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Abstract. A series of inequalities for partition, correlation, and Ursell functions are derived as
consequences of the Lee-Yang Theorem. In particular, the rc-point Schwinger functions of even φ4

models are bounded in terms of the 2-point function as strongly as is the case for Gaussian fields;
this strengthens recent results of Glimm and Jaffe and shows that renormalizability of the 2-point
function by fourth degree counter-terms implies existence of a φ4 field theory with a moment generating
function which is entire of exponential order at most two. It is also noted that if any (even) truncated
Schwinger function vanishes identically, the resulting field theory is a generalized free field.

1. The Lee-Yang Theorem

We consider a collection of (spin) random variables {Xy. j= 1,..., JV} whose
moment generating function is of the form,

ί e χ p f Σ ZJXJ + Σ JjkXjXk) Π dQj(Xj)

-^ , (l.i)

with Jjk ^ 0 and each Qj an even probability measure such that J exp (bx2)dρj(x) < oo
for all real ft. (1.1) is the (normalized) partition function for a general Ising model
(with two-body ferromagnetic interactions) such as arises in the lattice approxi-
mation to even P(φ) Euclidean field models [1]. Spin4 Ising models correspond
to letting each Qj(x) = (δ(xj -l) + δ(xj+ l))/2.

A very general version of the Lee-Yang theorem which applies to spin-f as
well as to dρj/dx = C7 exp( —α^ x 4 — bjX2) (corresponding to an even φA field
theory) is as follows [2, 3,4]:

Theorem 1. If for each], the zeros o/Jexp(zx)ίiρJ (x) are pure imaginary, then for
any choice of λj^O, the zeros o/£(exp(zΣ/lJ X/)) are pure imaginary.

The Lee-Yang theorem has been widely used in both statistical mechanics
and quantum field theory [e.g., 5, 6] for the investigation of phase transition
phenomena; it will be applied in this paper to obtain correlation inequalities and
related results which in the case of field theory should be useful in proving existence
and studying triviality (or non-triviality) of φ4 models. We note that perturbation
theory predicts the applicability of our results (i.e., Theorem 10 below) in space-
time dimension less than 5.

* Supported in part by the Indiana University Foundation and by the National Science Founda-
tion under Grant NSF-GP-24003.
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We will call {Xj}, as defined by (1.1), an Ising model of Lee-Yang type if each
Qj satisfies the hypotheses of Theorem 1. {Xj} will be said to be of φA type if for
each j , dQj/dx= CjQxp( — ajx

4' — bjX2) with α7 >0 . The remainder of this paper
concerns only models of Lee-Yang type: Section 2 deals with individual random
variables, Section 3 with Ising models and Section 4 with random fields (Euclidean
quantum fields).

2. Random Variables of Type S£

We define a random variable X to be of type if, if for some C and C, |E(exp
{zX))\ g Cexp(C'|z | 2) for all z, and E(exp(zX)) is even with only pure imaginary
zeros. Theorem 1 shows that for an Ising model of Lee-Yang type, X{λ) = ΣλjXj
is of type i f if all λj ^ 0 (or by symmetry, if all λj ^ 0).

The moments, sπ, and cumulants, um of a random variable X may be defined
in the usual way by,

E(exp(zX)) = f ^-zn = expf £ ^ z " ) . (2.1)
n = 0 n l Vn=l n l I

The following proposition is basic to all other results.

Proposition 2. // X is of type if, then

£(exp (zX)) = exp (bz2) f ] (1 + (z/α/) (2.2)
j

for some fo^O and O<ocί^oc2 . . . , wiί/z Σ ( l / α 7 ) 2 < oo; /zβre, {α7} mαj; be empty,

finite, or infinite.

Proof Except for the statement that b ̂  0, this follows immediately from the
Hadamard factorization theorem [7, Theorems 2.7.1 and 2.10.1] as in [3]. To see
that fc^O, we note that (2.2) implies that for any ε > 0 , and real r, £(exp(rX))
^ exp((b + ε)r2) for sufficiently large |r| thus if b < 0, E(exp(rX))->0 as r-> + oo
which is impossible for any random variable X. Q.E.D.

The following theorems are extraordinarily simple consequences of Proposi-
tion 2; we first extend a result concerning the cumulants (Ursell functions) which
was originally stated in [3,4].

Theorem 3. IfXisoftype^,thenu2m_1 =0and(- ί)m~iu2m^0form= 1, 2,....
V w2ffl = 0/or any m = l , 2 , . . . , then un = 0 for all n>2 and X is Gaussian.

Proof We combine (2.1), (2.2), and the expansion log (1 + w2) = w2 — | w 4

+ jw6 — ... for w = (z/otj) to derive that u2m-1 = 0,

and for m ̂  2,

u2m=(-ir-i^^Σ(ί/«j)2m' ( 2 4 )
m ;

Thus ( - l ) m " 1 w 2 m ^ 0 ; and w2m = 0=^{αJ } is empty so that £(exp(zX))= exp (bz2).
Q.E.D.
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Remark 1. The second part of Theorem 3 may be thought of as a strong version
(for the class JS?) of the Marcinkiewicz Theorem [e.g.: 8, p. 58] which (loosely)
states that, if for some n0, un = 0 for all n^n0, then X is Gaussian.

Theorem 4. // X is of type $£, then for any k = 0,1,2,..., and real r,

4 k u \ ί4k+2 u \

Σ 7 r r ) = £ ( e x p r X ) = e x p ( Σ -%η (2 5)\n= 1 " I \ π= 1

thus, for complex z,

|£(expzX)| S exp( |s 2 (Rez)2). (2.6)

Proof This theorem follows immediately from (2.1), (2.2), (2.3), (2.4), and the
simple fact that for a ̂  0,

2k (_-nm-l 2fc+l / _ nm-l

Σ - α m ^ l o g ( l + α ) ^ Σ am ( 2 7 )

for any fc = 0,1, 2,.... Inequality (2.7) is most easily seen by noting that

a 1
l o g ( l + α ) = J — - — d x ,

0 L -\- X

while

m = 1 0 1 T" Λ

Theorem 5. // X is of type jSf5 î ẑ w for m = 1,2,..., s 2 m_ i = 0 = u2m-15 w/wΊ

m 2 m m!
(2-8)

ir-^^-^-feΓ- (2.9)

We first note that (2.9) follows easily from (2.3), (2.4), and the fact that

To prove (2.8), we note that since each Taylor coefficient of (1 + (r/α,)2) is bounded
above by the corresponding Taylor coefficient of exp ((r/α;)2), it follows from (2.1)
and (2.2), that each moment of X is bounded above by the corresponding moment
of a (Gaussian) random variable with moment generating function

the 2mth moment of this Gaussian variable is of course just (b + Σ (l/θj)2)m

which together with (2.3) yields the desired result. Q.E.D.

1 In the special case when X is a linear combination of independent Bernoulli (spin- {) random
variables, this bound is known as Khintchine's inequality (see chap. 5 of [20]).
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Remark 2. For Gaussian X, both the upper bound of (2.8) (for all m) and the
lower bound of (2.9) (for m ̂  2) are equalities. On the other hand if X is not identi-
cally zero then neither the lower bound of (2.8) (for any m) nor the upper bound
of (2.9) (for any m ̂  2) can be an equality; this is trivial for (2.8) and follows for (2.9)
from the fact that equality of the upper bound can only happen when £(exp (zX))
= 1 + (z/α)2 which is not the moment generating function of any random variable.

To simplify the statement of the next theorem, we define for m = 1,2,...,

vim = ( - I f x - ^ T «2m 5 thus v2 = b + Σ (l/uj? while for m > i,v2m = Σ ( l / α / " .

Theorem 6. Suppose X is of type i f ; then for any even integers n,nt,...,nk with
π = j91π1 + ••• + βknk, βj ^ 0 for all), and βγA \-βk^U

t ^ Π (!>./>. ( 2 1 0 )
J = l

In particular,

vn^vni-vn2 for n = nι+n2, (2.11)

while for n1<n<n2,we let β= — , so that
n2-nx

(2.12)

Proof If b = 0, it follows directly from Holder's inequality that Π {vnj)
βj

^(Σ(l/α£)"'f where p= Σβj and n=n/p; (2.10) then follows from the inequality
(taking Λ = ( W ) :

If 6 + 0, we define vn(M) = M(γb/M)n + Σ (1/α/ and note that υn(M)-+vn as
M ^ o o for n = 2,4,.... Since the above proof (for 6 = 0) implies the desired in-
equalities for vn(M) (for integral M), the proof of the theorem is completed by
letting M-^ oo. Q.E.D.

Theorem 7. // ±zα 1 are the nearest zeros to the origin of E(exp(zX)) for a
random variable X of type JSP; then for m' > m ̂  1,

ιCJγy%'\\ ( iYn~^ij \l/(2m'-2m)

i particular,

Since αx ^ ocj9 it follows that

2m''2m)

which together with (2.3) and (2.4) yields (2.13). Q.E. D.
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3. Ising Models of Lee-Yang Type

We now return to general Ising models, {Xj}, satisfying the hypotheses of
Theorem 1. The correlations, Sn, and Ursell functions, Un, are symmetric π-linear
functions on Cn, and may be defined by,

(3.1)

we also consider the point correlations Sn(jl9 ...,jn) defined by

Snβ...,2)= Σ SJϋu...,tizh~'zjn> ( 3 2 )
jl,-. Jn=ί

and similarly for Un. Since X(λ) is of type S£ for X^O (or X^ 0), all the results of
Section 2 apply immediately to Ising models of Lee-Yang type; we next extend
and amplify certain of them.

Theorem 8. For any X^O, (-l)m~ 1ί/ 2 m(X, ...,X)^0. If for any m - 1 , 2 , . . . ,
C/2m(/Ί J Jim) = 0, then {Xj} is a (jointly) Gaussian family of random variables.

Proof. The first statement of the theorem and the fact that U2m = 0 implies
that X{λ) is Gaussian for X^O follow immediately from Theorem 3. To see that
{Xj} is jointly Gaussian, we note that when X^O, £(exp(X(X))) is of the form
Qxp(ΣBijλiλj); since it is an entire function of X, it must be of this form for all X,
which completes the proof. Q.E.D.

Before stating the next theorem, we note that for a large class of general Ising
models (including spin-f and φ4 type), it has been shown that l/4(/Ί, . . . J J ^ O
for any^Ί,... j ' 4 [9] and it has been conjectured [4, 10] that in general (— l) m ~ 1 U2m

(/i> •• 9./2m) = 0 Based upon the methods and results of Theorems 3, 5, and 6,
other similar conjectures can be made for such Ising models: For any choice of
\^m1<m2< •" <mk and nu . . . , n Λ ^ 1, with m = Σnimi, n=Σnh it can be
conjectured that

(3.3)

and

Π < ί — iΨ1-1 TT (\ ΊwΛ

(3.4)

/
where Σ' denotes the sum over the (2m)!/ Π ((2mi)!)nιni! unordered partitions

d=l

of {1,..., 2m} into n disjoint sets Λu ..., Λn9 exactly n{ of which contain 2m, elements
and where S({jl9...9Jr}) = Sr(jί9 ...,jr) ( a n d similarly for (7). Inequality (3.6) of
the following theorem is a weak version of (3.3) for the case n1=m,m1 = ί, k=ί.
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Theorem 9. For z, z1,..., z 2 w e (C*,

|E(exp(X(2)))| ^ |E(exp(X(|Re2|)))|

^exp(iS 2(|Re2|, |Rez|)),

while

\S2m(z\ ...,z2w)| S - ^ r Π ( ^ ( I H W * (3.6)

where \z\ = {\z,l..., |zN|) and |Rez| = ( | R e z 1 | , . . . , |Rezw |).
Proo/ Griffith's first inequality [11,12] states that Sn(ju ...Jn)^0 for all

7i Λ so that clearly \Sn(z\ ...,z")| ^ ^ ( I z 1 ! , . . . , |2»|) and £(exp(X(Rez)))
^E(exp(X(|Rez|))). The theorem then follows from Theorems 4 and 5 together
with the fact2 that for real λJ,

2m

\S2mφ,...,X2m)| ^ Π

(3.7) may be derived by expressing

2w

(3.8)|S2 M(A1,...,A2 w)| =

then using Holder's inequality to bound the right hand side of (3.8) by

_ Γ / 2m _> \Ί(2m-l)/2m

{ £ ( ( I ( I 1 ) ) 2 m } 1 / 2 m JE Π l^(A j)l2 m / 2 m" Ί\ (3.9)

and continuing to use Holder's inequality on the second factor of (3.9) another
(2m - 2) times. Q.E.D.

4. Random Fields of Lee-Yang Type

To explain the relevance of Theorem 9 to the construction of φA field theories,
we mimic the results of [13]. We define a lattice field of Lee-Yang type to be a
random field </>(/) indexed by / e ^(]Rd% the Schwartz space of rapidly decreasing

N

C00 test functions, such that φ(f)= £ f(ydXi for some fixed choice of yί,..., yN

elRd where {XJ is an Ising model of Lee-Yang type.
The Schwinger functions, Sn, and truncated Schwinger functions, Un, of a

random field are symmetric tempered distributions on (lRd)" and can be defined
as usual by

\ UH(f,..., f)\ . (4.1)

Theorem 10. // {φk} is an infinite sequence of lattice fields of Lee-Yang type and

\E(φk(f)φk(g))\ί\\f\\\\g\\ (4-2)

2 The suggestion to use (3.7) to derive (3.6) is due to B. Simon.
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for some fixed tf-norm || ||, then || || may be taken as

11/11 = C s u p |(1 + \y\2)rf(y)\ (4.3)
yeJR*

for some choice of C and r. In addition, there exists a subsequence, fc; —• oo, and a
random field φ indexed by f e F, the Banach space of continuous functions with
finite || || -norm, such that

£(exp (φ(f))) = lim E(exp (φkj(f))) (4.4)

and

Sn(fi ,...,/„) = £(</>(/!)... </>(/„)) = Jim £ ( ^ ( Λ ) . . . φkj(fn)) (4.5)

for any f,fί9...,fneF. Further, £(exp(φ(/))) is an even entire functional on F
such that

|£(exp(0(/)))| S exp(*S2(|Re/|, |Re/|))
(4.6)

^expi| |/| |2,
and

(2m)' 2m

^ r Π (s2(\fj\, i/ji))*
" x (4.7)

2 m

Finally, if / ^ 0, φ(/) is α random variable of type $£ so that Theorems 2 through 7
apply; in particular if U2m is identically zero for any m = 1,2,..., then φ is a Gaussian
random field.

Proof The fact that || || may be taken as in (4.3) is proven in [13, Prop. 2]
and is based on Griffiths' first inequality which shows that S2 (or S(

2

k)) is a positive
measure on (IRd)2. We define analytic functional as in [14, Appendix] and note
that for each k, E(cxp(φk(f))) is entire on F and, by (3.5) and (4.2), is bounded
uniformly in k on sets of bounded F-norm. By Proposition A3 of [14, Appendix],
${f), defined as the right hand side of (4.4), will exist and be entire if kj can be
chosen so that the right hand side of (4.4) converges on a dense subset of F; since
F is separable, this can be done by a standard diagonalization procedure. It also
follows from Proposition A3 of [14] that (4.5) is correct with the left hand side
replaced by an appropriate derivative of S'(f); thus (4.4), (4.5), (4.6), and (4.7) all
follow once we see that <f(/) = E(exρ (φ(f))) for some random field φ. Now by
Minlos' theorem [15, Chap. 4], there exists a probability measure μ on ^'(IR^)
such that δ{f) = J exp (T(f))dμ(T) and thus for fe ¥, we may define φ{f) = T(f)
on the probability space (Sf\ μ); it then follows from (4.6) and (4.7) that, as /}-•/
in F with / J e ^ , Φ(fj) converges (in Π(5f',μ) for l ^ p < o o ) to some random
variable we call φ(f) with E(exp(φ(/))) = rf(/).

To see that </>(/) is of type ϊ£ when / ^ 0, we merely note that φkj(f) is of type JS?
for all j and that £(exp(zφ^.(/))) converges uniformly on compacts in <C so that
by Hurwitz' theorem, E(exp(zφ(/))) has only pure imaginary zeros in z (and is
of the desired exponential order by (4.6)). The final statement of the theorem
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concerning U2m follows directly from Theorem 3, the fact that any / e F can be
written as the difference of two nonnegative functions in F, and the proof of
Theorem 8. Q.E.D.

Remark 3. If the φk are lattice approximations to an even φ4 field theory [1],
then it follows as in [13] that the Schwinger functions of φ satisfy the Osterwalder-
Schrader axioms [16] except possibly for Euclidean covariance and clustering.
Specifically, we mean that with the added assumption of translation invariance,
it follows from (4.7) and Griffiths' first inequality that the Schwinger functions
(expressed in terms of difference variables) satisfy axiom E0f of [16, p. 81].

Remark 4. The fact that the vanishing of U2m for a single m implies that φ is a
generalized free field should be compared with Robinson's application [17] of
the Marcinkiewicz theorem (see Remark 1 above) from which he derived the same
conclusion based on the assumption that all truncated vacuum expectation
values vanish beyond a certain order.

For our last theorem, we consider φ4 models for which it is known that
U4.(yuy2,y3,y4)S0 [9; 18, p. 172]. It then follows from Theorem 10 that
J U4dy1dy2dy3dy4 = O implies that U4 = 0 and thus that the corresponding φ
is a generalized free field (i.e., Gaussian); we state this fact in more picturesque
language as Theorem 11 below.

If φ is translation invariant and χ= | 5 2 (y l 9 y 2 )dy ι < oo, we define g0 the
(dimensional) physical coupling constant as

Qo = X~4ί U4(yuy2, y3, y4)dyίdy2dy3 (4.8)

(the dimensionless physical coupling constant is g = go/md~4 where d is the
space-time dimension, and m^O is the physical mass) [19]. We then have as a
corollary to Theorem 10 the eminently believable result that the physical coupling
constant only vanishes for a (generalized) free field:

Theorem 11. Suppose φ is a translation invariant random field obtained as a
limit (in the sense of Theorem 10) of even lattice fields of φ4 type. If χ < oo and
go=O (or if χ4md~4< oo and g = 0), then φ is a generalized free field (i.e., Gaus-
sian).
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Note Added in Proof. A minor alteration in the proof of Theorem 4 shows that the magnetization
as a function of external field, E(X exprX)/E(QxprX), has an alternating bound property with respect
to its Taylor expansion analogous to (2.5). We also note that extensions of certain results of this article
to models in a positive external field will appear in a paper by the author in the Journal of Mathematical
Physics. Finally, we mention that the author has obtained a proof of (3.3) and related inequalities by
using graphical techniques of Kelly and Sherman [12].






