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Abstract. A singularity reached on a timelike curve in a globally hyperbolic space-time must
be a point at which the Riemann tensor becomes infinite (as a curvature or intermediate singularity)
or is of type D and electrovac.

1. Introduction

It is known ([1] §8.2) that, in certain physically realistic situations, general
relativity predicts either the occurrence of a singularity in spacetime or the
violation of some sort of causality condition. Hitherto little has been known as to
the nature of the singularities which might arise in this context: in particular,
it has not been known whether or not the Riemann tensor must become "infinite".
The aim of the present paper is to show that, in the situations envisaged in the
singularity theorems, the Riemann tensor cannot be well-behaved.

By 'singularity' I mean a point p on the ^-boundary M of a space-time M [2].
Such a point is the end-point of a curve in M which has finite length according
to a generalised affine parameter defined by a parallely propagated (p.p.) tetrad
(see §2). In particular, the singularities predicted by the singularity theorems
are the end-points of incomplete timelike geodesies. The precise construction
of the ^-boundary defines when two finite-length curves have the same end point,
which enables one to divide singularities into three classes, as follows ([4], with
slight changes).

(i) Curvature singularity: there is a curve running to the singularity on which
Raβyδ does not tend to a limit, in whatever tetrad it is evaluated.

(ii) Intermediate singularity: not (i); but there is a curve on which Raβyδ

does not tend to a limit in a p.p. tetrad.
(iii) Locally extensible: not (i) or (ii).
The justification for basing the classification on p.p. tetrads, and the reason

for the name in (iii), lie in the result [5] that a curve on which Raβyδ does tend to
limit in a p.p. tetrad has a neighbourhood isometric to a neighbourhood in a
singularity-free space time. If p is a singularity of this third type, then there are
two sub-cases.

(a) p is inessential: there is an isometry ψ : M^M' into a larger (C2, Hausdorfί)
space-time which carries p into an interior point, i.e. xpp e M' (where ψ is ψ extended
to the 5-boundary, [3]).

(b) Otherwise p is essential.
An inessential singularity is one created by "cutting out" a portion from a

larger space-time M'. There would seem to be no conceivable physical mechanism
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for such surgery, and so this class must be excluded: in a physical model, if the
space-time can continue past p, then it will.

In classes (i) and (ii) (with the exception of the behaviour discussed in example III
below) it seems likely that the non-convergence of the Riemann tensor in a p.p.
frame would cause any test system to be subjected to indefinitely large tidal
forces as it approached the singularity, and that quantum effects would at some
point intervene. But in class (iii) b, the essential locally extensible singularity,
one has the anomalous situation that a true singularity is apparently encountered
without any associated infinite tidal forces. This is the class which, in the context
of the singularity theorems, is effectively ruled out by the theorem of the present
paper.

Three examples of class (iii) b singularities serve to define the subsidiary
conditions that must be imposed.

Example I. The cone. Take the cylindrical polar Minkowski metric

ds2 =-dt2 + dz2 + dr2 + r2 dφ2

but identify φ = 0 with φ = ocή=2π. The 2-surfaces t = const., z = const, are ordinary
cones, having a singularity at the point. (Alternatively, one may take — oo < 0 < + oo).

The singularity at r = 0 in this space-time exists for all t: in cosmological
terms, it is a primordial singularity, explicitly present in the initial data. The
singularity theorems are not concerned with these, but with singularities that
arise from regular data through the collapse of matter. To express this dependence
on the data we demand that M be globally hyperbolic. In applications this does
not restrict the entire space-time: we need only a part of the space-time to be
globally hyperbolic and contain the singularity.

This restriction is still not quite enough, since a ^conical" singularity could
still be present on an initial surface ί = 0 but at no other time: for example, take
the flat metric given above, but restrict r t o r > |ί|. These singularities are ruled
out if we consider only those which are accessible along timelike curves (as are
the singularities predicted by the theorems).

Example II. "2-dimensional Taub-NUT" [7] (see Fig. 2). Write the past null
cone of Minkowski space in hyperbolic coordinates as

ds2=-dρ2 + ρ2dφ2 + dy2 + dz2

(— oo<(/><+ oo, — o o < ρ < 0 ) and then identify 0 = 0 with φ = k; the surfaces
y = const., z = const, are then "cones" with timelike generators. The singularity
is at ρ = 0. This space is globally hyperbolic (ρ = const, is a Cauchy surface).
But it has nonetheless come from a larger space-time which has been identified
under an isometry (φ^>φ + k) with a fixed point: this is indicated by the Riemann
tensor's admitting a boost-like isotropy at the singularity. This is only possible
with "reasonable" matter if it is of type D and vacuum there (Definition 2, below,
and scholium). We must thus rule this possibility out by a special condition (#3).

Example III. The metric

ds2 = -dt2 + dx2 + dy2 + (1 + ^tanh(r 2 ί 4 ) sin(l/ί)) dz2

(t < 0, r2 = x2 + y2 + z 2 ) .
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This has a locally extensible singularity at the coordinate origin which is made
essential by a pathological sin(l/ί) behaviour of the Riemann tensor nearby.
Such behaviour should not be physically significant, since a system with a finite
response time will, for small enough ί, rest unaffected by the oscillations in R.
In the case of this example, such a system would be progressively less affected
by the tidal force as ί->0, suggesting that it should be possible to define a "con-
tinuation" of the metric as Minkowsky space in t > 0. Hence we must consider
space-times which are not C2. Clearly this condition cannot be suspended entirely,
since a Riemann tensor must be definable in some sense. We shall therefore
work in a weaker differentiability class, requiring the metric to be C 1 ~ and the
Riemann tensor locally bounded (Definition 1 below).

If we thus allow discontinuity in the Riemann tensor, we cannot expect it to
have a good limiting behaviour at the singularity. We must therefore consider a
wider class than that of the locally extendible singularities, namely the class
of those where the Riemann tensor is merely bounded.

I can now state my primary definitions and the theorem, whose full proof will
follow in subsequent sections. It will be convenient to formulate these in terms
of L(M\ the bundle of all pseudo-orthonormal frames on M ([1] p. 52). Thus a
point u e L(M) is a tetrad (u, u, u, u\ of (contra variant) vectors at a point x = π(u)e M

with g(u,u) = ηaβ, fy = diag(— 1, + 1 , + 1 , +1). Tetrad indices (Greek) are raised

and lowered by η. The connection in L(M) defines horizontal curves; these are
simply curves formed by parallely propagating a frame along a curve of M. (Here,
and throughout, all curves are assumed C°, piecewise C1). If t is a totally co variant
tensor I shall denote its components in a frame u by taβ κ(u) = t(u,«,..., u), also

\α β K)

writing cαjϊ...κ.λ(M) = (Vί)«/ϊ...KA(4
In what follows - C r~" means that the (r— l)st. derivatives satisfy Lipschitz

conditions, while u c ° ~ " means ^locally bounded and locally integrable".
Definition 1. A space-time (M,g) is of strong curvature differentiability class

C2~ (sc — C2~) if M has a C00 atlas with respect to which the components of the
metric are C1' and those of the Riemann tensor are C°~.

Scholium. The qualification ^strong" here is to distinguish this definition
from a similar one in [8]. It does not appear to be known whether the two definitions
are really distinct, or whether C2~ and sc — C2~ are distinct. The important
point about the definition used here is that it implies the existence and uniqueness
of geodesies. Indeed, an sc — C2~ space-time can be regarded as the limit of a
sequence of C2 space-times. For, let {gn} be a sequence of smoothed metrics
tending to g, defined by

gnμv(X) = J S(n(x* - y°)) n*gμv(yc) d*y

where S:IR4->1R+ is a suitably normalised smoothing kernel. Then, almost
everywhere, gnaβ,λ~~*9<xβ,λ > a locally bounded generalised derivative of gaβ;
moreover R^βyδig^-^Raβyδ(g)' The boundedness of Raβyδ implies that round
each point x there is a neighbourhood Ux in which geodesies are unique for
all the gn. In Ux we can define the geodesic with initial tangent vector ξμd/dxμ\x

as the limit of the geodesies with this tangent vector in the gn9 the limit existing
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as a C 2 " curve and being unique, both by virtue of the limiting behaviour of
Qnaβ,λ a n d Raβγδiθn)- Any result on geodesies which can be formulated in terms of
the Riemann tensor alone will then hold on an sc — C2~ space-time as the limiting
case of such a sequence of g\ Thus in the following sections I shall prove lemmas
only for the C 2 case, the extensions to sc—C2~ space-times being understood.

Now denote the spinor components of the Weyl tensor [9] by ΨABCD(U)
and those of the Ricci tensor by ΦABXΎ{U\ where u is a (spin-entangled) frame.

Definition 2. A space-time (M, g) is D-specίalίsed at p, for p e M, if every curve
K : [0, l)-> M terminating at p has a horizontal lift μ in L(M) such that the compo-
nents ΨABCD{Φ)) a n d φABXΎ'{μ{s)) all tend to zero except for (yU3CD) = (0011)
and (ΛBXΎf) = (0ί0'ίf) or (001Ύ) or (110Ό') and the components related to
them by symmetry.

Scholium. If peM, ^-specialised" has the following meaning: there is a
tetrad ueLp(M) such that Raβγδ(L(v)u) is independent of v, L(v) being a boost
along the z-axis. Since the spinor equivalent of L(tanh θ) is the matrix diag(eθ/2, e~θl2)
e SL(2, C) this clearly happens if, and only if, all spinor components vanish in the
frame u except for those referred to in the definition. This in turn means that the
Weyl tensor is of type D while the Ricci tensor, in an appropriately rotated tetrad,
takes the form diag(ρ, p, q, — ρ). For this to happen we must have either negative
pressure (ρ > 0), negative density (ρ < 0), energy-less matter (ρ = 0, p2 + q2 φ 0)
or vacuum (ρ = p = q = 0) - this last being the only physically realistic possibility.
Thus "D-specialised" is physically equivalent to "type D and vacuum".

T h e o r e m . L e t (M,g) be a globally hyperbolic sc — C2~ s p a c e t i m e and p e M
a singularity f o r w h i c h

( 1 ) there is a future-directed tίmelike curve κ:[0,1)->M terminating at p,
(2) on any horizontal curve μ: [0, 1)—»L(M) for which π°μ terminates at p

the numbers Raβyδ(μ(s)) are bounded,
(3) (M, g) is not D-specialised at p. Then there is an sc — C2~ space-time M'

and an isometry φ\M-+M' for which φ(p)e M'.

Outline of Proof, (i) The boundedness of the Riemann tensor in (2) is used (§ 2)
to derive inequalities on the lengths of timelike curves, characterising the extent
to which the geometry departs from the Minkowskian. These are then used (§ 3)
to construct a neighbourhood N of the form / " (|κ|) n / + (O), (where O e \κ\ = /c([0,1))
in which no geodesic attains sufficient length to develop conjugate points, and
where uniform bounds can be set on all relevant quantities.

(ii) Within N a geodesic is constructed (§ 4) running to p. This is then "'thickened"
to a bundle of approximately parallel geodesies which terminate at points which
cover a neighbourhood of p in M. The generality condition (3) is used to show that
these geodesies are non-intersecting, and cover a cone-shaped region H in which
good coordinates can be defined. It is extended to a larger space K, and finally
K is joined back to M to define the full extension.

2. Results on Families of Geodesies

First note that a frame u e L(M) can be identified with a map u: IR4-> Tπ(M)(M);
i.e. u(ξ) means ξau. In IR4 we use the Euclidean norm || ||. Then the generalised
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affine parameter length ([1] p. 259) (or simply, the length) l(λ9u;s) of a curve
λ' [0?

τ,ι)->M (defined to be the b-metric [2] length, up to s, of that horizontal
lift μ of the curve which starts at we Lλ ( 0 )(M)) is given by

s

0

The argument u will be omitted if no confusion thereby arises, and l(λ;τλ),
where defined, will be denoted by l(λ).

Let λt(s) = λ{s, t) (0 ^ t S t0,0 ^ s ^ τ^) be a one-parameter family of geodesies
such that the curves λ(s, ), for each s, are C°, piecewise C1, and choose u e L λ ( 0 0)(M).
This frame can be propagated either first along 5 = 0 and then along t = const.,
yielding a lift μ of A; or first along f = 0 and then 5 = const., yielding μ'. Thus:
μ(0,0) = μ'(0,0) = 8, π ° μ = π ° μ' = λ, ω(μ:¥(d/ds)) = ω(μ'%(d/dt)) = 0, where ω is the
connection form in L(M).

Define Lorentz transformations L(s, t): 1R4 -• 1R4 by μ' = μ ° L and set
F = λs|s(3/δs)J ^ = ^(5/30, F = μ " 1 ( H J Ŵ  = μ" 1(W) ί W' = μ'-ι{W\ From
[δ/δs, 5/5ί] = 0 we obtain [F, W7] = 0 and hence

(for standard notations here, see [1]). Applying this to W gives Jacobi's equation

d2Wδ/ds2 = RaPyMs>t))VaVyW*; (1)

while application to μ' gives
a

f)2τ β ΐ)T Q rίT P

dsdt δt ds
(2)

Our proofs will be based on the fundamental idea that, if Raβγδ(μ) is limited
by some bound, then (1) and (2) give rise to corresponding bounds on W and L.
We bound R by setting, for v e L{M)

r(i;) = supdlK^^ίi;) >4β^CΛ | | : A, J3, C e 1R4, ||>1|| = ||B|| = | |C|| = 1}

and r(λ; u) = sup {r(μ(s))\ 0 ^ s < τΛ}, where u, μ and τλ are as in the definition of I.
Finally, if λt and μt = μ( , t) are as just described, with τ / = 1, define

= /(Ar,μ(0,ί);l)

Proposition 1. Let λ: [0, 1] x [0,1]->M de/?ne α {-parameter family of
geodesies and let 8 e L A ( 0 0 ) ( M ) fee chosen so as to define μ and μ'. Suppose that
W(0, t) = 0, that || W'{\, t)\\ = const. ( = d(l)) anrf ί/iαί ίfte functions f, ίand d satisfy

(3a)

(3b)

^ 1/2 (3c)
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for allte [0,1]. Then

|| W(s, t) - s(ΘW/ds) (0, Oil ύ ίβPfs3 \\(dW/ds) (0, ί)|| (4a)

\\W(s,t)-sW(ί,ή\\^2ί2fs\\W(ί,ή\\ (4b)

| | ^ ( 1 , ί)|| ^ 1/3ί (4c)

\\Lj-δί\\^2stfϊ\\W{i9t)\\ (4d)

Proof. (4a) follows directly from (3 a), (3 c) and (1). This then implies (4b).
Then (4b) and (2) can be used to show that so long as t is so small that (4c) holds,
then (4d) will hold. But || W{\9 Oil ^ d ( l ) ||JL(1, Oil, whence it follows from (3b)
and (4d) that equality cannot hold in (4c) if ί e [0,1]. Hence (4c) and (4d) are
always valid. •

Proposition 2. Under the same conditions, suppose that the curve κ\ t\->η{\9t)
and the geodesies λt are all timelike. Define τ1(t) = |F°(1, 01 and

τ2{t)=\\W'°{Ut')\dt'.
o

Then if (ij) = (1, 2) or (2,1) we have

dτ{
- 1 ~f(l)h) (5)

Proof. If we note that

at O,ί

then (5) follows immediately from the definitions and Eqs. (3) and (4). •
A number of other minor results will be used, which follow straightforwardly

from the inequalities established above.

3. Definition of N

Let Q, O e \κ\ with Q e I + (O). Define two sets of curves: Λo, the set all future-
directed causal curves λ: [0, τλ)-+M through O that are homotopic to K through
causal curves; and ΛOQ, the subset of Λo consisting of curves homotopic to the
part of K between O and Q through causal curves terminating at Q.

Choose a horizontal lift v of κ9 and for λ e Λ0Q a lift μ coinciding with v at O.
Then at Q there is a Lorentz matrix L(λ) such that vQ = μQ°L, (writing for
vfc-^β^Vβ, and so on).

Lemma 1. There are positive constants ε9Nl9N2,N3,N4 such that for any t2

having d = l(κ, vo; t2) <εwe have either
A) For all λ e ΛOQ, where Q = κ(t2),

l{λ)<N1d<\, (6a)

r(λ) l{λ) < 1 (6b)
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or
B) There is a curve λ0 e Λ0Q with

l(λo)<NJ, (7a)

r(λo)>N2d-112, (7b)

| | L ( A 0 ) - / | | < J V 1 / 2 . (7c)

Proof. Suppose that K be parametrised so that κ(0) = O. Set 8 = v(0). Every
point to the future of O on \κ\ can be joined to 0 by a geodesic, since M is globally
hyperbolic ([1] p. 213). Hence exp0 covers \κ\. If UcT0(M) is the domain of
regularity of exp0 then there is a curve X : [0, t^-* U such that X(0) = 0, expX(f)
= κ(ί). Choose tλ maximally: either ti = ί or \T\nUή=φ (\X\ = X([0, ίj)).

Define λt(s) = expsX(ί) = A(s, ί). Let t0 be the largest number such that ί0 ̂  ίx

and (3) holds for t^t0. Then ί0 > 0. We can now reparameterise K SO that all the
conditions of Proposition 1 hold, t0 becoming 1 under reparameterisation.
In [0, 1), X{t) will remain causal since

(cf. [1] p. 107). Thus Proposition 2 holds as well.
Note now that either ί0 is the parameter of the endpoint of K, or else equality

must hold in one of Eq. (3). For, if t0 were not the endpoint and if (3) held with
strict inequalities up to t0, then t0 would equal tί. Thus a vector X(t0) would be
definable, in the closure of \X\, on which there were conjugate points. But from
(4a) this would require \l2f^ 1, so that (3c) would be violated.

Set ΐ(t0) = / l5 d(t0) = d l 5 r(ί0) = r1 ? and return to the original parameterisation
of K, noting that (5) does not depend on the parameterisation used.

Fix Q = κ(t2) to the future of O for which l(κ; t2) ύ 1/5 so that (3 b) is satisfied
for t^t2. Then for t ̂ min(ί 0 , t2) the inequalities

τ2^d (9)

with (5) imply that lλ ̂  \5dJ2\/l < 1, giving strict inequality in (3a). Hence either
t0 ^ t2 or there is equality in (3 c):

Next, suppose we have a homotopy κh, h e [0,1] between κ° and K1 through
timelike curves keeping O and Q fixed. So long as exp remains diffeomorphic
this lifts to a homotopy Xh of X, and so to a homotopy of λ.

We now repeat the preceding argument to show that t%, the value of t0 on κh,
either (α) remains throughout at ί2, or else (β) there is a maximal value h! at which
κh'(th

0) = Q and rΐl^ί/Z
In case (α) the final geodesic λ*2, having no conjugate points, is independent

of h. Comparing it with both κ° and K1 via (5) and (9) we find

d[<ί6\/2d{. (10)
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If this holds throughout ΛOQ then case A of the lemma is proved: (10) implies (6a)
when JVi - 16]/2 and ε < 1/16 j/2, while (6b) follows from (4d), (10), (3a) and (3c)
provided ε < 1/50, say.

On the other hand, suppose there is a λ for which case (β) holds. Then (10)
holds for all h up to h' and we can find a t! at which

by (10). Then, from (5) and (9) again,

r*'(ί')> 1/(60^)*)

\\L-I\\<5β{d\f

and the curve formed by λh

r followed by κw \ [t\ ί2] has length

Case B of the lemma then follows on taking ε=l/50, N2 = 1/60, N3 = 5/3,
iV4 = 167. •

Lemma 2. L/nder ί/ze assumptions of the theorem, we can find a point O on \κ\
such that alternative (A) holds in Lemma 1 for every Q on \κ\ to the future of O.

Proof. Suppose not; i.e. that for every O there is a Q such that (B) holds.
Then we can set up sequences Ou O 2 , . . . and Qu Q 2,..., with Ot = K(a^ Qί = κ(bi)
having causal curves λt from Ot to Qt as in (B), and such that ai<bi<ai+ί(i=ί,2,...)
and l(κ(i)) < min(ε, ί/(N32

i+1)2), where κ{i)(t) = κ(t + αf). Let 1 be the curve formed
from the curve-segments λί,κ\[b1,a2],λ2,. .,λhκ\[bi,ai+ί'],... and let μ be

its horizontal lift through v(αt). This defines at each se[bb α ί + 1 ] a Lorentz
matrix Z(s) such that μ(s) = L(s) v(s). If L{i) is the value of the L(λ0) in Lemma 1

i

associated with λh then L{b^)= f ] L(k). Consequently | |Z(b i) | |<2 by (7c). The
Λ = l

components of the Riemann tensor a t R e |λf| measured by μ are obtained from
those measured in μ/? the lift oϊλt through v(αt ), by an application of L(bt_ 1). This
Lorentz matrix is bounded, while the μΓcomponents, by (7 b), are unbounded.
Thus the μ-components are unbounded. Moreover λ has finite length and runs
to p, again using the boundedness of Z(fot ) and (7a). But this contradicts (2). •

We now choose O as in this lemma, and define N to be 1' (\κ\)n 1+ (O).

4. Construction of K

The situation in this section is depicted in Fig. 1.
We first show that there is a geodesic running to p.
Having fixed O, we can suppose that O = κ(0) and that K has a generalised

affine parameterisation. In Lemma 1 we constructed a map X : [0, U] -• Tj (M)
(the set of future causal vectors in M), where exp0 ° I = κ;|[0,fc] for some b e (0,1),
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Fig. 1. The construction of K. γ is the limit of geodesic yt as its endpoint runs up K

and our choice of 0 now ensures that this map extends to [0,1). Let yt(s) = exρsX(ί).
Then the next lemma will construct the required geodesic as the limit of the γt.

Lemma 3. A geodesic y is defined by y(s) = l im γt(s), for all se (0,1); γ is timelike.

Proof. Let λ be as in the proof of Lemma 1. The same arguments as in
Proposition 1 show that X(t) is bounded and uniformly continuous in t. Applica-
tion of (8) then shows that Xί = lim X(t) is timelike. It thus suffices to show that

lim λ(s, t) exists for s e (0,1).
ί->l

Suppose that it failed to exist for s = q. Choose p,q<p<l. Because X1 is
timelike and W is bounded we see that for t2 close enough to 1 the curve ηr,
below, is timelike for all t' e (ί 2,1):

λ(s, t2(s - q)/(p -q) + t'ip- s)/(p- q))

λ(s,t2(q-s)/q

These, for varying t\ constitute a family of timelike curves from λ(p, t2) to
λ(0, t2) having no limit curve, contradicting the global hyperbolicity of M. •

Suppose in what follows that v be chosen so that

fi"1(X1) = Co, 0,0,0).

and, for p e \y\, define vP by parallel propagation of u up γ. Choose a point S on \y\,
a distance τ from p (S = exp(l — τ/Z0) Xx).

Consider the field of geodesies ιx: [0, kx) 3 si->expsx e M where x e W
= {xe T^(M)\vs1(x)0 = 1} and where kx is a function to be chosen in Lemma4
below. Define μ(s\ x) e Llχ(sΊ(M) by parallely propagating vs up ιx. Let
xo = vs((ί, 0,0,0)).
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Lemma 4. For small enough τ there is a neighbourhood W C W containing x0

such that, for each x in W, the geodesic ιx terminates at a b-boundary point px

at which conditions (1) and (2) of the theorem are fulfilled. Moreover

Raβyδ(μ(s, x)) is bounded near (τ, x0).

Proof Consider the one-parameter family ιξ(t) defined by a curve ξ : [0, l]-» W
with ξ(0) = χo. The arguments of §3 can be used with λ(s9t) = ιξ{t)(s)9 restricting
the domain of (s, ί) by a choice of kx so that (3) is satisfied. The μ of § 3 is then
(s, ί)h-»μ(s, ζ(t))9 a function which I will still call μ where no confusion can arise.

Now limsup kξit) = τ(t-^O), by an argument similar to that in Lemma 3:
if y = λ(τ + ε, t) existed for t sufficiently close to 0, then one could construct a
family of timelike geodesies from y to ιXo(s)9 for various 5, such that the family
of curves formed by these geodesies and a part of ιXQ would have no limiting
curve, contradicting global hyperbolicity.

Also liminf/cξ(f) = τ, since otherwise ιξ(t) would terminate in N for some t
near enough to 0. It is easily seen that such a geodesic could be prolonged in
ΛOQ for some β, contradicting the construction of N. Hence kξit)^>τ.

Moreover, for small enough t and τ, kξ{t) must delimit the actual endpoint
of ιξ(t). For suppose it were otherwise: then for each τ there would be a sequence
λ(kξiti),ti) at which equality obtained in (3c), but up to which propositions (1)
and (2) would be valid. Define curves ρf by

Ush(2-2s)ti) (Hs^t)

where the st are a sequence tending to zero more slowly than \τ — kξ{tι)\ so that
μ(sh (2 — 2s) ίf) is defined. From Proposition 1, the b-metric lengths of these
curves tend to zero. Now Raβyδ(μ(kξ{ti), t^)^kξ{tιY for some (ocβyδ\ if there is
equality in (3c). So, if this holds for arbitrarily small τ, Raβγδ is not bounded at the
endpoint w of v in L{M\ contradicting (2ii).

The boundedness of the Raβγδ is clearly a local property of a neighbourhood
of w and so holds for the pξ{t) (some of which may, a priori, coincide with p). •

Choose H^as in this lemma and define coordinates za in Why za(x) = (v$ 1(x))a.
Set Hw = {za(x) I x e W}, define φw: Hw ->> W to be the inverse of z and write

H = {z e ΪR41 (z«) eHw&z°e [0, kφw{za))}.

Then define the C 1 map φ: H-^M by φ(s, za) = ιφw{za){s).

Lemma 5. For τ and W sufficiently small, φ is 1 — 1.

Proof. Suppose the contrary (see Fig. 2). Then there are sequences {(s, , zf)},
{(s^z )} in H with φ(si,z^ = φ(s'i,z

l

ι\ zf-~>05 zJ->0, sf-»τ and s ->τ.
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f IDENTIFY

Fig. 2. The intersection of the geodesies κι in a space-time resembling Taub-NUT space. See Lemma 5

By taking a suitable subsequence we can impose in addition

oo

X (τ - s^ < oo

and

(Ha)

(lib)

Let Li = (μ(sr

h z'i))~1 μ(sh zf) e S£\ and consider the set A of accumulation points

of (L;) in the norm topology IA = f] (J Lk . We shall consider two cases:

(a)/lcG-SO(3);(b)therest.
Case (a). By hypothesis there is an LeA and a past directed timelike

eigenvector ξ such that L(ξ) = ξ. By again choosing a suitable subsequence
we can suppose that \\Li — L\\ = εf->0, and so

WLiξ-ξW-^O. (12)

Since φ is a local homeomorphism, H can be given the structure of an sc — C2 ~
space-time with metric gf = φ*g. Let C/ί} 17/ be neighbourhoods of (s^Z;), (sj,zj)
in which φ is a homeomorphism and set φ. = φ\Ui,φ

/

i = φ\Ul. Then let κri5 κ[
be the geodesies in H defined by

where μi = Φiήι

1 μ(sί5 zf). Then (12) implies that μ/

ί~
1κ;/

ί(O)->ξ. Thus, for any fixed 5,
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Ki(s) and /c (s) will tend to a common limit. But, by the definition of κi and K ,
φKi(s) = φκ'i(s), which is then incompatible with φ being a local homeomorphism.

Case (b). Since 50(3) is the maximal compact subgroup of S£\, the closure
of the group generated by A is in this case not compact. Thus we can find a sequence
{Z^}, where Z/j? = Lt or (L;)"1 with the integers i} tending monotonically to

infinity as j goes to infinity, such that
k = 0

• o o .

Now write the pair ((sh zt\ (s'ί? z )) as (£j5 Q or (ζ'p ζj), according to whether
= Lt or L7 1, respectively, and consider the union of line segments K = ζίζ[

"' The φ-image of K will be a continuous curve which,
from (11), will have finite length when measured in the μ-tetrad field, and thus will

have finite generalised affine parameter length provided that (τ — s f)<oo;
j=o

this condition also ensures that φ(K) terminates at p. We can always choose a
subsequence such that this condition is satisfied, unless ||L*||-»oo. But that is
impossible: a sequence of loops on which the Lorentz transformation became
infinite could, using the product decomposition of a globally hyperbolic space,
be dragged down onto such a sequence on a fixed space-like slice oϊ I~(\κ\) which,
by virtue of its relation to the corresponding slice in the space analogous to H
formed on all future timelike geodesies from 0, has compact closure, giving a
contradiction.

We can now see that the existence of φ(K), a curve to p on which the parallely
propagated tetrad undergoes an unbounded Lorentz transformation relative
to μ, requires that the space-time be Z)-specialised at p, in contradiction with
the assumptions of the theorem. For any curve terminating at p must then have
its parallely propagated tetrad unboundedly Lorentz transformed relative either
to y or to φ(k) (or both), in the sense that it can be modified by the addition of
connecting curves so as to have points in common with, say, y at which the p.p.
tetrads on the two curves can be compared. A subsequence {Lt} of this sequence
of Lorentz transformations will then tend to a boost which becomes infinite
(L^RiLiVί) R'hRi and R't being rotations that converge to limits while i;f-^oo).
From the Scholium to Definition 2 this then implies ^-specialisation, giving the
contradiction. •

We can now perform the extension. It will be convenient to first extend g*
to an enlargement of a part of //, finally joining this extension back onto M.
Set K = Hwx\R+.

Lemma 6. There is a submanifold K' of K such that φ'ί(p)eK\ g^\K'r\H
can be extended to K' and K7 (closure in K) is a compact manifold with boundary.

Proof. The extension is carried out using "radar coordinates". If Pα(α = 0,..., 3)
are four fixed points and Ua is a normal neighbourhood for P* we define wα(<2),
for Q e P| Uβ, to be the (positive) geodesic distance between P* and Q. Then

α β &

X, the unit tangent vector field to the geodesies from F*, is given by g(X) = dwa
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and so the metric components in these coordinates are

Since the geodesies are C2 " (see the scholium to Definition 1) it follows immediately
that the gaβ are C 1 ~. But one can show further that when the F* are chosen so that
the wa form a good coordinate system in a patch extending up to H, then the gaβ

are Lipschitz at points of if. This is because the Lipschitz factor can be expressed
in terms of the Riemann tensor on H which, by Lemma 4, is bounded: the proof
involves extending the results of § 2 to 3-parameter families of geodesies and,
being straight-forward but tedious, is omitted. This is turn means that the gaβ

tend to limits on H.
Change coordinates in w-space, choosing functions w*α, C00 with respect

to the wα, such that d/dω*° is timelike and the d/dω*1 are spacelike, in the range of
wα mapping into H. Then extend the gaβ as functions of the w* by setting, for
wα outside this range, gaβ(w*y) = gccβ(c(w*i\ w*f), where c is defined so that
(c(w*% w^^eH. The differentiability is then automatically sc — C2~. The space
K' is defined by mapping the domain where the wα are well-behaved into K by
continuing the z-family of geodesies, and the conditions of the lemma can then
immediately be realised. •

Conclusion of Theorem

From Lemma 6 we derive a space-time K' and an isometry φ': HnK'^M

with the end of K in the range of φ'. This isometry (or rather, its inverse) is a local

extension in the sense of [5]. But because we have constructed explicit coordinates

in H, a full extension follows immediately. For the isometry φ defines an identifi-

cation between K'nH and φ{K'). This can be used to fix together the manifolds-

with-boundaries K'u(KfnH) and M\φ(K'\ the identifications of boundaries

being clearly consistent with the orientations. The identification space

M' = (M\φ(K')uKy(φ\kfnH) is then the required extention. •
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