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Abstract. The purpose of this paper is to give some complements to the various extremal de-
compositions of states on a C*-dynamical system i.e. a pair (4, G) where 4 is a Cx-algebra and G is
a group acting on A by *x-automorphisms. We shall see for instance that the method of decomposition
associated with a maximal abelian W*-algebra does not give all the extremal measures in the general
case. We also give the explicit form of the greatest lower bound of all the extremal measures and a
certain form of continuity of the decomposition. Finally we characterize various systems in the literature
(G-abelian algebras, large systems and quasi-large systems) in terms of the equivalence of different
notions of ergodicity.

1. Introduction and Notations

Let A be a C*-algebra with identity, G a group and t a representation of G
in the *-automorphism-group Aut*(4) of A; in a number of recent articles, the
invariant states of 4 and their integral representation have been intensively
studied under certain conditions (G-abelian algebras, asymptotically abelian
systems, large systems, etc... (cf. [7, 8, 10, 12, 13]) and more recently Guichardet
and Kastler have studied the integral representation of quasi-invariant states
(cf. [8]). These systems have many applications in Physics, particularly in Statistical
Mechanics (cf. [8, 12]).

The purpose of this paper is to give some complements to the various extremal
decompositions in the general case and to find necessary and sufficient conditions
for the uniqueness of the decomposition; we shall see, for instance, that the method
of decomposition associated with a maximal abelian W*-algebra does not give
all the extremal measures in the general case; we also give the explicit form of the
greatest lower bound of all extremal measures and a certain form of continuity
of the decompositions.

Finally we characterize various systems cited above in terms of their ergodic
states, we give in particular the converse of a result of Ruelle on G-abelian algebras
and the converse of a result of Haag, Kastler, Michel and Nagel on “quasi-large”
systems.

The author would like to thank Professors A. Guichardet and D. Ruelle for
their advice and encouragement and Professor G. W. Mackey for the hospitality
at Harvard University where part of this work was done.

Notations. Throughout this note, we use the following notations: A is a
C*-algebra with identity 1, G is a group, 7 is a representation of G into Aut*(4),
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E is the convex compact set of states on A4, I is the convex compact set of invariant
states (for 1) on A4; if ae A, the function @ on E is defined by

a(s)=s(a), sekE.
For a fixed invariant state se I, the canonical cyclic representation associated

with s is (9, 7, &) or simply (9, w, &) if there is no confusion; the canonical
unitarity representation U* (or simply U) satisfies

ny(t,0)=Usna)Us ',V UsE,=¢,, Vaed, geG.

We denote Ug={U,},.c and #,= {n(4)u Ug}", we remark that Z; is the
set of elements of 7(4) invariant under the action of the mappings T— U, TU, %,
geaG.

If B is an abelian W*-subalgebra of n,(A), v} (or vy or v if no confusion is
possible) is the B-measure of s (cf. [14] 3-1-2).

Let Q(s) be the set of all probability Radon measure u on E satisfying

s(@)= | a(y) du(y), YaeA.
E

Let Q'(s) be the set of measures of Q(s) with support in I and let < be the
Choquet-Bishop-de Leeuw order on Q(s) and Q'(s) (cf. [1]) 6, denotes the Dirac
measure at the point s.

2. Integral Representation of Invariant States

We summarize some classical results that will be useful in this Lemma:
Lemma 0. a) 6,< u for every measure u with barycenter s.
b) Cartier-Fell-Meyer theorem (cf. [2]): the following conditions are equivalent:
1. v<u.
@i). If v= Z v; with v; positive measures, then there exist measures ;= 0,
i=1 "
i=1,...,n, such that u= Y p; and barycenter (u;)= barycenter (v).
i=1

1
n

) Let u= ) w6, a;>0, ) o;=1, barycenter (u)=s, as a;5;<s, there
j=1 j=1 5
exist b; (unique) in n(AY, such that ) b;=1 and
i=1
a;sia)= <mnya)bi;, &>, Vaed.

d) (cf. [13] Corollar 1.4) Let B be an abelian W*-algebra of m (A, let {b;} be
a finite set of positive elements of B such that ) b ;= 1, wedefinea; >0 and s;€ E by
j

(xj = <ésa bjés>’ ijSj(a) = <Tcs(a)€sa €s>a Va €eA.
The measure iy, , = Zcxjésj is called a discrete B-measure. The discrete B-

measures form a directed jﬁlter converging vaguely to vg.

e) (cf. [13] Corollar 1.5) Let B and B be two abelian W*-algebras of m,(A)'.
Then (B C B)<(vg<vp).

f) Let B be an abelian W*-algebra of ny(A), s€ I. Then

(vpe Q' (s))=(Supp (vs) C I)<>(BC ;).
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3. Extremal Decomposition of Invariant States— Uniqueness—
Simplicial Systems

Lemma 1. Let s be a state on A; if n,(A) is abelian, then the n,(A)-measure v
of s is the unique extremal measure on E with barycenter s.

Proof. We observe by the Lemma Oc) that each finite discrete measure of Q(s)
is a discrete m(A)-measure. The lemma follows immediately.

Theorem 1. (Extremal decomposition of invariant states). Let B be an abelian
W*-subalgebra of Ry, s€ l, let vy be the B-measure of s. Then

a) If vy is maximal in Q'(s) with respect to Choquet-Bishop-de Leeuw order
then B is maximal abelian in &;.

b) If B is maximal abelian in R, then for any Baire subset A of I such that
AnEI) =0 (E() is the set of extremal points of 1) vy(4)=0; in particular if A is
separable, the measure vy is maximal for the order <.

Proof. The part a) of the theorem is immediate.

Now let B be a maximal abelian W*-subalgebra of %;; e is the orthogonal
projection on [BE], D is the C*-algebra generated by (n,(4)u Ug U B), E is the
set of states on D and § is the state defined by

§(dy=<dé&,, &>, deD.

We have
=(n(4)v Ug v B),
D'=R#,nB,
D'=B.

Let 7 be the B-measure of § on E.

1) By the Lemma 1, ¥ is the only extremal measure on E with barycenter 3.

2) The group G acts on D in canonical way: d—U,dU, !, de D. Let I denote
the set of invariant states on D and let J be the convex compact subset of I defined
by J {pel/dU, s =1,Yge G}; we can easﬂy see that if /1 is a discrete measure
on E such that fi<¥g, then supp (&) C J; using the vague limit and the weak of J,
we obtain supp (¥5) C J.

3) Consider the C*-algebra m(A), let E' be its state space, let I' be the set of
invariant states of E’, and for ¢ € E, let ¢, +(4) be the restriction of é to my(A).
Put y d)) qﬁln L(4)» ¥ 18 a continuous mapping of EonE. Letv "= 1y(Vp), it is clear
that V' is the B-measure of y(§) on E’ and supp(v')C I'.

We can identify E' to a compact subset of E and I’ to a compact subset of I;
s0 we can write v = v = y(¥p).

To finish the proof we shall show that if 4 is a subset of I such that An&(1) =0
theny 1A TN & (E) @ (for ¥ is an extremal measure on E and supp (¥ 8 C J)

Suppose that ¢ey” (A)nJ mé"(E) and let ¢= y(q&) consider the cyclic
representation of D associated with $:(H, #, &) and let U =(U,), ge G. We have

1=¢(U)=<(R(U)E & =T, &y = ||€)?
and

1G,E1l = 11E].
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Therefore
U,=E VgeG.

The set of vectors UGE, #(A)E, #(B)E generates $, as Ugf =& and n(b) is a scalar
operator, for b € B (since B is in the center of D and 7 is irreducible), we have

(# - n(A))=9

and the representation 7-n, of 4 in $ is the canonical cyclic representation
associated with the state ¢, & is the cyclic vector, and we have

#-myt,a)=U,7 nfa)U; !, VaeA, VgeG.
Since ¢ is a pure state on D, we have
(f(r(A) v U,) =#(D) =C . 1g.

This relation proves that ¢ is an extremal state of I i.e. ¢ € 4 n &(I) that contradicts
the hypotheses. q.e.d.

Definition. A system (A, G, 7) such that the set of invariant states is a simplex
is called a simplicial system.

We shall see (cf. [4]) that the notion of simplicial system coincides with that
of G-abelian algebra introduced by Lanford and Ruelle (cf. [12, 13]).

4. Examples of Extremal Invariant Measures Not Associated with
an Abelian W*-Subalgebra

The following proposition shows that we cannot obtain all the extremal
invariant measures by taking measures associated with abelian W*-algebras in
the general case.

Proposition 1. If an invariant state sel is such that R is not abelian then
there exist extremal measures that are not associated with an abelian W*-subalgebra
of &..

Proof. Let by, b,e #;.,bb,*+b,b, and b, +b, =<1, and let b;=1—-b, —b,,
#;= by, &) and

1
sj(a)=?<7rs(a)bjfs, E>, aed, j=1,2,3. (1)
J

the discrete measure u on E defined by

K= Z %; 0,5
j=1,2,3
has the barycenter s and the support in I, there exists, by Choquet’s theorem, an
extremal measure v on I such that u<v. Suppose that v=vy with B an abelian
W*-subalgebra of %;; by Cartier-Fell-Meyer theorem the measure u must be
a discrete B-measure, this implies that b;e B, j=1,2,3, this contradicts the
hypothesis b, b, +b,b,. q.e.d.
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5. The Greatest Lower Bound of Extremal Invariant Measures
Lemma 2. Let (B, be a set of abelian W*-subalgebra of n(AY and B= (| By;

keK

Vg is the greatest lower bound of the measure vy, for the order <.

Proof. Let v=vp and v, = vy, ; it is clear that v<v,, Vke K. Conversely let u
be a finite discrete measure of Q(s) such that u<v,, Vk € K; then p is a discrete B,,
Vke K, hence u is a discrete B-measure, therefore u<v. q.e.d.

We have seen that, in general, there are many extremal measures on I as-
sociated with an invariant state s, but we have the following canonical measure
(which is not an extremal measure unless %; is abelian).

Proposition 2. Let s be an invariant state, let B;= Center (%.); if A is separable
then the B,-measure v of s is the greatest lower bound of all extremal measures
on I with barycenter s for Choquet-Bishop-de Leeuw order.

Proof. Let v=vj_; as the center of % is exactly the intersection of all maximal
abelian W*-algebras of ., it is clear by the above Lemma 2 that

v=inf{vg/B maximal abelian W*-subalgebra of Z.} .

It is sufficient to prove that v<Xy, for all extremal measures u on I with barycen-
ter 5. Since v is a vague limit of discrete B-measures vy, , it is sufficient to show

p
that for such a v, we have v, <pu. Let Z B0y, <M, t;€ Ry, such that (as in

l

Lemma 0),if B; = {t;&,, &,>, wehave g;(@) = — <7rs(a)t & Eo,Vae A,and Z t;=1.

i i=
n

)4
Consider the discrete measure p/'= Y. y;; ; Os;,» Where

sij
j=1,i=1

yij=<t:b; &, €

1
Sij(a)= —E<ns(a)tibj és: £s>7 Vae A.

We have )
Z 'yu s” d = Z -—_<TE )tibj és’ és>

(sl )

a)b éw éS>
o; j(a), Yae A.

In a similar way, we obtain
Z yijésij(d)=ﬂi Qi(a)s Vae A .
=1

Hence

v{b,}< Z Z yu Siy

i=1 j=1
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Choosing an increasing filter Z B:é,, converging vaguely to u, the associated

mcreasmg filter y;; 9, (With vy flxed) converges also vaguely to u (for u is maximal
in Q'(s)); therefore

14
Vo< X Vij0s, <K
i=1

Hence v<u. q.ed.

6. Decomposition of Covariant States

Proposition 3. Let A be a C*-algebra with identity, G a topological group,
T a representation of G into Aut*(A), s a t-covariant state on A (cf. [8]), Z, the
W*subalgebra of invariant elements of Center (A"); the Z,-measure of s is “con-
centrated” on the set of Zy-pure states — namely if A is a Baire set in E with A%y,
=@ (Fy, is the set of Z,-pure states on E) then v(4)=0. If s is t-invariant then
v is “concentrated” on the set of Z,-pure invariant states I () %y,

Proof. Consider 9, =, £, U, associated with the covariant state s; let B=n(Z,),
D the C*-algebra generated by n(4), Uz and n(A4)'; we have

D' =n(AY "U,nn(A) =B

since n(Z,) is the set of invariant elements of the center of n(4)”" (cf. [8], Lemma 3);
let E be the set of states on D and consider the state §:5(d) = (d¢, &), de D; the
group G acts on D in canonical way: d—U,dU, !, deD, geG.

Let 7 be the B-measure of § on E, ¥ is an extremal measure on E (cf. Lemma 1),
let y be the natural continuous mapping of E into E (as in the proof of Theorem 1),
it is clear that v=y(¥) is the Z,-measure of s on E.

Let 4 be a Baire subset of E such that 4n.%, = @, we shall show that y “1(4)
NE(E)= . Suppose that ¢ ey~ Y (4)N&(E), the representatlon iz (w1th the
same notations as in the proof of Theorem 1) of D is covariant and irreducible

fz(D) = fg(n(A)) Nitz(n(A)) Nz(Us) = {scalars} .
Let ¢ =y(d), n, = Ty, U=+, U; we have (cf. [8] Lemma 3 with a trivial
modification):
14(Zo) =m1(A4)' "y (4) N (UgY

or

m1(Zo) = Ry(m(A)) "R y(n(A)) N75(Ug) - )
The relation

ftg(m(A") Cfig(m(A)Y
implies
fig(n(A)) D Rg(n(A4))" .

This last relation and (1), (2) give

7,(Z,) = {scalars} .
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The cyclic representation 7, of A is a subrepresentation of 7, therefore m4(Z,)
= {scalars} i.e. ¢ is Z,-pure (cf. [8]) which contradicts the hypothesis; hence
v(4)=¥(y"'(4))=0. qed.

Remark. This proposition is an improvement of some results of Guichardet-
Kastler (cf. [8]); the use of Z*-algebras provides another method giving other
properties of the Z,-measures, particularly for successive decompositions (cf. [3]).

7. Continuity of the Integral Representation

Let s be a fixed state on A4, we shall study a certain form of continuity of the
mapping: B—v§, with B an abelian W*-subalgebra of n (A4)'.

Proposition 4. Let (By),.x be an increasing filter of abelian W*-subalgebras
of ny(A), let B be the abelian W*-subalgebra generated by kUKB"' The set of B,-

measures v, of s in an increasing filter ( for the order <) converging vaguely to the
B-measure v of s.

Proof. We can identify [B&] = [*(X, 8, ) and B= L*(X, 4, p), with (X, 8, 1)
a probability space and B, = L*(X, %,, 1) where (B, )ik 1S an increasing filter
of g-subalgebras of 4.

The set (v,).x is an increasing filter of elements of Q(s) bounded by v. For
every continuous convex function f on E (v,(f))iex is an increasing filter of real
numbers bounded by v(f), let u(f)= lilgn vi(f), we have u(f)=v(f); since the

set of functions f — g, with f, g continuous convex, are dense in C(E), there exists
a measure y € Q(s) such that v, u for the vague topology, and u<v.

To prove that u=v, it is sufficient to show that v< u (for < is an order); using
Cartier-Fell-Meyer theorem, it is sufficient to prove vg,<p for all discrete
B-measures vy, .

Let bf:E%"bJ., where E®< denotes the conditional expectation with respect
to %,; we have bk e B, , ) bi=1, let Vib the associated discrete B,-measure.

We have Y

Vil < Vi<

As the order < is vaguely closed, it is sufficient to prove that

Vel ® Viby) vaguely, j=1,...,n
ie.

63},? d,, vaguely, j=1,....n,
or

skps; weakly, j=1,...,n
s¥a) g s;(a), VaeAd, j=1,...,n.

As E‘%‘bj?bj for the L'-norm topology, we have the convergence also for the
a(L*, L')-topology, since the set (E#+b ke 18 uniformly bounded (cf. [11]1V.3.2.).

Therefore
sk(a) = (m(@)bse, &) o s;(a) = (m(a)bé, &)

forallae A,and j=1,...,n.
The proof is complete.
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Proposition 5. Let (B,).x be a decreasing filter of abelian W*-subalgebras
of n(A) and let B= ﬂ B,. The set (Vi)icx Of the B,-measure of s is a decreasing
ke K
filter (for the order <) converging vaguely to the B-measure v of s.
Proof. We show as in the proof of Proposition 4 that v, converges vaguely
to its greatest lower bound, and by the Lemma 2, this greatest lower bound is
precisely the B-measure v. q.e.d.

Proposition 6. Let (B,),.x be a set of abelian W*-subalgebras of ny(A), indexed
by a filter K, such that B, commutes with B,., for k, k' € K ; let limg sup B, = ﬂ \/ B,

kek 1Zk
and limginfB,= \/ () B,, where \/B, denotes the W*-algebra generated by
keK lzk
Bz If limg sup By, = limy inf Bk—B then the filter (v, )icx converges vaguely

to vy.
Proof. Let
= \/Bl and Dk= ﬂ Bl> (Ck)keK
Izk

12k

(resp. (Dyek) is a decreasing (resp. increasing) filter of abelian W*-subalgebras
of my(A); the Proposition 4 and 5 show that v, ¢ v and v, 3 vp for the vague
topology; as we have D, CB,CCy; vp, <vp <Vc,, this implies that for every
continuous convex function f on E

Vo () = v, (f) = ve, (f).

As vp, (f)—=vp(f) and v¢, (f) 2 ve(f); ve (f) % va(f). Since the functions of the
form f— g, with f, g continuous convex, are dense in C(E); vg,_g vg vaguely. q.ed.

Definition. Let (B,),.x be a set of abelian W*-subalgebras of my(A), such that
B, commutes with By, for k, k'€ K; we say that (B)),.x is independent if

<bkbl e bm 555 €s> = <bk€s5 5s> <bl€s’ £s> <bmés> és>

for all b e B,,b,€B,,...,b,€B,, and k, [, ...,m distinct in K (cf. [11]).

Corollary 1. Let (B,),.x be a set of independent abelian W*-subalgebras of
n(A), indexed by a filter K. The filter (v )icx converges vaguely to the Dirac
measure d at the point s.

Proof. By the {0, 1}-law (cf. [11]) limg inf B, = limg sup B, = {scalars} and
sovy=9,. q.ed.

8. Characterization of Simplicial Systems — A Converse of
Haag — Kastler — Michel Theorem

Let s be an invariant state of 4, A” be the W*-envelope of A, Z its center,
S (resp. #,, Z%) the set of G-invariant elements of 4" (resp. m,(4"), 74(2)) e (resp. e)
the finite part of the system (4", G) resp. (n,(4"); G), K, the projection on $¢ the
space of (Ug)-invariant vectors of §, L, the central support of K, in Z, (cf. [4]).
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We say that the invariant state s satisfies the condition

(Cy if F=Cly
(CZ) lf (js)eszces
(Cy) if H9=C¢ (or sis weakly clustering (cf. [12]))
(Cy if &,=C1 (orsisergodic (cf. [12]))
(Cs) if Z&=C1 (or sis centrally ergodic (cf. [8])).
Let &; be the set of invariant states satisfying (C;), i=1, ..., 5; it is clear that
6, CE,CECELCEs.
Throughout this paragraph, we assume A separable, G locally compact
separable acting (norm-) continuously on A.
Theorem 2. The following conditions are equivalent :
(i) The system (A; G) is simplicial.
(i) & =46, (i.e. {ergodic states} = {weakly clustering states}).
Proof. By [4] the condition (i) means that A is G-abelian; the implication
(i)=>(ii) is due to Ruelle (cf. [12, 13]).
(i1)=-(i): let se I, B a maximal abelian sub-W*-algebra of %, let

®
D= [ H.dv(x)
X

@

&= [ &udv(x)

@

U,= [ Ux),dv(x), geG.

®

= | m.dv(x).
be a decomposition of §, &, U,, w associated to B (cf. [5, 6]) satisfying for all x e X :

n(t,a)=U(x),n(a)U(x)F, YaeAd, VgeG.
(n (A U(x)g) =Clg (cf. [5]p. 172)
URyée=te YgeG
D= (A)"E, .

Lets, = w, , we identify §, = 9, , n, = 7, _: the state s, is ergodic (i.e. satisfying C,)
hence weakly clustering by the hypothesis i.e. (H,)°=C. &, Vxe X. As K, e (Ug)
(cf. [13]), K, is decomposable: K, = }a K(x)dv(x), and it is clear that K(x)$, C ¢

=C.¢&,.
Therefore

[K my(a) Ky, K my(b) K] = ? [K(x)m (@)K (x), K(x) 7, (b)K (x)]dv(x)

@
= | [K(x)7,(b)K(x), K(x)m(a) K (x)]dv(x)
= [K,m,(b) K, K;my(a) K]
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for all a, be A4, and all seI; therefore 4 is G-abelian (cf. [12], 13]) ie. (4, G) is
simplicial. g.e.d.

Theorem 3. The following conditions are equivalent :
(i) (A4, G) is quasi-large (i.e. #,=(Z°), cf. [4])

(i) &, =65 (i.e. {ergodic states} = {centrally ergodic states})

(ili) &3=465

(iv) &,=85.

Proof. The implication (i)=-(ii) is due to Nagel (cf. [10]) and is a generalization
of a result of Haag, et al. (cf. [14] Theorem 3.5.10 p. 150); it is clear that (i)=>(iii)
=>(ii).

(i)=(i): Let se I, uS be its n,(Z°)-measure, u’ is supported by I (Lemma 0)
and the set of centrally ergodic states (or Z¢-pure states by Proposition 3) therefore,
the hypothesis implies that uS is supported by &(I)=&,, hence by Theorem 1,
n,(Z€) is maximal abelian in #.; as n,(Z¢) C Center (%), it follows that Z, = n(Z°),
Vs e I, therefore (4; G) is quasi-large (cf. [4] Theorem 2).

Theorem 4. The following conditions are equivalent :
(i) The system (A; G) is large (cf. [7] or equivalently #,C Z¢ cf. [4]).
(ii) For all se I, we have Ly=1g4_and n(Z°%) =mn,#).
(iii) &, =465.
Proof. (i)=>(iii). Let s € &5, the system (n,(4)"; G) is finite and £, =Z¢ =C. 14 ;
therefore &, = é&'5.
(iii)=>(i1) By the Theorem 3, the system (4; G) is quasi-large; let s e I, we have
®

(Z8) > #,0 Z8; as in the proof of Theorem 2, let ;= | $,dv(x)... be a decomposi-
tion associated to Z9, let

K= | K(x)dv(x)

R @ R—=—@

L= L(x)dv(x)
as ¢ is decomposable and L e Center (%), it follows that L(x)e Center (Z,(x))
for almost all x € X. Hence by the hypothesis L(x)=1g4_a.e.; therefore

L.=

S

lg dvix)=1g4, Vsel

R — P

We have proved (ii).
The implication (ii)=>(i) is clear (cf. [4]).

References

1. Bishop,E., De Leeuw,K.: Ann. Inst. Fourier 9, 305—331 (1959)

2. Cartier, P., Fell,J. M.G., Meyer, P.A.: Bull. Soc. Math. France 92, 435—445 (1964)

3. Dang-Ngoc-Nghiem: X*-Algébres, Probabilités non-commutatives et Applications. Mémoires
de la Sté. Mathématique de France. n° 35, 145—189 (1973)

4. Dang-Ngoc-Nghiem, Ledrappier,F.: Sur les systémes dynamiques simpliciaux. C. R. Acad. Sc.
Paris t. 277, Série A, pp. 777—779 (1973)



o 3 N

On the Integral Representation of States on a C*-Algebra 233

. Dixmier,J.: Les algébres d’opérateurs dans I'espace hilbertian. Paris: Gauthier-Villars 1969
. Dixmier,J.: Les C*-algébres et leurs représentations. Paris: Gauthier-Villars 1969

. Doplicher,S., Kastler,D., Stgrmer,E.: J. Funct. Anal. 3, 419—434 (1969)

. Guichardet,A., Kastler,D.: J. Math. Pures Appl. 49, 349—380 (1970)

9.
10.
1.
12.
13.
14.

Meyer, P.A.: Probabilités et potentiel. Paris: Hermann 1966

Nagel, B.: Commun. math. Phys. 26, 247—258 (1972)

Neveu,J.: Bases Mathématiques de Calcul des Probabilités. Paris: Masson et Cie 1970
Ruelle,D.: Statistical Mechanics. New York: Benjamin 1969

Ruelle,D.: J. Funct. Anal. 6, 116—151 (1970)

Sakai,S.: C*-algebras and W *-algebras. Berlin-Heidelberg-New York: Springer 1971

Communicated by H. Araki

Dang-Ngoc-Nghiem
Laboratoire de Probabilités
Université Paris VI

Tour 56

9, quai Saint Bernard
F-Paris 5¢, France








