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Abstract. A characterization of states, over quasi-local algebras, which satisfy a strong cluster
property is derived. The discussion is applicable to classical systems and quantum systems with Bose
or Fermi statistics.

1. Introduction

Several years ago Powers characterized primary states over UHF algebras
as the states satisfying a certain singly uniform cluster property [1]. The im-
portance of cluster properties in physical theories led several authors to generalize
Powers results to other algebras encountered in field theory or statistical me-
chanics (see for example [2-6]). These generalizations took several different
directions; the idea of far away observables, and analogy with Sinai's results on
K-systems [7], is emphasized in [2, 3]; the notion of relative commutants of
observables is used in [4] the singly uniform clustering property is equated with
a doubly uniform clustering property in [5, 6]. Most of these generalizations were,
however, modeled on certain commutation properties which are typically en-
countered in classical mechanics or quantum mechanics with Bose statistics. The
only attempt to characterize clustering states of Fermi systems occurs in [5]
which considers only the even states of the CAR-algebra. Also the proof of the
result concerning these states, Proposition 4.5 of [5], is incomplete1.

The purpose of this note is to correct this situation by providing a general
discussion which applies to all standard systems encountered in statistical me-
chanics regardless of statistics.

2. Quasi-local Systems

In this section we discuss the basic structure of algebras which are generated
by local subalgebras and possibly satisfy Fermi statistics.

Throughout ^ will denote an index set with an order relation ^ . We always
assume that #" is directed with respect to this relation, i.e. if α, βeϊF then there
exists a y e £F such that y ^ α, β. In the second half of this section we also assume
the existence of an orthogonality relation _L between pairs of elements of $F with
the following properties

a) if ot^β and β±y then α_Ly,
b) if a-Lβ and αJ_y there exists a δ e 3F such that α_L<5 and δ7±β,y.

and 2I(Mfl)' Λ 51 ~ do not generate 5l~ as is claimed in the proof given in [5].
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In the next section we further assume that each pair oc,βeέF has a unique
least upper bound α V β e #", i.e. α V β e #" is the unique element such that every
y ̂ α , j8 satisfies 7 ^ α V j8 (^ α, j8).

Typically, in applications, #" is the set of bounded open subsets of IRV or the
set of finite subsets of Έv. The relation α rg β corresponds to inclusion of α in β,
aLβ corresponds to the disjointness of α and β, and α V β corresponds to the
union of α and β.

Statistics will be introduced into our formalism by aid of an automorphism σ,
of a C*-algebra 21, which satisfies σ2 = 1, i.e.

= A, AeM.

Each element ,4e2I has a unique decomposition into odd and even parts A +

with respect to σ. This decomposition is defined by

A± =(A±σ{A))/2.

It follows that the even elements of 21 form a C*-subalgebra 2te of 21 and the odd
elements a Banach space 21°. Now we introduce the class of algebras which will
be studied in the sequel.

A C*-algebra 2ί is defined to be quasi-local if it possesses a family {2ία}αeJF

of C*-subalgebras. These subalgebras satisfy certain requirements such as
L. 1 (J 2Iα is norm-dense in 2Ϊ.

L.2 Ifα^jff then 2 1 ^ ^
L.3 There exists an automorphism σ of 21 such that σ2 = 1

and σ(2Xα) = 2ία for all α e ^ .

L.4 2 If oc±β then the following commutation relations are valid

We remark that in classical mechanics, or quantum mechanics with Bose
statistics, σ is the identity automorphism, thus 2ία = 2l^; for Fermi statistics σ is
non-trivial and corresponds to a change of sign of the Fermi creation and
annihilation operators.

Following [2] we now associate with each representation π of the quasi-local
algebra 2ί the algebra of observables at infinity 33π by the definition

j81α

This algebra has the following properties

Proposition I.3 Let ω be a state over a quasi-local algebra 21 which satisfies
L.I—LA. Then the algebra at infinity 23πω is contained in the centre 3πω of π'^ and

2 We use the usual notation [A, β ] = AB-BA, {A, B} = AB + BA.
3 π ω always refers to the Hubert space representation of 5ί on Jί?ω canonically associated with ω.
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in particular

= n

The following conditions are equivalent
1. ©π<u consists of multiples of the identity
2. Given ε > 0 and A e 21 there exists anae 2F such that

\ω(AB)-ω{A)ω(B)\<ε\\B\\
for all

βla

3. Given ε > 0 and A e $1 there exists an α e 3F such that

\ω(AB)-ω(A)ω(B)\<z\\B\\

for all

βlOL

Proof. Once we establish that

then the equivalence of the Conditions 1 and 2, or 1 and 3, follow from Theorem 5.1
of [3]. Thus we concentrate on the characterization of 33πω.

If α e ^ and B e 23πω are given, one can choose a sequence Bn e πω(9IαJ such
that the <xn are mutually orthogonal, αΠ_Lα, and β n converges strongly to B. (First
one selects αx and JB: such that o^-Lα and IK^ —B)ψ\\<ί, then α2 and β 2

 s u c ^
that α 2 i . α l 5 α2-Lα and ||(J52 — J3)ip|| < 1/2 etc..) It then follows from the uniform
boundedness principle that ||σ(βΠ)|| = \\Bn\\^b with b independent of n. Thus,
possibly passing to a subsequence, we can assume the σ(Bn) converge weakly.
In particular, the odd and even parts B* of Bn converge weakly. As the otn are
mutually orthogonal condition L.4 implies

for n + m and this allows the estimation (see [8, 9])

1 N

n,m= 1

Thus the Bn converge weakly, their Cesaro means converge uniformly to zero,
and hence B~ must converge to zero. Therefore, B* converges weakly to B and
we have established that

Be ί (J πω(8I?)]"ςπω(9rβ)'nπω(2ίT.
\βla
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But this is valid for all α e #" and hence we conclude that

f
g π ω ( 9 I ) ' n π ω ( 9 ϊ y .

The first inclusion is valid in the opposite sense by definition and hence must
be an equality. This completes the characterization of 23πω.

3. Locally Normal States

In this section we place further restrictions on the quasi-local structure of the
algebra 91 and states ω which we consider. These conditions are arranged so that
any of the usual algebras associated with the canonical commutation, or anti-
commutation relations, are covered.

We need the following condition on the local subalgebras 9Iα of the quasi-
local algebra 91.

L.5 Each 9Iα is isomorphic to an irreducible subalgebra π(9Iα) of the algebra
of all bounded operators on some Hubert space Jfa. There exist

such that

for all Ae$la. Further, on 3tfΛyβ the π(9Iα)~ and π(9ί^)" are type I factors
embedded in π(9IαV/3)~ with the property that

We have used a slightly over-simplified notation in this condition. What is
meant is that the representation of 9ία, considered as a subalgebra of 9tαV/S, on
^a v β is a sum of copies of the representation of 2ία on Jfa.

A state ω over a quasi-local algebra 9ί which satisfies conditions L.I-L.5 is
now defined to be locally normal if for each α e J ^ one has

where ρa is a positive trace-class operator on Jtfa with trace-norm unity.
Further the state is defined as continuous for the automorphism σ if σ is

weak operator continuous in the representation π ω generated by ω. This will of
course be the case if σ is covariantly implemented, i.e. if there exists a unitary U

such that

for all A e 91, in particular if ω is even, i.e. invariant under σ.

Our immediate aim is to prove the following

Proposition 2. // ω is a locally normal state (over a quasi-local algebra 91
satisfying conditions LΛ-L.5), continuous for the automorphism σ, then the algebra
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of observables at infinity 23πω satisfies the following

Lemma 1. Let ω be locally normal and ocl.β. There is an Raeπω((ΆJ' such
that Ra

2 = 1 and

Further one has

πω(3l«)' n πω(9Iα v / = (K ^ A ° ) + U ^ ) ) "

Proof As ω is normal in restriction to 9Iα the representation space J>fω has a

factorization

and the representation π ω restricted to ^Iα is then of the form

The J α̂ is then defined by

and the first properties follow from L.5. To establish the second property we
remark that πω(9ία yβ) is a sum of copies of π(2ία v/?) and it suffices to prove the
property for the latter representation. But a simple calculation using L.4 demon-
states that

Now π(2Iα)" is embedded as a type I factor in π(2IαV/3)". We have

^ ^ α V β — ^ ^ ^

and, as π(9Iα) is irreducible, the left hand set occurring in (*) must be of the form

where J* is a weakly closed subalgebra of 93 (Jf;/). To deduce equality in (*) it
suffices to prove that & is irreducible on Jf" or, equivalently, that

is irreducible on J^V/? ^ u t this latter set contains π(2ϊα)uπ(9I^) and the result
follows from Condition L.5.

Finally Proposition 2 is established by the second statement of the following.

Lemma 2. // ω is a locally normal state then

3πω= Π ( U U ^ y n π ω ( 9 I α V
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and if further, ω is continuous for the automorphism σ then

^nπJW)"= f] ί[jπω(Wβ))".

Proof The first statement is proved in [4]. To deduce the second we first
use Lemma 1 to identify

3 » M = Π
βloc

Secondly the continuity implies that the even part of the weak closure of a set
of operators in the representation is the closure of the even part. Thirdly one has
that RΆ is even because σ applied to πω(2lα)" is covariantly implemented by Ra and

The desired result follows immediately.
Proposition 2 follows directly from Proposition 1 and the second statement

of Lemma 2.
Combination of Propositions 1 and 2 provides criteria for clustering of locally

normal states. Stronger results can, however, be obtained by full exploitation of
local normality as we show in the next section.

4. Doubly Uniform Clustering

The following result strengthens the statements, on clustering, obtained from
Propositions 1 and 2.

Proposition 3. Let ω be a locally normal state (over a quasi-local algebra
satisfying Conditions L.1-L.5) and continuous for the automorphism σ, then the
following conditions are equivalent.

1. 3π ωnπω(9I e)" consists of multiples of the identity.
2. Given ε > 0 and A e 91 there is a β e ^ such that

\ω(AB)-ω(A)ω(B)\<ε\\B\\
for all Be (J 9ly

3. Given ε > 0 and α e J 2 7 there is a βe 3F such that

\ω(AB)-ω(A)ω(B)\<ε \\A\\ \\B\\

for all AeϊΆa and allBe\J 9Iy

γlβ

4. Given ε>0 and A e91 there is a βe3F such that

\ω(AB)-ω(A)ω(B)\<ε\\B\\
forallBe\J^e

y
γlβ

5. Given ε>0 and α e 3F there is a βe ^ such that

N

<ε

for all At e 9Iα, Bt e (J 9i;, and all N.
γlβ
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The equivalence of Conditions 1, 2 and 4 is established by Propositions 1
and 2. The remaining conditions both contain extra uniformity. A doubly uniform
clustering property of the type considered in Condition 3 was first derived in [6]
by remarking that the local normality allows the inner algebra 9ία to be strongly
approximated by a finite-dimensional algebra. This also allows the deduction of
Condition 5 4. This latter form of clustering was re-expressed, in [5], in terms of
tensor product states and derived by an independent method which apparently
does not allow the derivation of Condition 3. Thus we will base our proof of the
proposition on the methods of [6] and use the tensor product structure suggested
in [5] to make one of the auxiliary estimates.

For the proof it is convenient to introduce an auxiliary quasi-local C*-algebra
33 on J^ω. The algebra 33 is defined in terms of local subalgebras {33α}αeJSr with
the choice

The state ω has an extension, also noted by ω, to 23 given by

ω(»α) = Tr^( ρ o t »J, α e /

where ρa are the density matrices determined by the original state. Note that
2Ϊ C 23 and on Jfω one has

S' = πω(«l)\ S" = πω(SI)", etc.

In particular, the centre and the even part of the centre, of 2ί and 33 represented
on Jfω are identical. Now we can consider the proposition re-expressed in terms
of 33 and ω. It is then easily seen that if this latter form of the proposition can be
established then the proposition, as stated, is also established. For this one uses
the information already contained in Propositions 1 and 2, the containment
91C 33, and the equalities of the centres. Thus we will consider only the proposi-
tion concerning 23, and prove that 2=>3 and 4=>5. The reverse implications are
obvious and these equivalences suffice to complete the proof of the proposition.
We need the following.

Lemma 3. Let ρ be a density matrix5 on a Hubert space Jf and R an operator
on 34? with the properties R = R*,R2=ί.

Given ε>0 there exists a finite-dimensional projector E on ̂  such that

RE = ER
and

T i > ( E ρ E ) > l - ε .

Proof. Let ρ + be the even part of ρ, with respect to the reflection induced
by R, i.e.

ρ+=(ρ + RρR)/2.

It is evident that ρ+ is positive and of trace-class.

4 This point was clarified by a discussion with J. Slawny in 1972.
5 A positive, trace-class operator with trace-norm unity.
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As ρ+ is even, i.e. commutes with R, its spectral projectors will also be even.
Clearly there exists a finite dimensional spectral projector E of ρ+ such that

Next note that if A is odd, i.e. RAR = —A, and of trace-class

ΎrAΛ) = - TrARΛR) = - Ύτ^Λ) = 0 .

But E(ρ — ρ+)E is odd and of trace-class. Therefore

+ E) > 1 - ε .

To deduce the implication 2=> 3 we first let E e π(9lα)" denote a finite dimen-
sional even projector, i.e. R^ER^ = £. (At the risk of a slight confusion E will also
denote the image of this projector in 33α.) Given ε > 0 we can, by Lemma 3 and
local normality, choose E such that

(The dimension n of E will then depend on ε.)
Next consider the decomposition

ω(AB) - ω(A) ω(B) = ω(EABE) - ω{EAE) ω(B)

+ ω((l - E) ABE) - ω((l - E) AE) ω(B)

+ ω(EAB(ί - E)) - ω{EA{\ - E)) ω{B)

+ ω((l - E)AB(ί - E)) - ω((l - E)A(ί - E))ω(B)
where A, Be $5. One has

\ω{(ί -E)ABE)\^]/ω(ί -E) \\A\\ \\B\\

\ω((ί-E)AE)ω(B)\S]/ω(ί-E) \\A\\ \\B\\ etc.

and hence

\ω(AB)-ω(A)ω(B)\^\ω(EABE)-ω(EAE)ω(B)\ + (ε/2) \\A\\ \\B\\ .

But if A e 33α and Be^β with β_l_α one can use the evenness of E to deduce that

ω(EABE) - ω(EAE) ω(B) = ω(AEB) - ω(AE) ω(B)

where AE = EAE. Finally let {ipk}k=i,...,n be an orthonormal basis for the range

of E. One has n

where £ k ί denotes the matrix units associated with {ψk}. Therefore

\ω(AEB)-ω(AE)ω(B)\^\\A\\ n2 sup \ω(EklB)-ω(Ekl)ω(B)\.
k,l<n

But Condition 2 implies that β e #" can be chosen large enough that

for all Be (J S^. Combining the above estimates yields Condition 3.
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The proof that 4 => 5 begins in a similar manner by the choice of E and the
decomposition for ω(AB) — ω(A) ω(B). One also has the estimates

ω((i - E) A^A ύ ]/ω(t-E)
I ί = l

but one needs the following

Lemma 4. // ω is locally normal, Ci e 2ία, Bt e 2Q with βA.a then

Σω{(\-E)Ct)ω(Bd
ί = l

Proo/. Consider the states ωα and ωβ, over 9Iα and 21^, given by ωa = ω\^x and

(JJnyJj) z==- UJyJDj 11 X) tr «̂-Λ

= 0 if B e 21$ .

Let (J^,πα,ί2α), (Jfβ,πβ,Ωβ) be the associated triplets and define the tensor
product representation of 2lαV/?, where αJ_j8, by

^ J ^ 7 ^ - ^ /CΛ ^ ^

A straightforward calculation, using

then yields

where

Thus, if E, Ct e 2lα and Bt e Wβ one has

Σ ω((l - £) C,) ω(B;) = Σ (π(l - E) Ω, π(C,B,) Ω)
i = l ί = l

and the desired result follows from the Schwartz inequality applied to the right
hand-side.

The remainder of the proof that 4=>5 is similar to that for 2=>3. Note that
in terms of the matrix units

EklBkl9

where

and hence

ί = l k,l=l
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If ω is an even state, i.e. ω(A) = 0 for all A e 51° or, alternatively, ω(σ(A)) = ω(A)
for all A e 51, then the results of Proposition 3 can be strenghened. One has

Proposition 4. Let ω be an even locally normal state (over a quasi-local alge-
bra 51 satisfying Conditions L.1—L.5) then the following conditions are equivalent

1. 3π ωnπω(5Γ)" consists of multiples of the identity.
2. Given ε>0 and α e J ^ there is a βe#" such that

<ε
i = 1

for all At e 5Iα, Bt e [j % and all N.
γlβ

The proof that 2=> 1 is implicit in Propositions 1 and 2. To prove the converse
we proceed as in the proof of 4=>5 in Proposition 3 but note that the estimate
of Lemma 4 is valid for all Bt e 51^ if ω is even.

To conclude we remark that the statement of Proposition 4 differs from the
result claimed in Proposition 4.5 of [5]. This latter result states that the above
clustering property is equivalent to 3ω being multiples of the identity. The two
results are not incompatible but, for them to be simultaneously true, it would be
necessary that the centre of every locally normal even state is even. This appears
to be unlikely. There certainly exist even quasi-free states whose centre is not
even [10].
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