1), Remark Π.2.11).

In the case of scalar boson fields, we also show the redundancy already
remarked by Wightman [6], of some of the general necessary and sufficient
conditions given by him [6] for the existence of the S-operator (cf. Proposi-
tion Π.5.2).

In the last section, assuming the existence of an N — P interaction kernel "/",
we show that S0(I) defines in Fock space, a covariant, unitary and causal up to a
phase, S-operator in the sense of Bogoliubov [10]. We also prove some results
about analyticity of S0(I) with respect to "/". We construct an interpolating field,
which is solution of the Yang-Kallen-Feldman equations for which the in and
out field are related by the S-operator S0(I).

This construction explicitly made for a charged scalar field, can be extended
to fields with arbitrary spins if one is careful enough. At each step, we indicate how
this can be done.

It seems that some difficulties appear in the case of fermion fields although
it is possible to define an ^-operator (cf. Labonte [15]).

In a forthcoming paper [16], we will show the existence of N — P solutions,
in the cases of spin 0,1/2 and 1 fields, for special choices of the external field.

I. Perturbative Theory

/./. The Bogoliubov S-Operator

The 5-operator, which describes the interaction of a quantum field with an
external field, is easily constructed in the framework of Bogoliubov's perturbation
theory [10], by applying the Epstein-Glaser formalism [11].
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In the simple case of a charged scalar boson, interacting with a scalar field
and with an electromagnetic vector potential the corresponding (quadratic)
lagrangean density is :

(x g) = v(x) :φ*φ: (x) + iAμ(x) :φ*φ: (x) ^

and φ is the free field describing the scalar bosons (see Appendix 1). Unitarity
holds if v and Aμ are real valued.

By applying Wick's theorems [11,17] (see Appendix 2) one can show the
following theorem (whose proof is given in Appendix 3).

Theorem 1.1.1. Given the lagrangean density 1. 1.1, there exists in the sense of
formal power series a solution of the causal Bogoliubov axioms such that:

%) - (0, S(g) Ω) :expi J φ*(x) /(x, y) φ(y) dx dy: . (1.1.2)

Here, "/" is the distribution kernel valued formal power series defined by:

I = A + AΔpI = A + IΔpA (1.1.3)
with :

A(x, y) = δ(x - y) (v(x) + AμA"(x)) + i[Λμ(x) + 4μ(y)] d»δ(x - y) (1.1.4)

and AF the two-point Green function:

Δp(x) = (2π)~4 J eipx(p2 - m2 + iO)'1 d4p. (1.1.5)

Remark 1. 1.2. Let φ be a free (fermion or boson) field, whose twopoint Green
function is given by:

SF(χ) = J eίpxP(p) (p2 - m2 + ιΌ)~ x d4p (1.1.6)

where P is a matrix valued polynomial. Let J^(x; (9) be the following (quadratic)
lagrangean density:

Jί?φ(x; 0) = :tpα(x) ψβ(x): &Λβ(x) (1.1.7)

where Θaβ(x)E
The previous theorem holds if we replace φ by ψ, AF by SF, S£l by J^φ and

A(x,y)by&(x)δ(x-y).
Remark 1. 13. One can express "/" in term of Feynman graphs (see Fig. 1).
Remark LI A. One can see that:

J d4xd*y :φ*(x) φ(y): A(x, y) = $d4x: ^can(x,^f): a) (1.1.8)

I ( x , y ) = < -t

n
Fig. 1

where J2?can is the canonical lagrangean for this problem:

:J2?can(x; 0): — [r(x) 4- AμA
μ(xJ] :φ*φ: (x) + iAμ(x) :φ*dμφ: (x). b)
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We note that ^can is different from JS?, because, by definition [11, 17], the latter
has to be of the first order in (v, Aμ) = g; j£?can can be recovered upon making the
following choice of renormalization :

(Ω\Td"φ(x) dvφ(y) Ω)=- i[_d»dvAF(x -y) + g^δ(x - y)] . (1.1.9)

1.2. The Two Point Green Functions

The two point Green function can be defined in the sense of formal power
series by the following equation [3]

ΔF + GFAAF. (1.2.1)

Its expression in terms of Feynman graphs is given in Fig. 2. It is easy to see that
Gp is equal to

GF = ΔF + ΔFIAF (1.2.2)
or equivalently:

I = A + AGFA. (1.2.3)

Equation (1.2.1) shows us that GF satisfies the following Klein Gordon equation

([dμ,* ~ iAμ(xJ] [3£ - Mμ(x)] + m2 - v(x)) GF(x9 y) = δ(x - y)

([dμ.y + 'ΛOO) [3£ + iAμ(y}\ + m2- υ(y)) GF(x, y) = δ(x-y)

with the conditions [3]:

if x $ (suppg + V^\ GF(x, y) propagates only positive frequencies
if x $ (supρ_g + V~\ GF(x, y) propagates only negative frequencies.

1.3. The Physical Meaning of I

Let $ε be the one particle Hubert space with energy of the sign of ε = ± 1
(cf. Appendix 1). Let us define

d4y. (1.3.1)

Let /εε> be the following operator from <f> f i, to §ε (cf. Appendix 1):

(/εε,/) (p) = 2π J ϊ(εp, ε'q') f(q') ^(q'2 + m2)'1'2 d*q' (1.3.2)
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with ε —±1, ε '=±l and /e§ε<. Then "/" defines the following operator on

(1.3.3)

Proposition 1.3.1. To any order in the external fields / + + , / _ _ are bounded
operators, I+_ and /_ + are in the Hilbert-Schmidt class [18-20].

Proof. To order "w", "/" reads:

n-times A

4(P> #)= AΔF...AΔFA(p, q ) . (1.3.4)

From Appendix 5, Lemma A.5.3 and Corollary A.5.7 we can deduce that
4 6 Jf(m, α, 1/4) V m ̂  0 and Vα ̂  0. Using Lemma A.5.4,

Tr(/+_/ί_)|o r d e r.v.= £ Tr((/+ _),(/?_)„_,). (1.3.5)
/7 = 0

Proposition 1.3.1 then follows.
Remark 1.3.2. In the case of fields with higher spins described in Remark 1.1.2,

> the results of Appendix 5 (in particular Lemma A. 5. 5) allow us to modify Propo-
sition 1. 3.1 as follows:

— /+ _ and /_ + are in the Hubert Schmidt class.
— /++ (resp. / _ _ ) is densely defined on a domain D+ (resp. D_) such that

I+ + D+CD+ (resp. I _ _ D _ CD_).
To see this we have to remark that (see Remark 1.1.2) V w g O Vα^0d?(p, q)

= @(p-q)εΛr(m,oί,ff) if 0(x)e^(lR4) and we have to use Lemmas A.5.5 and
A.5.6.

Proposition 1.3.3. In the sense of formal power series, the operator Is is the
building block of the following physical quantities

a) |(Ω,SΩ)|2 = det(l+ +-/+_(/+_)*). (1.3.6)

b) The probability Pe + e- of creation of one pair is given by

P e + e -=det(ί + + -/ + _/*_)Tr(/ + _/*_). (1.3.7)

c) The scattering amplitude for the process particle — > particle is given by

(β,Sβ)(l+++ι7++)(p,4). (1.3.8)

d) The complete S operator is given by:

S = el'ωS0(/) = £>'ωdet(l+ +-/+_/*_)^^^

(1.3.9)
where ω is a phase depending on I.

The results of this proposition are well-known [3, 4, 6, 8]. They can be proved
by using the unitary of the S-operator and the definitions of the out-field and the
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out-vacuum

φoui(x) = S~ 1φ(x) S . (1.3.11)

Remark 1.3.4. Using Nelson's notations [21] for second quantized operators
one has:

:exp/(β+/+ + a~~ + b~/_ _i>+): = Γ((ί++ + il+ +)(x)(i_ _ -f z'/l _)) (1.3.12)
with

Γ(A®B)Φrs = (A®r®B®s)Φrs (1.3.13)
if

Φr s e § + r (x) §' X s (cf. Appendix 1)

Remark 1.3.5. In a non perturbative framework we shall use the results of
Proposition 1.3.3 to reduce the problem to the proof of the existence of a kernel /
such that /+ +, /_ _ are bounded operators, and /+ _, /_ + are in the Hubert-
Schmidt class.

1.4. The Interpolating Field

In perturbation theory the interpolating field is given by the formula [11]

(1.4.1)
*/w~" *'"' δJ(x) ^

Here S(g, J) is the Bogoliubov 5-operator constructed from the lagrangean density

J2"(x; g, J) = ̂ (xiβ) + J(x) φ(x). (1.4.2)

Proposition 1.4.1. The interpolating field is given by the formula:

ψ(x) = \<(Sy\2:e~iίφ"Tφ::\(δ(x-y) + AFI(x,y))φ(y)d4yenφ"Iφ:. (1.4.3)

It satisfies the Yang-Kdllen-Feldman equations [5, 14, 22];

\p(x) = φ(x) + J Jr(x - z) A(z, y) ψ(y) d4y d4z a)

φ(x) — φout(x) + J ^α(x — z) A(z, y) ψ(y) d4y d4z . b)

The proof of Eq. (1.4.3) is given in Appendix 3. Let us give the proof of (I.4.4a)

because of (1.1.3) for /.
Thus:

where
7(x, y) = /(y, x)* . (1.4.7)

Wick's theorem yields:

:(1 -Δ + T) φenφ*Iφ: = :eίlφ*Iφ: φ . (1.4.8)

The unitarity of S yields the required result. The proof of (I.4.4b) is similar.
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Remark 1 .4.2. Capri [5] and Wightman [6] have used these equations to
construct the interpolating field and the out-field for this problem. Following
another approach, Seiler, Schroer and Swieca [8,9] (see also [6]) solve these
equations for c-numbers function, and prove the existence of the classical time
evolution and S-operator, which is in our formalism (in the sense of formal power
series)

ΔrAΓ*. (1.4.9)

In Capri's notations [5, 6] Scl=TaT~1 with Tfa = (i -ΔfaA)

Thus, φout = Sclφ. (1.4.10)

II. Algebraic Properties of the Two-Point Green Functions

II.O. Introduction

In this chapter we shall investigate the algebraic properties of the solutions
of the defining equations for I (1.1.3).

We shall similarly define three other kernels I, Jr, Jα,

Ϊ=A + AAF-Ϊ=A + ΪAPA a)

aA. b)

Keeping in mind how the quantum theory relies on the onumber theory and
in view of the results of perturbation theory (Remark 1.3.5) we shall need solutions
of Π.0.1 with specific properties described in Definitions IL2.1 and II.2.2. These
solutions will be called N-P kernels (N-P = non perturbative).

We shall also define W-N-P kernels (W = weak) (cf. Definition Π.2.3) and will
establish later [16] that for any external field in «^(IR4) [23] Π.0.1 has one and
only one W-N-P solution. N-P solution however can be shown to exist for some
restricted classes of external fields [8, 9, 16].

This section is devoted to the proof of some exact relations between N-P
(or W-N-P) solution of II.O.l based on elementary properties of the free two-
point functions.

Some of these relations can be found for instance in J. Sch winger's work [3],
some others in Wightman' s [6] and Seller's [8] more recent papers (cf. Remark 1.4.2)
and are related to general properties of the Bogoliubov transformations [24].

The main result of this section is the equivalence between the equations
defining / and Jr, in so far as the existence and unicity of a solution are concerned
(Theorem Π.4.1). As a corollary (in some sense) it is necessary and sufficient,
in order to solve II.O. la) to solve the Cauchy problem for the Klein-Gordon
equation in an external field [6].

Another result is that the necessary and sufficient conditions given by Wightman
([6], Formula 4. 12) for the uniqueness of the out-vacuum, is automatically
verified for bosons of spin zero and real external fields (Proposition II. 5.2) as
already remarked in [6].

Everything so far mentioned can be extended without modification for fields
with integer spins. For half-integer spin field there are some changes to be made
which are stated at each step.
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//./. Preliminaries

We first need some definitions.
Let K, L be kernels in 5 '̂(IR4 x 1R4). We define the Fourier transform:

K(p,q) = (2πΓ4 J ei(px~^K(x, y) d4x d4y , (Π.l.l)

the product (if it exists):

KL(x, y) = J K(x, z) L(z9 x) d4z , (11.1. 2)
the adjoint

Ki(x,y) = K(y,x)*9 (IL1.3)
the unit kernel

i ( x 9 y ) = δ(x-y), (Π.1.4)

the kernel associated with the convolution through a tempered distribution:

T(x9y) = T(x-y). (II. 1.5)
Then:

K = K K + L = KVL KL = KL a)

b)
(Π.1.6)

c)

d)

The operators Kεε>(ε= ± i,ε' = ± 1) are defined (if these expressions have a
meaning) by:

(K&B,f)(p) = 2π f K(εp9ε'q)f(q)—- (II. 1.7)

withω ίz = (l+g2)1 / 2 and

K = (Π.1.8)

Recall that

J + (Q=-i(2^-3fei(e>^°-?V?^p = J>(-i). (II. 1.9)

Then we have (in kernel notations)

A = A+-A_ =Δr-Δa supp Δrat{(x-y)ε V±] a)

ΔF = Δr-Δ+=Δa-Δ_ b) (Π.1.10)

ΔΨ=Δr + Δ_=Δa + Δ+ c)

j; = ^β j^-^i 4 = ^Γ. (ii.i.ii)

We will also define [see Eq. (II.O.l)]

/ = / / = / JR = JrΓ JA=JaΓ a)
where s s * r A a J (II. 1.12)
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II. 2. Non Perturbative Solutions (N-P and W-N-P Kernels)

Definition II. 2.1. A kernel K e ̂ '(1R4 x 1R4) will be called regular if it defines
a linear continuous map from 0M(]R4) to <^0R4) [23,25].

Definition II. 2.2. A regular kernel will be called W-N-P if
i) K is a bounded operator in §+ ® $_,

ii) X + _ and K_ + are compact [18—20].
Definition 1 1. 2. 3. A W-N-P kernel will be called N-P if K + _ and K_+ are

in the Hubert-Schmidt class [18-20].

Proposition 11.2.4. The kernel A defined in 1.1.4 is N-P.

Proof, cf. Appendix 5 Lemma A.5.3 and A.5.4.

Proposition II. 2. 5. Let D be the dense domain in §+©§_ whose elements
are functions of t9^(lR3). Then if K is a regular kernel, K is defined on D and

KDCD. (II.2.1)

I f \
Proof. Let / = I \ + be an element of D. Then if

\j — /

-V> . (U.2.2)
2ωp

One can see that/e @'C(ΪR4) and its Fourier transform/is in (9M(]R4) [25]. Therefore,
the regularity of K gives :

KE ^(IR4) . (II.2.3)

The definition of K [cf. Eq. (IJ.1.7)] tells us that Kfis the mass-shell restriction
of the Fourier transform of K/ and thus Kfe D.

Proposition Π.2.6. a) Let Kί9 ..., Kn be regular kernels. Let Δl, ...,Δn_1 be a
family of tempered distributions chosen in the set {Δ + ,Δ_,Δr,Δa,ΔF,Δp}. Then
the kernel K1Δ1...Kn_1Δn_1Kn is regular.

b) K1Δί (resp. Δ1Kί) maps linearly and continuously ^(IR4) into 5^(IR4)
(resp. ΘM(1R4) into (9M(]R4)).

Proposition Π.2.7. // one of the Eq. (Π.0.1) has a regular solution, this solution
is unique.

Proof. For instance, in view of Proposition 11.2.6 and Eq. (II.O.l), (i+IΔF)
is the inverse of 1 — AΔF.

Proposition II.2.8. / (resp. JJ is a regular kernel (or W-N-P, or N-P kernel)
if and only if I (resp. JJ is.

Proof. Indeed:

Definition II. 2.9. The external field will be called "physical" if it has only
real components.
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Proposition II.2.10. a) The external field is physical if and only if

A = A*. (IL2.5)

b) // the external field is real and if Eq. (Π.0.1) have a regular solution, then
these solutions obey:

Jr = JJ /t = 7. (Π.2.6)

Proof. See the Proposition Π.2.8 and the definition of A [Eq. (1.1.4)].
Remark 11.2.11. Let Gr be defined by:

Gr = 4 + 4J rJ r. (II.2.7)

Then, one can easily convince oneself that Gr is the solution of the integral equation:

Gr = 4 + ΔrAGr = Δr + GrAΔr. (II.2.8)

Or equivalently Gr is the unique solution of the Klein-Gordon [cf. Eq. (1.2.4)]
with external field, whose support is in (x, y); (x — y)e V+} (Cauchy problem [6]).
One can see that Jr can be reconstructed from Gr by the formula:

Jr = A + AGrA. (Π.2.9)

113. Unitarity

Proposition II.3.1. Let I,ϊ,Jr,Ja be regular solutions oflWΛ then
a)

(t + iIsΓ
1=(ί-Hs) a)s}

 1

 s' (II.3.1)
(i + iΛΓMi-'Λ) b)

on the domain D.
b) // the external field is physical, then:
(1 -f ils) can be extended as a unitary operator on §+ ©§_=§,
(i + i JR) can be extended as a pseudo unitary operator on § with respect to the

metric Γ.

Remark 113.2. The details of relation II.3.1 a) and b) are given in Table 1.
Remark 1133. This proposition can be extended without change to the case

of fields with integer spins. In the case of half-integers spin field, a) is also true.
But in b) we have the following modification

(i + ils) is pseudo unitary with respect to Γ,

(i + i JR) is unitary .

Proof of the Proposition 113.1. Following Schwinger [3], and applying
Propositions Π.2.4 and II.2.6:

A = (i-AAF)I = 7(i- ΔΨA]. (Π.3.2)

Therefore, multiplying to the left by 1 + IΔF, and to the right by 1 + Δψϊ, we obtain:

+J-)7. (Π.3.3)
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Table 1

1 . (ί + ils) (1 - iϊs) = 1 _ 2. (1 - iϊs)_(t + ils) = 1

3. (1 + iJR) (1 - UA) = 1 4) (1 - iJJ (1 + UR) =

( l _ - ί J r _ _ ) J β _ + = J r _ _ ( l + - i J β + + ) ( l + - i J β + + ) J r + _ = J β + _ ( l _ - i J r _ _ )

Adding the unit kernel to both sides we immediatly obtain Π.3.1 upon mass-
shell restriction.

Now, if the external field is real one easily finds:

JACΓJ*Γ-^ (Π.3.4)

where Γ is defined by II. 1 . 1 2.

Proposition Π.3.4. Let us assume that the external field is physical:
a) if I is regular, then :

0^1 + + -/ + _/ί_^l + + (Π.3.5)

and Is is bounded.
b) // / is N-P then

0 ^ d e t ( l + + - / + _ / * _ ) ^ l . (Π.3.6)

c) If Jra is regular

i + + + J r + _ Λ _ + =l + + +J r + _J* + -^ l + + . (Π.3.7)

Therefore this operator has a bounded inverse.

Remark II 3. 5. The result b) shows that Proposition 1.3.3 is likely to hold in
a non-perturbative sense since:

Proof. We have only to remark that, since the external field is physical

1+ - = I- + Ja - + = Jγ + -

r* _ 7 r _ r*
I + + ~ 1 + + Ja+ + ~~ Jr+ +

By looking at Table I, Proposition Π.3.4 is proved.

II A Relationship between I and Jr:

The main theorem is the following:

Theorem Π.4.1. 1) The equations (A) Jra = A + AΔraJra = A + JraΔraA have a
unique regular (resp. W-N-P, N-P) solution such that 1+ + Ja+ _ Jr_ + is invertible,
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if and only if the equations (B) / = A + AAFI = A + IAFA,Ϊ = A + AAFΪ = A +JAFA
have a unique regular (resp. W-N-P, N-P) solution such that ί + — / + _ / _ + is
invertible.

2) // the external field is physical, equations (A) have a unique regular (resp.
W-N-P, N-P) solution if and only if equations (B) have a unique regular (resp.
W-P-N, N-P) solution such that ! + — / + _ / * _ is invertible.

Proof, a) Let us suppose that I and Jr are regular solution of (A) and (B)
respectively. Then we find

Jr = (1 + JrΔr) A = (i + J,4) (1 - AAF) I

+ )I (II.4.1)

By interchanging the different kernels J a 9 J r 9 I , I we obtain similar relations,
whose details, when restricted on the mass-shell, are given in Table 2.

b) Now let Jra be a regular solution of (A); If 1+ + Jr+_ J α _ + is invertible,
then, in view of the results of Table I, ί _ — i J r_ _ and 1+ + i Jr+ + are invertible
on the domain D.

Therefore we can define an operator Is such that the relations of Table 2
hold.

We now define /(x, y) by:

2ωΓ12ωΓ2

By construction and using the Proposition II.2.5 / is regular and satisfies:

Thus since
(1 — AAr) (1 4- JrA +) = (1 — A A F ) . (II.4.4)

J is a regular solution of (B).
Then, we can remark that

(Π.4.5)

Now, if J, is W-N-P (resp. N-P), I is also W-N-P (resp. N-P).
c) The converse can be shown by the same procedure.
d) The second part of the theorem is then trivial, by using Proposition Π.3.4.

Table 2

2.

3.

4.
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RemarkIIA.2. The results 2) of TheoremII.4.1 can be restated as follows:
If Jr is an N-P solution of (A) and if the external field is physical, then

Oφdet( i + -7 + _7*_Hdet( ί + +Λ + _JΛ-Γ 1 (ΠA6)

Remark IIA3. Theorem Π.4.1 can be extended without change to the case
or arbitrary integer spin fields. In the case of half integer spin fields (/, I), have
to be exchanged with (Jr, Jα).

77.5. The Classical S-Matrίx [5, 6, 8]

We suppose here that Π.0.1 b) has a regular solution.

Proposition II.5.1. Upon mass-shell restriction, the kernel Scl = (l—AaA)
- (1 — ArA)~ί defines a unique operator Scl on D C § + θ§- (cf. Proposition II.2.5.)
such that

Scl = ί + iJR. (II.5.1)

Proof. Using II.O.l, we easily find:

Scl=i+(Δ+-A_)Jr. (11.5.2)

This relation is sufficient to prove the proposition.

Proposition II.5.2. If the external field is physical, then, ί + + i Jr+ + = (Scl)+ +
has a dense image.

Proof. Indeed, in this case, 1++iJ r > + + has a bounded inverse (cf. Propo-
sition II.3.4).

Remark 11.53. The result of the previous proposition is a necessary and
sufficient condition for the unicity of the out-vacuum as shown by Wightman
(cf.[6],Eq.(4.12)).

This result can be extended to arbitrary integer spin fields. In the case of
half integer spins, it might turn out to be wrong for strong external field [6,15].

Corollary Π.5.4. (Seiler [8]).
1) Scl is pseudo unitary with respect to Γ.
2) We have

(J_+)* = Γ+_=(S c l); 1

+(S c l)+_. (Π.5.3)

Proof. We have only to use Proposition II.3.1, Table 1 and the relation

scl = l + i./Λ

Remark 77.5.5. For integer spin fields, this corollary always holds. For half
integer spin fields Scl is unitary [8] (cf. Remark II.3.3).

III. Construction of the Bogoliubov S-Operator in Γock Space

I ILL Definition of S(g)

Following perturbation theory it seems natural to define the S-operator by:

50(7) - det(l+ - /+ _ 7* _) 1 / 2 :expi J φ*(x) I(x, y) φ(y) dx dy:. (ΠI.1.1)
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If this expression is well defined, it is expected to be, up to a phase, a re-summation
of the S-operator of the perturbation theory.

We shall, in fact show in this section that if / is an N-P kernel, S0(/) is well
defined on the dense domain of Fock space, generated by coherent states.

Then, if / is the N-P solution of the integral Eq. Π.0.1, we shall use an integral
representation for S0(/) (Section III.3) and show that S0(/) can be continued as a
unitary operator. Next we shall show that S0(I) satisfies the axioms of Bogoliubov
[10, 11] up to a phase (Section III.4).

Finally we shall study the interpolating field, defined formally as in perturbation
theory, and show that it is an operator valued tempered distribution, satisfying
the Yang-Kallen-Feldman equations [14,22].

It is unfortunate that this last part can only be generalized to fields with
integer spins in view of the intensive use of coherent states in the computation

ofSoCO
However, we should like to remark that the existence of S0(I) as a unitary

covariant and causal operator [10,11], up to a phase can be shown, also by using
the representation theory of quasi free states, and the characterisation of unitarily
implementable Bogoliubov transformations (cf. for instance Berezin [24], Powers
and St0rmer [26], Manuceau and Verbeure [27], Van Daele and Verbeure [28]).

This method has the advantage that it allows to treat both cases: boson
fields as well as fermion fields.

But we have prefered to follow a more explicit method which will be used
in Part II [16] of this work to prove the convergence, on coherent states, of the
perturbation expansion for S0(I) in the case of weak external fields.

1112. Coherent States

Definition III. 2.1 (see Appendix 1). Let / be in § + , G be in §'_. The coherent
state with wave functions / and G is defined as the vector of g

Let us note the formula

(Φf,G\Φr,G'} = e(f'lf] + (G'>G). (ΠL2.2)

Proposition [29] IΠ.2.2. The vector space <£tc, spanned by the coherent states is
a dense domain of 5 Any finite family of coherent states is linearly independent.

Proposition IΠ.2.3. The application Φ:(f, G)->Φ/G from §+ x§'_ to g is an
analytic function in §+ x §'_.

Proof. Let us recall [30] that a function x->/(x) from a complex Banach
space E to a denumerable normed space F is analytic in an open set U of E if
and only if (see [30], §3.3)

a) / is continuous,
b) / is locally bounded,
c) there exists a total set H on the dual space of F such that Vα e (7, V/i e £,

the function
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is holomorphic in a neighbourhood of zero in <C, V w e H. The result is then trivial
ifweuse£q.(IIL2.2).

Proposition ΠI.2.4. Let P be a polynomial in two variables X and y. Then we
have :

:P(φ*, φ): Φ/ f G = P(b+ + /, a+ + G) Φf>G (III.2.3)

where a+ + G (resp. b+ + f) is defined as the operator valued function defined on
ξ>+ (resp. on ξ>'J h-»fl+(h) + <G, h> i (resp. H ->fo + (//) + <#,/> I).

Proof. Using recursively the canonical commutation relations one finds:

Equation (III.2.3) follows by linear extension.

Ill.3 Definition of S0(I)

Propositions III.2.4 and III.2.2 allow us to define :elφ*Iφ: as follows

Therefore, it is sufficient to show the existence of eιa+I+ ~b+ as an operator densely
defined on 3tc. The main result is the following:

Theorem ΠI.3.1. a) The vector ela + κb +ΦfG belongs to g tf and only if K
is a H.S. operator with

lo l lop <1 (Π.3.2)

b) ι/K,X / eS 2 -{K;/c6^f(§_,$ + ), | |K||o p<l, ||K||RS. <+00} then

exp((/'*,G), ?+ ~f\ Ίf}\
,-ia + K'b+* Ua + Kb + * ^ \ -J \ lL_m (ΠI.3.3)

c) The mapping F:(K,f,G)^>ela + Kb+Φf>G defined in <έ 2

χ δ+ x δ- wiίh
values in 5 is analytic.

Let K be a H.S. operator. Then there exist [19,20] two orthonormal basis

OPi)ieN ίn S + an(3 (^ί)iεN ^n θ- SUCh tnat:

α) —iK= X λiψi^Γi converges in H.S. norm.
ΓeN

β) λ^Q V i e N ,

7) ΣκA?

δ) sup λt) ίeN l

Now, one defines a? and bf as follows:

(III.3.5)
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Then, one has also the following proposition :

Proposition ΠI.3.2. The following formula holds:

. .
ΛΓ-*oo ί = 1 λi 2l7l

on the dense domain &)c of coherent states.

Proof of Theorem III 3.1. i) Let us remark that if K is not a H.S. operator
then eia+κb + Φf>G does not belong to g as can be seen by computing the one
particle - one antiparticle component.

ii) One will use the following notations :

5i = Fock space spanned by (af,bf) a)

Q. = vacuum of gt . b)

If/e§ + andGe§'_ one puts:

/, = (?,!/) G^Γ IG) c)

Φ; = exp(-Wfc 1

++/ i«Γ+GΛ+)Ω i. d)
Hence:

Ω = (X)Ω ; δ=®Ω&, e)
ieN ieN

βia + Kb+ΦfG = (^Φi. f)
ieN

iii) One can easily see the following results:
- Φf 6 g,. if and only if λi < 1 and

GΛ^ J'] '(l)^ (IIL3.8)

as can be seen from Lemma A .4.2 in Appendix 4.
- Hence, the vector:

ieN

belongs to g only if ||X||op< 1, in view of the formulae IΠ.3.4 δ) and IΠ.3.8.
- The infinite product f] | |Φj| |2 converges in 1R+ since the sequences (λ^^^

le

- Therefore, the vector (X) Φt belongs to g. Indeed, let Φ(ΛO be defined as:
ieN

(
N \ I oo \

(χ)Φ f (x) 0 Ω f ) (IΠ.3.9)

Then, if M < N, one has:
/ N \

V i e N / \ M + 1 /

Thus Φ(N) is a Cauchy sequence in g, and is convergent.
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iv) Let Sf be the dense subset of S2 whose elements are finite-rank operators.
By Lemma A.4.2 (Appendix 4), it can be seen that ΠI.3.3 holds if K and K' are
in Sf. Putting E = S 2 x§ + x$'_, £F = 6f x£ + x$'_, and, x = (X,/,G)eE,

F(x)-eίfl+0 + Φf GJ' (IΠ.3.11)
HίxUMW I *"(*))•

One deduces that, (x\ x)^H(x', x) is continuous on EF x EF, as can be seen from
Formula ΠI.3.3. Therefore, H(x'9 x) can be uniquely continued as a continuous
function on E x E. On the other hand, one also has :

\\F(x) - F(x')\\ 2 = H(x, x) + H(x', x') - H(x\ x) - H(x, xf) . (IIL3.12)

Thus, x^>F(x) is a continuous function on E. Now, F is clearly locally bounded,
and we can see, from Equation III.3. 3 that:

x-*(Φf,G\F(x)) (IIL3.13)

is analytic on E. Since Q)c is total in g, all the necessary and sufficient conditions
hold for the analycity of F (cf. [30], § 3.3, or the proof of Proposition IΠ.2.3).

Proof of Proposition I II. 3. 2. By the previous proof [see Eq. (IΠ.3.7)] 10/11).

eίa + κb+ = s-lim Π z~λia*b* (IΠ.3.14)
N-»oo i= i

on a dense domain of coherent states.
It is then sufficient to prove (IΠ.3.4) when

But it is easy to verify that, if ^>0: (use Lemma A.4.2 Appendix 4) and
Theorem ΠI.3.1)

V/'e$ + VG'6§'_

(Φ^k-^'Φ^Hl^ (IΠ.3.15)

However, Schwarz's inequality implies:

so that the integral converges in the strong sense if and only if λt< 1.

///.4 Bogoliubov's Axioms for S0(I) [10, 11]

Theorem IΠ.4.1. L^ί / be an N-P solution of the equation

I = A + IAFA = A + AAFI (IΠ.4.1)

for a physical external field A, such that det(i+ — /+ _ 1+ _) φ 0. Then:
a) S0(7) densely defined on Q)c by

T T* W2 /?1'<G' J- + / > . /?l'fl + /+ -b+ &
~ 7 + - ^ + - J e e φ(l + +i/ + + ) / , G ( H - + i / - - )

(ΠI.4.2)
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b) S0(I) can be continued as a unitary operator.
c) S0(I) is causal up-to-a-phase.
d) SQ(!) is relativistically covariant.

Proof, a) Since det(i+ —1+ _ /ί _) > 0,7+ _ satisfies all the conditions of
Theorem IΠ.3.1. Therefore a) is proved, since / is an N-P kernel (see Section II).

b) By Eq. (Ill.4.2) we find

(SoCO Φ/6G61S Q (I) Φ/0iGo) = (eίa + I+ -b+ΦΓG,\eia+I+ ~b + ΦffG)f,det(l+-/+_/?_)

(ΠI.4.3)
with

/' = (l+ + i/++)/o' G' = G(>(l- + i/--)

/ = (l+ + i/++)/o G = G0(l_ + i / _ _ )
and

»/ = expi«G0, /_+/„> - <G'o, /_ + /0'». (IΠ.4.5)

By Theorem ΠI.3.1, we find

(S0(I) Φ/6G61 S0(l) ΦfoGo) = exp /(/„'*, GO), B (£}} (III.4.6)
\ WO //

with

o -i(i-+
/_ + o

0

i _ + i / _ _ J (III.4.7)

+ i/++ 0

L-/*,/^)-1 J[ 0 l_-i/i

With the results of Table I, we find

B = 1 . (ΠI.4.8)

(So W Φ/6G6 I So W Φ/6G0) = (Φ/6G6 I Φ/6U -

On the other hand, it can be seen without difficulty that

S0(/)CSo(/)*. (ΠI.4.10)
Thus S0(J) is unitary.

c) In order to show the causality property we have to compute ^(/JS^jy.
We shall use the integral representation given by Proposition IΠ.3.2 and the
boundedness of So(/ι) for real external fields:

Soί/J s-lim AN = s-lim S0(A) ̂ N (IIIA1 1)
N->oo N-^oo

if ^N is a sequence of operators.
On the other hand, the strong convergence of integral IΠ.3.6 allows us to

push S0(A) under the integral sign. By computation of several Gaussian integrals
wef ind,V/ 0 e$ + ,VG 0 e§ '_ :

S0(/ι) S0(/2) Φ/oGo - ηS0(I3) Φfo>Go
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with
_ det(l+ - A + _/f + _)1 / 2 det(l+ - J2 + ,/JV _)1/2

* det(i+-/3 + _/3*+-)1/2det(i+ + / 1 . f _/ 2 _ + ) (LίlAΛί)

and
i+ + z73 + + -(i+ + ι71 ++)(i+ + /1 + _/ 2 _ + )- 1 (i + + j2++) a)(ΠI414)

i_ + ι7 3 __^(i_ + i/ 2 __)( i- + /2-+/ι + -Γ1(i- + /ι--) b) (

2 +-)- 1/ 1_+(i+ + ^2 + +) a) (IΠ41

1 _ + ) - 1 / 2 + _ ( i _ + i7 1 __) . b)

With the help of the results of Table 1, it can be seen that 1 + /3 s is also unitary
and that η is a complex number with modulus 1.

Now, if we construct J3 R from /3 s by the formulae given in Table II, we find
as a consequence of Theorem Π.4.1.

(1 + i /3f R) = (H + '*Λ ,R) (1 + i J2tΛ) . (IΠ.4.16)

This formula suggests that J3 is associated with a problem in which the corre-
sponding retarded kernel Jr $ is

J3.r = Jl.r + J2.r + Λ.rM.r (III .4. 17)

where Jir(i = 1, 2) is the solution of

JίtΓ = Λ + ̂  JΓ J ί fΓ = ̂  + J ί fΓ2lr^ . (Ill A 18)

Let us now assume that ([10] p. 167, [11])

suppK Alμ)n(V~ + supp(ι;2, A2μ)) = 0 . (Ill A 19)

Then we easily find

^1/lβ^2=Jl.AJ2.r = Λ.r4^2=^1^2.r = 0. (ΠIA20)

Since we have the same formula by simultaneously interchanging 1 and 2, Aa

and Δr,

Jl.rΔJ2,r = Jl.rArJ2,r (ΠIA21)
and

J3,r = (A, + 42) (1 + 4 J3.r) = (1 + J3.r^r) Mi + ̂ 2) - (IΠA22)

Therefore, 73 is a kernel associated with the external field

l9μ + A2tμ)) (IIIA23)

which proves causality up-to-a phase.
d) The covariance of S0(/) is easy to show. Recall that

(β»>, Xμ) (x) - (t?, /tμMv) μ- *(x - a)) . (IΠ.4.24)
Then:

<β ^>J(x, y) - /μ- *(χ - α), /I' ̂  - α)) . (IIIA25)

If Uε(a, A) is the representation of the Poincare group in §ε, it is clear from II. 1.7,
that in momentum space :

( >ΛI)tt. = Ue(a, A) /„, υ,(a, Λ)~ 1 . (ΠI.4.26)
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Therefore, det(i+ — 1+ _/:f _) is invariant, and

:eίίφ*(a'Λ)Iφ:=U(a,Λ):eSiφ*Iφ: U(a,A)~1 . (IΠ.4.27)

Theorem ΠI.4.2. i) The mapping I-*S0(I) is strongly continuous when we
norm the space of N-P kernel with

|| J||N_P = max { ||/+ + ||op, ||/_ _ ||op, ||/+ _ ||H.S. ||/_ + ||H.S.} .

ii) The mapping (/,/, G)->det(i+ -/+ _/ί _)~ 1 / 2 S0(/) Φ/jG is analytic in the
domain

Proo/. a) it is well known that [20]

is continuous with respect to the H.S. norm.
b) From the analyticity [30] of

and from Theorem III.3.1, ii) follows.
c) i) is then a simple consequence of ii).

III. 5. The Interpolating Fields

Theorem IΠ.5.1. Let ψ be the field formally defined by:

ip(x) = :eii<(>^: :J d4y(i + AFI)(x,y)φ(y)eίSφ*Iφ:.

a) ψ(f) = J ψ(x)f(x) d4x is densely defined on @c V/e
b) ψ(x) is an operator valued distribution, [32], which is a solution of the Yang-

Kάllen-Feldman equations, on the dense domain 2C.

Proof, a) First of all, /->{d4x/(x)(l +zlF])(x, 3;) is a continuous linear
map from <S^(IR4) to ^(IR4), and therefore (1 + AFI)φ is a good operator valued
distribution.

On the other hand ;e^φ*Ίφ'. can be continued as a bounded operator, as
follows from Theorem IΠ.4.1. Therefore, we have to show that if /e <?> + , Ge §'_,
then

:φ(h) eίίφ*Iφ: Φ/>G E 5 V Λ e (̂1R4) . (IΠ.5.2)

By using properties of the coherent states (Proposition III.2.4) it is sufficient
to show that

is in the domain of b+ (or α+) for any wave function / (or G). In order to see this,
recall that the domain of b+ (or a+) is the set of vectors Ψ such that

(ΠI.5.4)
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Now, let us put for B > 0

I I Ψ\\2

B=ΣB"+S \\ψ\\ΐ,s- (ΠI.5.5)
r,s

We see that

\\eia + I^b + ΦftG\\ί=\\eiBa + I^b+Φ^ft y-BG\\2 (ΠI.5.6)

which, by Theorem III.3.1 is finite if and only if

I I /+ -Hop < i / B . (ΠL5.7)
1

B~n
In view of the condition || I + _ ||op < 1, there exists B0 > 1 such that || /+ _ ||op < -$—
Therefore

is analytic in an open domain containing the closed set B<^ 1. Therefore

Remark III.5.2. By the same method we also prove that eia+I+ ~b + Φf G is in the
domain of (a+)m (b + )n V m, V n.

b) Now it is easy to compute the matrix elements of φ(x) between coherent
states. We bave only to use Theorem IΠ.3.1 and Table I. We find that

(1 — ΔrA) (ΦΓ G, Iφ(x) Φf G) = (Φr G, I φ(x) Φf G)
(IΠ.5.10)

(1 - AaA) (Φf,tG. I ψ(x) ΦftG) = (ΦrG. I φout(x) Φ/G)

which are the Yang-Kallen-Feldman equations [14,22].
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Appendix I

Fock Space and Two Point Functions

1. Let § be a Hubert space. We denote by §' its dual. By Riez's theorem [18]
we can find an antiisomorphism

from § to §', defined by

V y e ί > <x*, yy = (x\y) (A.1.1)

§' is a Hubert space with inner product:

(χr\y')$ι==(J~1y\J~ίχ)& (A. 1.2)
We shall denote also J"1*' by x'*, which is not confusing, by Eq. (A. 1.2).
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2. In order to construct the Fock space for charged bosons, we need two
Hubert spaces §+ and §_. We shall define g by

Here V means "symmetrical tensor product".
If Φ e g we can write

Φ=(ΦJr.,eN* $r,s G ξ>l' ® &™ . (A.I. 4)
We put:

Ω = (ΩrΛ.-)eN> Oo.o = 1 «r,β = 0 if (r, s) Φ 0 . (A.1.5)

3. Creation and annihilation operators for particles or antipar tides are
defined as follows

fl-(f)0 = 0, fe-(0)Ω = 0, a)

[α±,6±]=0. (A. 1.6)

<F?/> ̂  , [b~(g\ b + (G) ] C <G, ^> % . b)

a+ (/) = «"(/*)* 6 + (G) = ft-(G*)* c)

4. The field is defined if we can find four linear continuous maps defined
on the space of test function 5^(IR4) u±9u'± such that [6, 33, 34]

Ran(w+)C§± Ran(ι4)C$'± . (A. 1.7)

Then V Λ e ¥ (IR4)

α-( W V/z) + fc + (^_(/z)) a)

φ z - α W + z + - w _

with the condition (if h->h* is the natural involution in <5^(IR4)).

(A. 1.9)

For more complete details about covariance see for instance [6, 33, 34].
5. For a scalar field we choose §+=§_= §'+ = §'_ = ̂ 2(Hm, dΩm(p))

where _

We have to put:

V h E

(A.I. 11)

Then
(A.I. 12)

with A = A + — A _ and

Hm
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We then define Δr and Δa by

A=Ar-Aa a)

supp4cF + , suppΔacV~ b) (A.I.14)

Δra = δ. c)

Appendix 2

Wick's Theorems

1. Weak Wick's Theorem [17]

Let φ be a free scalar field. Then

•Ψ . , . ^ n VΛ/?l*__J I V I — >
„ i vΛi/ Z^ M A v "

Let now λ = (λi(x))ie^ be a family of test functions, a finite number of which only
are non zero. We define

• Λ^g>l «\x;λ)= X Aα+|8(x)^-(x). (A.2.2)
P !

With ^(0} = <& Eq. (A.2.1) can be written in the formal power series sense with
respect to λ:

> TOM.

Formulae (A.2.1, A.2.3) can be generalized without difficulty, by replacing α
by a multiindex (α l5 ...,a#) if φ = (φl9 ...9φN). If some components describe a
fermion field, the corresponding "coupling" constants λ ( < ) have to take values
in a formal Grassman algebra to give the correct signs in (A.2.1).

2. Strong Wick's Theorem

Let α = (α l9 ...,αn) be an rc-index. Let Γ(α) be the set of graphs with vertices
1, 2, ..., n such that α, lines meet at vertex "Γ.

If / is a line of the graph G, we denote by u(l) and ι;(/) its extremity, with this
convention:

«(/)<•>(/).
Then we have

GeΓα ί eG

The right-hand side is defined in '̂(IR4) as the boundary value of a function
analytic in the tube:

i - xί+ i) e V+ i = 1, . . ., n - 1 . (A.2.5)

If G is a tree-graph, the product Y[ ... is a simple tensor product of distribution
[11,25]. l*G
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Formula (A.2.4) can be easily generalised for field with several components
by introducing several kinds of lines and other "propagators".

3. Wick's Theorem for Chronological Product [11]

One can formally replace products of fields by chronological products in
(A.2.1) or (A.2.4). Epstein and Glaser [11] have shown that it is possible to define
a T-product such that (A.2.3) holds, and such that (A.2.4) holds for tree graphs
(see also Bogoliubov and Chirkov [10]).

Appendix 3

Proof of Theorem 1.1.1

1. We want to compute S(g, J) for the following lagrangean density:

^ι(^£j.) = v :φ*φ: + iAμ:φ*dμφ: + Jφ + Jφ* + Jμd
μφ + Jμd

μφ* (A.3.1)

with _ _
g = (v,Aμ) J[ = (J, J, Jμ, Jμ) (A.3.2)

It is more convenient to write the field in the Petiau-Duffin-Kemmer [35] form:

φ* = [φ*, <3μφ*] j — [J, J ] j= - (A.3.3)
A . ,, [Jμ\

and
v IAU

-lAf 0
Then, (A.3.1) becomes:

&j(x,c[,J.)=j-ψ + ψ* j + :ψ*Aψ:. (A.3.4)

2. We can apply the weak Wick theorem [Appendix 2 (A.2.3)]:

(use also Taylor's formula).
On the other hand, by using the strong Wick theorem for tree graphs (App. 2 § 2

and 3) we can find:

(Ω15(g, J) Ω)= i f Gp (x, y) j(y) dy4 (Ω \ S(g, J) Ω) a)
δi(*] ~ ~ (A.3.6)

-(β|%, J)Ω)= i $ j ( x ) G P ( x , y] dx4 (Ω\S(g, J)Ω) b)

where GF is defined by:

SF + GFASF a)

b)
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Therefore (see Schwinger [3]) the unique solution of (A.3.6) is

(Ω\SfaJ)Ω) = (Ω\SfaO)Ω)eί"GrJ. (A.3.8)

Omitting integrations, we can write, by Taylor's formula

$(q J\ — eίJGFJ .giSfrlv + j^-SpAr1 ψ + ψ*(l-ASFΓ
1 7

...(β|S(0,0)Ω) (A.3.9)

l = A+AGFA.

3. Now, we have to introduce the distribution kernel /(x, 3;) defined by

\φ*Iφ = $ψ*Iψ. (A.3.10)

In order to compute / we have to compute SF. Indeed power counting tells us
that [11]

(Ω\T(dμφ(x)dvφ*(y))Ω)

is defined up to a counter-term of the form

agμvδ(x-y) α e l R . (A.3.11)

By choosing

(β| T(dμφ(x) dvφ*(y)) Ω) = ±- (dxdvAF + gμvδ) (x - y) (A.3.12)

we find
I = A + AΔFI = A + IΔpA (A.3.13)

with
A(x,y) = [υ(x)4-AμA»(xϊ\ δ(x-y) + i[Aμ(x) + Aμ(y}\ d»δ(x-y).. (A.3.14)

And therefore

S(g, 0) = S(g) = '.e1***1*: (Ω\S(g) Ω). (A.3.15)

Remark. This choice of renormalisation is associated with the minimal
coupling for the two points Green's function.

4. In order to compute the interpolating field we have only to derive (A.3.9)

We must remark that:

δ .(

δJ(x) J(

because

(A.3.16)

(A.3.17)

(1 + AFI) (1 - AFA) = (i- AFA) (1 + AF I) = 1 . (A.3.18)

Therefore Proposition 1.4.1 is proved.
Remark. The same calculation can be performed for any free field and any

quadratic lagrangean. It gives us a "preferred" choice of renormalisation for
fields with high spins.
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Appendix 4

Gaussian Integrals

Let E = C" with its canonical Hubert structure. If x e E, let x* e E' the linear
form on E defined by (cf. Appendix 1. § 2)

<x*,y>=(x\y) V y e E . (A.4.1)

Then:

Lemma A.4.1. The following formula holds, provided

A + A* > 0 a)

e-<«>Aβ>det(A) = $e-<z*>A~lz> + ί<">z> + ί<z*>β>dρn(z, z*) . b) (A.4.2)

Here α E E' and β e E.

dρn(z, z*) = d"(Rez) dn(lm(z)) π~n . c)

Remark. If ^4 4- A* > 0 then >1 is regular.
Now let (φλgjsf and (Γf)ίe]N be two orthogonal basis in §+ and £>_ respectively.

Let a f , b f be defined by

<* + ,Φi>, bt=b+(Γi) = <Γhb
 + y. (A.4.3)

Then we have the following result.

Lemma A.4.2. Lei λ, λ' be in J*?(C"), α, α7 be in <Cn, jS, j8r in <C"'. P^β pwί :

Ψ(λ,oc,β) = exp[_Σλίjaΐb++Σ(κia+ +jSA+)]Ω (A.4.4)

T/zen we /jαfe

a) y(λ, α, /?) e δ if and only if

b)
1

detB(i-λA'*)
(A.4.5)

Proof. To establish formula (IV.4.5) we can use Bargman's representation [36]
of Fock space with a finite number of degree of freedom.

Then, Ψ(λ, α, β) is representaed by the analytic entire function

(A.4.6)

with ξ e £', η e E.
The scalar product is given by

(Ψ\ ψ) = le-<ί ?>-<»* 'i>ψ'(ξ,η)* ψ(ξ,η)dρn(ξ,ξ*)dρn(η,η*). (A.4.7)

It is then sufficient to use Lemma A.4.1.
Remark A.4. 3. 1. In Lemma A.4.3(α'*, j8) is the linear form on £ x £ defined by

(α'*, β), 1 = <«'*, α> + <β '̂*> . (A.4.8)
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2. We also have the formula

1 ((t-λλ'*)-1 (ί-λλ'*)-1

Appendix 5

A Class of Banach Spaces of Kernels

In this Appendix we use the notations of Section ILL
Definition A.5.Ϊ. Let αeIR + , M eIR, weN. Let E be a finite dimensional

Banach space. Then .yK£(m, α, M) is the Banach space of kernels from ΪR4 x IR4

to E, normed by:

,.,„= Σ -P ,wtert,. . (A,,)
|μ|, |v| E 4 χ iR 4 I U + IPN U + I4M

^m

Here for p e IR4 we denote p = (p°, p) pQ e IR, p e IR3 and

Remark A.5.2. The space .JiE(m, α, M) is increasing with M and decreasing
with α and m.

Let S^fX) = P(id) Δex(x) where P is a polynomial of of degree σ over IR4 with
values in &(E) [cf. Eq. (ILl.10-11)].

Let G4μ)μ = o,ι,2,3 and v be functions in ^(IR4). We will put:

', α) = v(p — α) + A..Aμ(p — α) 4- ίA..(p — q) (pμ + qμ) a)
μ μ (A.5.3)

'> #) = ΎμAμ(P ~ <?) + #(P — gj b)

where the tilde denote Fourier transform, and yμ denote the Dirac matrices.

Lemma A.5.3. The mapping (v,Aμ)-^A (resp. (υ,Aμ)-+A) from 5^(IR4)x5

to -yΓ(m, α, 1/4) (resp. to Jf^ (m, α, 0) is continuous.

Proof. Since v and Aμ belongs to ^(IR4), [25] we can find for given α and m,
a constant C such that for |μ| ̂  m and |v| ̂  m:

-l«l 2 ) 1 / 2 d + IPl2)1/2) , Λ C , ,
(^r

noticing that in (A.5.4) a) one can use decompositions of pμ + qμ as 2pμ + (qμ — pμ)
or as 2qμ + (pμ - qμ\ so that we get at most a linear growth in \p\ or in \q\ due to the
fast decrease in p — q.

Using the inequality

lnf(\al\b\}^]/\ά\\b\ (A.5.5)

the proof of Lemma A.5.3 is complete.

Lemma A.5.4. // α>3/2 αnJ Ke Λ^(m,α, 1/4), ί/iβπ X + + and X _ _ are
bounded operators, and K+_,K_+ are in the Hilbert-Schmidt class. Moreover
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the mapping
K ^ ( £ + + , K _ _ , K + _ , £ _ + ) (A.5.6)

from ,^fE(m, α, 1/4) is linear and continuous.

Proof, a) Let us first examine K+ _ :

||K + _ HH.S. = O J \K(p, -<?)|2 dΩm(p) dΩm(q)

<r«-
Both integrals are equal and converge for α > 3/2.

b) By a theorem from Dunford and Schwarz [37], one has the following:
Let (S, Σ9 μ) be a positive measured space, and R a measurable function on S x S
such that

ess sup J \R(s, ί)l dμ(s) ^ M ess sup J \R(s, ί)| dμ(t) ^ M . (A.5.8)
ί S

Then the operator T defined by

* = ? (A.5.9)
g(s) = $R(s,t)f(t)dμ(t)

is a bounded operator in <£ 2(S, Σ, μ), and we have

||Γ||^M. (A.5.10)

This result generalizes jSf2-space inequalities for convolutions. Here we choose:

(A.5.11)
if α> 3/2, Eq.(A.5.20) gives

ί '
Ό

ess sup J \K+ + (p, q)\ dΩm(q) ί C' \\K\\m^ίl4 ess sup V ' ^ C

(A.5.12)
since on mass-shell

(A.5.13)

The proof is complete.

Lemma A.5.5. // α - M > 3/2 and K e Jf(m, α, M + 1/4) then K+ _
are in the Hίlbert-Schmidt class, and there exists a dense domain D+ in §+ (resp.
D_ in §_J such that K++ (resp. K _ _ ) is defined on D+ (resp. D_) with

K++D+CD+ (resp.K__D_CD_). (A.5.14)
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Proof. The proof is the same as before. The domain D can be chosen as the
space of ̂ m functions of fast decrease on the mass-shell.

Lemma A.5.6. Let m ̂  1 be an integer, α, β be real positive numbers, M, N

real numbers such that M + N H -- - — ^ 0. Then, there exist a constant C and

indices y and P such that

IILIL^. (A.5.15)

// there exist A^,B^Q with

sup (<*-A,β-B)> 3/2 inf (α -A,β

(A.5.16)
Then

,N + B) . (A.5.17)

Proof, a) We need some auxiliary results.
i) The following inequalities hold: VxeIR", V y e I R "

2) a)
\\y\\2) b) (A.5.18)

c)

ii) If x, y, z) are in IR", and θ ̂  0 the following inequality holds [38]

(i + \\x-y\\*)-β(i + \\y-z\\2Γ9

I Λ S Ί U )

^Cθ(l + ||x-z||2)-θ{(l + ||x-3;||2)-θ + (l + ||z-3;||2)-θ}/ "

Indeed, V θ, 3KΘ such that

(\a\ + \b\f £ Kθ(\a\θ + I
And by

(1 + \\x-y\\2)^ 1 +2(||x-y||2 + ||>;-z||

we obtain easily (A.5.19).

iii) If x, z, and y are in IR", α ̂  0, β ̂  0 then if sup(α, β) > y

r _ ^ _ c (A520)
J - 2 « - = - 2

as can be seen by application of (A.5.19) and of the Holder inequality.
b) We can without loss of generality, choose the particle mass m to be unity
i) Up to a multiplicative constant, we have in momentum space
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This expression can be majorised by

dμ dv

dpμ dqv
K<? T

Γ (i + \r\2)M+Ή+~^~ <Pr
• ' • J (\ + (rP-m\2Yl\ + f / 7 ° - m ϊ 2 Y x ( 1 -4-(n-rΫΫ(l 4-fr-nΫY

.5.21)

Because r° = ω r=>l + |r|2 = 2(1 +f2).
Let us apply A.5.19, and remark that (A.S.lδb)

1 +f2

— I_ ^ 2(1 + p2). (A.5.22)

Then, if A ^ 0,5 ̂  0 satisfy (A.5.16), and y and P are defined by (A.5.17) we find,
with (A.5.20) the result for Sex = S+.

ii) Let us prove the lemma for Sex = Sr.
Up to a constant, we have

P(r)
S'W=

 ( ro_ l Ό )2_ω2
P(r) 1 1

r° - iO - ω, r° - iO + ωr

. (A.5.23)

Thus, X^L can be split into two parts which can both be majorised in similar
ways.

For instance

K(p,r)P(r)L(r,q)d4r

2ωr(r°-iO-ωr) | r o - | ^ i ' |r

We can immediatly majorise the second term of (A.5.24)

d4r

(A.5.24)

r°-ω r-iO

But
y

(A.5.25)

(A.5.26)

and the proof i) for Sex = Sr is sufficient to obtain the good majorisation for the
second term of (A.5.25).^υnu LCI in υi \t\.j.^j).

The first term of A.5.25 is majorised in the same way because

KPL(p,q,r)-KPL\r0 = c

r°-ωr-iO
^ sup — KPL(p,q,rf) . (A.5.27)

It is at this point that we need the derivability of K and L(m ̂  1). If we remark that

(l + |r|2)^C ί e(l+f2) if |r°-ω r |gl (A.5.28)

and J = 2 we find the same majorisation as in i).
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iii) Now we have to majorise J •••in (A.5.24)

(A.5.29)

- f- j

In this expression we have used for \r° — ωr \ ̂  1 [by (A.5.18) c) and b)]

(i + M2)1/2 ^ 1/2(1+ |r|2)1/2

= (1+r2)(1+(ro_ωr)2)ι/2

. g '"*
=

Using again (A.5.22, A.5.20) we find the expected result.
iv) If Sex is any other two point function, it can be expressed in term of Sr

and S+. Therefore the lemma is shown.

Corollary A.5.7. Let m ̂  1 be an integer, α, β be real positive numbers with
oi^β. Then:

where

a)
(A.. ̂ .3 1 )
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