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Abstract. The general definition of quantization is proposed. As an example two
classical systems are considered. For the first of them the phase space is a Lobachevskii
plane, for the second one the two-dimensional sphere.

It is generally accepted that the quantization is an algorithm by
means of which a quantum system corresponds to a classical dynamic
one. Furthermore, it is required that in the limit ft->0 where h is the
Planck's constant, a quantum dynamic system change to a corresponding
classical one. This requirement is called the. correspondence principle.
It is quite obvious that there exist quite a lot quantizations obeying the
correspondence principle; the quantum description of a physical
phenomenon is more detailed than the classical one, and so there are
certain phenomena the difference between which is displayed in their
quantum description, whereas their classical description does not show
this difference.

The following intuitive method of quantizing the classical dynamic
systems with a flat phase space has become well known since the
Schrδdinger equation was first written down. If a system has n degrees
of freedom, its phase space is a real linear space 3fc2n of dimension 2n,
and the observables are the functions f(p,q\ p,qe&2n, p = (pι .pn),
q = (q±. ..#„), where ph qt are the momenta and coordinates. The Hubert
space of states of a corresponding quantum system is a space of functions
f(x)9 χ = (χ1? ...,χw) of n real variables with a summable square. The
operators in L2(&n)pk,qk are compared to the classical momenta and
coordinates, pk, qk using the formulas

(qκf) (x) = x f f ( x ) , (

A "quantum observable" - the operator f ( p , q) obtained by "replacing
the real variables pi9 qt by the operators pί9 qt in f(p9 g)" corresponds to an
arbitrary observable f(p9 q). However, the operators pi9 qt do not
commute, and so this algorithm is applicable, provided that the analytical
expression for / contains no products such as ptqt. For the case of arbi-
trary f(p9 q) the algorithm in question should be specified. One of such
specifications which posseses a number of remarkable features is due to
Weyl [1].

* The Moscow State University.
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In a case when the phase of a classical dynamic system is not plane
it contains no natural coordinates pt, q{ and so all the quantization
methods based on the special features of these coordinates prove
inconsistent. The mechanical systems whose phase space is not plane
seem to be more frequent than they are thought to be. The simplest
example is a solidstate body with a fixed point (here a two-dimensional
sphere serves as a phase space). The topicality of such systems in field
theory has recently become increasingly apparent.

This paper is aimed at defining the mathematical nature of quantiza-
tion algorithms. A general definition of quantization of an arbitrary
mechanical system is proposed. Then this general definition is exemplified
by the systems with one degree of freedom for which the phase space
is a Lobachevskii plane or a sphere.

§ 1. Classical Mechanics

1. Definition. In a general case the classical mechanics will be
defined as a pair (9Jt, ω) where 9ΪI is some differentiable manifold and ω
is a skew-symmetric tensor field on this manifold. The field ω in local
coordinates should have components ωij(x) satisfying the condition1

0. (U)

Let us denote by ^(9K) a set of differentiable functions on SDΪ.
is a commutative and associative algebra with respect to the standard
addition and multiplication, and is a Lie algebra with respect to the
Poisson bracket

The fact that the Poisson bracket (1.2) defines the Lie algebra, i.e.
that the Yacobi identity

[/l,[/2,/3]] + [/3,[/l?/2]] + [/2,[/3Jl]]=0 (1.3)

is valid, is equivalent to the Condition (1.1). This is easily verified by
direct calculations. Furthermore, from this it also follows that the
Condition (1.1) is independent of the choice of coordinates.

In a case when det||ω l j|| φO there exists an inverse matrix ||ωίι7 (x)||
for every xe9Jl. The Condition (1.1) is written in terms of the matrix
elements as ωtj

The Condition (1.4) implies that the external form ω = ωijdxί /\dxj

is closed. Conversely, if a nondegenerate external form ω = co^dx1 Λ dxj

1 Tensor notation is meant here and in similar situations in what follows. In particular,
the double twice repeated index stands for summation.
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is given on the manifold SOΪ then its components ω0 satisfy the Relation
(1.4), and the inverse-matrix components satisfy the Relation (1.1).
Consequently, in this case (SOΪ, ω) where ω is the tensor field with com-
ponents ωlj, is a classical mechanics.

2. Mapping of Classical Mechanics. Let (3PΪ1? ωj, (SPί2, ω2) be classical
mechanics with nondegenerate tensor fields ωj^, ω^, ω l 5co2 are the
corresponding external forms. The diffeomorphism yjl1-+9Jl2 mapping
ω1 into ω2 will be called a mapping φ : (StRl5 ω1)->(9W2?ω2). More
specifically if y = <jo(x)69K2,/ = (jpI(x) are the local coordinates of the
point y and xl the local coordinates of the point x, then

,,,.

3. Examples. 1) 9JΪ = J>2 is a plane with coordinates p, q.

ω

12=-ω

21 = l,

Γ, Ί δ/ 50 θ/ δflf
U'Λ = Ίϊ-dϊ--dϊΊΪ ( }

2) SDΪ^X1 x^1 - is a two-dimensional cylinder. The coordinates
will be denoted by p,q. Moreover, pe^ϊ1, qeK1 i.e. p is an arbitrary
real number, — oo <p < oo, q is the point of a circumference, 0^q<2π.
The differentiable functions on 501 are periodic in q with period 2π.
The tensor ω and the Poisson bracket have the previous form.

3) 50l = X 1 xK 1 is a two-dimensional torus. The coordinates p9q
independently run over the circumference, 0^p<2π. 0^g<2π. The
differentiable functions on $R are periodic in each of the variables with
period 2π. The Poisson bracket has the form (1.5).

4) 9W = S2 is a two-dimensional sphere. The measure on S invariant
under rotations has the form dμ = r2smθdφ /\dθ, where r is the radius
of the sphere,

The same expression serves as the 2-form required. Therefore the
Poisson bracket in polar coordinates has the form

dθ dθ d

In what follows it is more convenient to use complex coordinates
instead of the polar ones on S2.

These coordinates are introduced using the stereographic projection:

r\

|z| = 2rctgy, argz = φ.

The external form ω in these coordinates is

1

2 4
(1.7)
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and the Poisson bracket has form

4r2

Sf dg df dg

dz 8z dz dz
(1.8)

5) Spf} = g>2 is a Lobachevskii plane. We use the Poincare model for
the Lobachevskii plane: the Lobachevskii plane will be identified with
a circle (of radius 2r and with its centre at zero) in a complex plane.
On the Lobachevskii plane there is an external form ω invariant under
movements. This form is an element of an invariant volume

1

4r2 dz Adz.

The corresponding Poisson bracket has the form

/ dg df dg

4r2
dz dz dz dz

(1.9)

(1.10)

6) Let G be an arbitrary Lie algebra, Q7 its structural constants,
iJ9 k= 1,..., v. As 9K we consider a v-dimensional Euclidean space J>v

conjugate of G. We set

ωiJ=CiJxk. (1.11)

The Property (1.1) follows from the Yacobi identity for G. This example
is closely associated with Examples 1), 4), and 5). Example 6 was con-
sidered previously in [2].

6i) As G we consider the Heisenberg-Weyl algebra. Let el9e29e0

be a basis in G, with the standard relations

1? 62] = e0 , - |>2, έ?0] = 0 .

The coordinates in ^3, corresponding to eθ9el9e29 will be denoted
by ε, p, q. In this case ω12 = — ω21 = ε, and the Poisson bracket has the
classical form:

dp dq dq dp

62) G is a Lie algebra of group SO(3). If in G one chooses a standard
basis e1? e29 £3, with the relations [e1? e2] = e3, [e3, e±~\ = e2, [_e2, e^~] = el9

then the Poisson bracket takes on the form

[/,»]=
X1

df
dx1

dg
dx1

X2

Sf
dx2

Sg
dx2

X3

df
dx3

dg
dx3

(1.12)
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Let us introduce the polar coordinates x1 = rsinθcosφ, x2 = r
- sin θ sin φ, x3 = rcosθ. On replacing the variables, we obtain from (1.12):

L-"yj rsinθ \dθ dφ dφ d θ j '

Thus, for the functions / at fixed r the Poisson brackets (1.12)
transforms, with an accuracy up to a multiplier, to (1.6).

In a similar way the Poisson brackets are connected on the Lie
algebra of a three-dimensional Lorentz group, and on the Lobachevskii
plane.

§ 2. Quantization

1. General Definition. The associative algebra 91 with involution,
possessing the properties to be given below, is identified as the quanti-
zation of a classical mechanics (501, ω).

1) There is a family Ah of associative algebras with involution, such
that

1 A ) the index h runs through the set E on the positive side of the real
axis, where 0 is a limit point (0 is not involved in E).

12) The algebra 9Ϊ consists of the functions f(h) taking values in Ah.
The involution and multiplication in 91 are connected with the involution
and multiplication in Ah in a usual way: (f®)(h) = (f(h))6 where ©,
σare the involutions in 91 and Ah, respectively, (fl ®/2) (h) = f^h) * /2(/z),
where ®, * are the multiplications in 91 and Ah respectively. In the
remainder of the paper the involution and multiplication in algebras 91
and Ah are denoted by the same symbols.

2) There exists a homomorphism φ of algebra 91 into algebra j/(50ϊ)
of the differentiable functions on 501 with standard operations of addition
and multiplication. The homomorphism should have the following
properties

i) for the any two points x1? x2 e 501 there is a function /(x) e φ(9I)
such that/(x!)φ/(x2),

ϋ) <P\-r(f*9-0*fn= i[<p(fι)> <P(/2)] >

where * denotes the multiplication in 91, and [ , •] denotes the Poisson
bracket in

where /->/σ stands for the involution in 91, and the line for a complex
conjugation.

2. Special Quantization. By this quantization is meant one which has
two additional properties.

3) Algebra Ah consists of the differentiable functions /(x), xe50l.
4) Algebra 91 consists of the functions /(ft, x), /(/z, x) e Ah for

fixed h.
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5) Homomorphism φ : 31 -> j/(SDϊ) is given by

Λ-»0

A consistent theory is now available only for special quantizations
[3, 4]2. All the special quantizations hitherto investigated also posses
the following properties.

6) Algebra Ah has unity, and here the function f0(h, x)=i serves as
this unity.

7) Algebra Ah is an algebra with a trace. In this case

Spf = cSf(x)dμ(x) (2.1)

where dμ(x) is some measure on 9JΪ and c is an indefinite multiplier3.
Note that if the tensor field ωίj'(x) is not degenerate, i.e. if on 9JΪ there

exists an external closed form of the second degree ω = ωtjdxl Λ dxj

then on 501 there exists a natural measure

dμ(x) = cω^ .

3. Functor of Quantization. Let 931,952 be algebras constructed
in analogy to quantizations: there exist algebras Bf£\ h e Eί9 Bf£\ heE2

such that S3f consist of the functions f(h\ hEEt taking values in B%\
The homomorphism φ:S1->S2 °f algebras with such structure is
called admissible, if it is generated by homomorphisms ψh of algebras

(In order for the admissible homorphism 931^932 to exist it is
necessary that El CE2.)

The admissible isomorphism of algebras 23; is defined in a similar
manner.

We fix the set of classical mechanics δ and the category Jf of the
mappings of the elements of $. Let the quantization 31 correspond
to every classical mechanics (9W, ω) e δ.

The correspondence (9K, ω)~*$l will be referred to as the functor of
quantization, if for any pair of classical mechanics (90ΐ/? ωt) e δ, i= 1,2
related by (ΪR2, ω2) = φ(SDΪ1,ω1), 0eJf, there exists an admissible
homomorphism φ such that the diagram

(50^ι, £θι) vww~~» 3Xj > t£/(9[Rι)

(2.2)

2 References [7] gives two separate examples of quantizations which are not special.
Manifold 501 in the first case is a two-dimensional cylinder, and in the second a twodimen-
sional torus. In natural local coordinates the Poisson bracket in both the cases has the
form (1.5).

3 The linear functional Sp/ defined on some subset Ah C Ah is termed a trace, if the
sets Ah and Sp/ have the properties 1) if/2 * /2 e Άh, then /2 * /i e Xj , 2) z//j */2 EAh, then
Sp(/ι */2) = Sp(/2 */j). It is clear that the functional Sp/ is defined with an accuracy
up to a multiplier.
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is commutative. Here φί9φ2 are the homomorphisms used in defining
the quantization and φ* is the mapping of the functions, which is conjugate
of the diffeomorphism φ.

The functor of quantization will be denoted by Q. If the correspondence
(50Ϊ, ω)~»9I is a functor, we write 91 = 2(501, ω) in order to emphasize
this point.

The quantization functor Q is termed special, if all the quantizations
9I = ρ(50ϊ,ω) are special.

4. Naturalness. For objects concerned with special quantizations
there is an important concept of naturalness. Let JΓ be some category
of mappings of classical mechanics, (SOI/, ωf), 21^1=1,2 the classical
mechanics and their quantizations.

The admissible homomorphism ι/;:9I1->9I2 i§ called natural with
respect to Jf , if exists a mapping φ e Jf , </>(50l2, ω2) = (501 1, α^) such that

(ψf)(h9x) = f(h9φ(x))9 xe50l 2. (2.3)

The Relation (2.3) implies that at fixed h the homomorphism ψ is the
mapping of the functions, conjugate of the diffeomorphism φ. Therefore,
using not too strict notations we write ψ = φ*.

The special quantization functor Q is termed natural with respect
to Jf , if φ = φ* in the Diagram (2.2).

The special quantization 91 = Q(50ί, ω) where Q is the special functor,
is reffered to as natural with respect to the category JΓ, if the functor Q
has this property.

Remark. One can show (see [7]) that there is no quantization functor
Q natural with respect to the category of all the mappings of classical
mechanics.

5. Groups of Motion. Let (50Ϊ, ω) be a classical mechanics and G a
transformation group 50Ϊ contained in some category Jf of the mappings
of classical mechanics. The latter circumstance implies, in particular,
that the transformation τg in

(2.4)

is an automorphism of the Lie algebra of Poisson brackets.
Let 91 be the quantization of the mechanics (501, ω) natural with

respect to Jf . From the above definitions it follows immediately, that
the Transformation (2.4) is the automorphism of all algebras Ah.

6. Equivalency of Quantizations. Let 91 be quantization of the
classical mechanics (501, ω), E a set of the values h, S some one-to-one
transformation of E. The mapping S generates automorphism S* of the
algebra 91:

(S*f)(h) = f ( s h ) .

Now let 9ί1? 912 be the quantizations of the same classical mechanics
(501, ω). The quantizations <Ά1 and 9I2 are called equivalent, if

1) there is an isomorphism (/>:9I1->9Ϊ2 and an isomorphism
S*: 9I1->9I1 (of the type mentioned above) such that the isomorphism
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0S*: 9IJ-+8Ϊ2 is admissible, 2) the diagram

(2.5)

is commutative. Here φt are the homomorphisms used in defining the
quantization.

In a case when on 3DΪ acts the transformation group G, contained in
the category with respect to which the quantizations 91 x and 9Ϊ2 are
natural, the notion of a natural equivalency is introduced. In addition
to (2.5), the diagram

(2.6)

should also be commutative. Here τg is an isomorphism of the type (2.4).

§ 3. Supercomplete Systems of Vectors4

At present the quantization is constructed for classical mechanics
for which the phase spaces are so-called complex symmetric spaces.
They include the Lobachevskii plane and a two-dimensional sphere.
In all these cases the quantization is constructed by a general method
which will be presented here in an abstract form,

ί. Main Definition. Let H be a Hubert space and M some set with
measure dα. The system of vectors £α e H, α e M is called supercomplete,
if for any f,geH there holds the Parseval identity

. (3.1)

Let us denote by dμ(u) a measure absolutely continuous in da

(3.2)

Note that a supercomplete system generates the imbedding of H into
the space L2(M) according to the formula

From now on we assume that the space H is realized as the subspace
L2(M).

From (3.2) it follows, in particular, that

= (eΛ, eβ) = (eβ9 eΛ) = ep(ot). (3.3)
4 In this section the contents of Ref. [5] is given in brief.
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Let Pα be an orthogonal projector on eα. The function

p \
e* (3.4)

is called a covariant symbol of the operator A in H0. The function A(a)
with the use of which the operator A is represen table as

A = !A(*)PΛdμ(*) (3.5)

is called a contravariant symbol of the operator A.
The definitions show that the covariant symbol is uniquely defined

for any operator whose domain contains eα for all α e M, in particular,
for any bounded operator.

It might be that various operators have the same covariant symbol.
Below we shall see that this is not so in the cases of interest: there is a
one-to-one correspondence between the operators and the covariant
symbols. As regards the contravariant symbols, they are defined, in
general, not for all bounded operators and not always uniquely, but the
operator can always be uniquely reconstructed from the contravariant
symbol.

Note that (3.5) yields an important interpretation of contravariant
symbols. Let us denote by B an operator in L2(M) such

and by T the orthogonal projector from L2(M) on H. The formula
(3.5) is equivalent to

A=TBT. (3.6)

The importance of co- and contravariant symbols being considered
simultaneously consists in the fact that they can be used to obtain the
estimates of upper and lower bounds for the spectral characteristics
of the operator A. We give the most important relevant results.

1) Let 2 (A) be a Hopf set of the operator A, i.e. the set of a complex
plane, consisting of all numbers such as (Af,f\ \\f\\ = 1, 2 (A) the set
of the values of the covariant symbol A and 2 (A) a convex hull of the
set of values of the contravariant symbol A. The inclusions

(3.7)

are valid.

In a case when the operator A is self-adjoint, (3.7) yields in particular,
the estimate of its spectrum (the covariant symbol of a self-adjoint
operator is real, and, if it has any contravariant symbol A9 then it also
has a real contravariant symbol which is Re A). For a self-adjoint
operator, it also follows from (3.7) that

Sup\A(*)\£ \\A\\ £Sup\A(*)\.
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2) Let φ(t) be a convex (downward) function of a real variable. Then

J φ(A(*)) dμ(a) ^ $pφ(A) ^ J φ(A(*)) dμ(*) . (3.8)

In a case when the operator A is semi-bounded from below, the con-
vergence of the integral on the right-hand side of (3.8) implies the existence
of Spφ(A\ and the existence of Spφ(A) implies the convergence of the
integrals on the left-hand side of (3.8).

3) If the contravariant symbol of a self-adjoint operator is semi-
bounded from below, then

e-tA=1ίm(Te-**Tγ, (3.9)
n— > oo

where B and T are the same operators as in (3.6).
2. Algebra of Covariant Symbols. Let A be a bounded operator in H,

and A(a) its co variant symbol. We show that the action of the operator
on the vector defined by the formula

(Af) (α) = f /(/?) A(β, α) ̂ ^- dμ(β) (3.10)
(*β, *β)

where

)= (3.11)

is the continuation of the function A(a) to M x M.
Using repeatedly (3.1), we have:

(Af) (α) = (Af, e») = (/, A*ea) = J (/, ep) (eβ, A*e«) dβ

= J (Aeβ9 ea) f(β) dβ = Sf(β) A(β, α) ĵ - dμ(β) .
(*β> eβ)

It follows immediately from (3.11) that if A = Aί •A2,A,A1,A2 are
the covariant symbols of corresponding operators, then

Λ(α) = f A,(y, α) A2(*> y) ̂  ̂  (*r ̂  dμ(γ) . (3.12)
(eΛ, ea) (er ey)

The algebra with the multiplication law (3.12), which consists of the
symbols of bounded operators, is a basis for the further construction.
In what follows the manifold SDΪ, which serves as a phase space in
classical mechanics, always plays the role of the set M.

It follows from the formula (3.10) that the operator A is uniquely
defined by the function A(β, α) which is the continuation of A(a) to
MxM. In general, it is possible that two different functions A^β, α),
A2(β, α) coincide at β = a, i.e. that two different operators have the same
covariant symbol. In the cases of interest this is not so: the function
A(β, α) turns out to be an analytic continuation of A(a) and thus uniquely
defined from A(a).
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We indicate the formula connecting the co- and contravariant
symbols of the same operator. The covariant symbol of the projection

. 6 ^ (Pβe»ea) (e^eβ)(eβ,eΆ)operator Pβ on the vector eβ is / . = — - — £—*• — *-.

It therefore follows from (3.5) that

ΛfrHJ^/O^'^fi'*' \dμ(β). (3.13)
(eΛ, ej (eβ, eβ)

The formula for a trace reads

SpA = f A(a) dμ(a) = J A(a) dμ(«) (3.14)

and formula for the product trace

SpAB = J A(a) B(OL) dμ(a) . (3.15)

§ 4. Quantization on the Lobachevskii Plane

1. The Space ^h. We use the Poincare model according to which the
Lobachevskii plane with a curve, which equals 2, is identified with the
unit circle K in C1. The space of analytic functions in K with the scalar
product

(/, 9) = - - l ίf(z) g(z) (1 - zz)* dμ(z9 z) , (4.1)

1 1 ! 1 x~ 1 7 / -V I <iZ Λ dZ .

is denoted through Ĵ , where dμ(z,z)= — —τ is an invariant
2ni (I —zz)

measure on the Lobachevskii plane. (The multiplier £ — I is connected
with the normalizing condition (/0 5/o)=l for /0(z) = l). Let /fc be the
orthonormalized basis in J ,̂. Consider the function

The series (4.2) converges absolutely and uniformly in any region
such as |z| ̂  r < I, |t;| ̂  r < I. This fact can be proved using the technique
suggested by Bergman (see, for example [6]).

Consider the space J£?h

2, which consists of all measurable functions

in K, square integrable in the measure I——I (I —zz)*dμ(z,z). It

is obvious that ^ C 3? and the function Lh(z, v) is a kernel of the
orthogonal projector from &£ into JV Therefore, Lh(z, v) is independent
of the choice of the orthonormalized system fk(z).

The orthonormalized basis consists of the functions

Using these functions, we obtain that

Lh(z,v) = (i-zv)-ί. (4.3)

Denote Lh(z9 v) through φϋ(z\ as the function z at fix v.
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It follows from (4.2) that φv(z)e^h and for any function

(/,02) = /(z). (4.4)

The formula (4.4) means that a set of functions φϋ forms the super-
complete system in J^. This system was examined before in [8].

2. Algebra of Covarίant Symbols. Let A be a bounded linear
operator in J^. The covariant symbol of this operator constructed by
means of the vectors φΈ will be denoted through A(z9z). Note that the
function

A^=^Hr (4 5)
(Φΰ, Φz)

is analytically dependent upon z and v coincides with A(z9 z) when v = z.
Consequently, A ( z 9 z ) is an analytic function of the variables x = Rez,
y = lmz and A(z,v) is an analytic continuation of A(z9z) in a complex
region. Hence it follows that there is a one-to-one correspondence
between the operators and their covariant symbols. In particular, if
A(z,z) = a= const then the corresponding operator A = aE where E is
a unit operator in ^h.

Specificity of general formulas (3.10), (3.12), (3.15) gives

( λ f ) (z) =(j--l\f A(z, v)f(v) ({f^rV dμ(υ, v) (4.6)

if A = A! - A2, then

- Ί)T)\ "fc

dμ(v,ΰ),(4.1)

(4.8)

3. The Correspondence Principle. The operator Th

is considered in the space of continuously differentiable functions in a
unit circle. We find asymptotics of the function

z) for A-+0.

First we consider the case z = 0:

(Tkf) (0,0) = (-1 - l) ί f ( υ , v) (1 - «»)* dμ(«, S).

Note that
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Therefore,

(0,0) where A(υ9ΰ) = f ( υ 9 ΰ ) - f ( 0 9 0 ) .

The function /1? is continuous and /^O, 0) = 0. We consider the number
ε > 0 and partition the integral (4.9) substituting in it / for /i, in the sum:

(Th/1)(0,0)=(-|--l) f f^ΰ)(i-υv)τdμ(v,ΰ)
\n I vv<ε

J f(v,υ)(i-vv)tdμ(v,v).

Estimate of the 1-st integegral:

Estimate of the 2-nd integral:

1 Λ j - ,, dvdv

h }\,f<ι 2π

Obviously when ε>0, then lim(l — ε)^~2 I- 11 = 0. Therefore,

\(Thfύ (0, 0)| ̂  max |/J and due to continuity of fl9 lim lϊm IT^/J - 0.
-Jι->0 _

On the other hand, since lim \Thf±\ is independent of ε, hence it follows
_ Jι->0

that lim KTfc/j) (0,0)|=0, consequently, there exists lim (T^) (0,0) and

lίιn(Th/1)(0,0) = 0.
rt-^O

Turning again to the function /, we obtain the existence of
lim (Thf) (0, 0) and the equality
h~* 0

lim(T(l/)(0,0) = /(0,0). (4.10)
h ~* 0

An arbitrary continuously differentiable function in K can be written
(ambigously) as

f ( υ , v) - /(O, 0) + vf,(v9 v) + ΰf2(v9 v) ,

where /1?/2 — the continuous functions.
We note that for h -»0

d
_;/,_

_ , +o(h)
dv όv 1^=0=0
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' Γ\ f \

the previous result has been applied to the function -TΊΓ-). Analogously

a/2
dv

+ o(h).

Thus, finally,

,,0) = /(0,0) + M^ + ̂1 dv dv

+ h
dvdv

(4.11)

o(h).

Proceed now to studying the Transformation (4.9) at arbitrary z.
Change the variables

(4.12)

The transformation u-»w is a motion in the Lobachevskii plane
(a reflection in some point). Therefore, the measured dμ is invariant
under the change (4.12). Due to this change the integral (4.9) assumes
the form

(ΓA/)(z,z)=[--l
^ n

, w) (1 - (4.13)

where φ(w, w) =

We note that

w — z w — z

1 — z w 1 — z w

= (l-zz)2

The operator Δ =(i — zz)2 is the Laplace-Beltrami operator
ozoz

on the Lobachevskii plane.
Thus, using (4.11), we obtain an asymptotic decomposition for Thf

(TJ) (z, z) = f(z, z) + hΔf(z, z) + o(h). (4.14)

The correspondence principle follows from (4.14): putting A^z, v) A2(v, z)
= f(v, v) in (4.7), we get

dz dz
+ o(h).
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Hence: lim A1 * A2 — A±(z9 z) A2(z, z) is the first requirement of the
Λ — »o

correspondence principle and lim — (Aί * A2 — A2* Aj) = (1 — zz)2

ft—»0 n,

8 A, dA2 dA, dA2\ _ λ π . u=- =ι \_A19 A 2] is the second one.~ ~ r
dz oz oz oz
4. The Operator Th Expressed in Terms of the Laplace-Beltrami

Operator. The operator Th is permutable with the transformations
/(z, z)->f(gz, gz) where g is a motion in the Lobachevskii plane. From
this property it follows that it is the function of the Laplace-Beltrami A
operator.

Denote a kernel of the operator Th through Gh(v9v\z9z) and the

transformation (τzf)(v9υ) = fl- — — ,- - -I through τz. Note that
1 — zv 1 — zv

(This feature of the function Gh in the other notations has been used
in the previous n°.)

Using permutativity of the operator Δ with Th and τz and self-
adjointness of A, and τz, we obtain:

(Δ Thf) (z, z) = (TkAf) (z, z) = f (Δf) (v, v) (τzGft) (», »|0, 0) dμ(v, v)

= if(υ,v)(τzAvr!Gh)(υ,ϋ\Q,Q)dμ(v,v) (4.15)

= l(τff)(v,ϋ)(ΔVt,Gύ(υ,ϋ\0,0)dμ(Ό,v).

Further, after transformations, we obtain

Consequently, the analogous relation is valid for the operators Th,
hence

Δτ - 1 1h " '
Iterating this relation we find, that

Γ A = Π - {— - T h . (4.16)

The first requirement of the correspondence principle means that
lim Th = E where £ is a unit operator. Therefore, proceeding to the
/j-^O

limit for JV-» oo in (4.16), we obtain the final expression of the operator
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Th through A

Th=[ - - -- . (4.17)

5. Representations of the Group of Motions of the Lobachevskii
Plane in the Space JV Denote this group through G.

Consider the transformation in Ah

( τ g A ) ( z 9 z ) = A(gz,gz)9 geG. (4.18)

It has been mentioned above that the transformation (4.18) is the auto-
morphism of the algebra Ah. As is known, all automorphisms of the algebra
of bounded operators in a Hubert space are internal. Therefore, the
bounded operator which generates automorphism (4.18) exists in J^

(UβA U- 1 φS9 φs) (φ39 φtΓ1 = (Aφgz, φπ) (φβz9 Φ&Γ ' = A(gz9 gz) . (4.19)

The operator Ug is defined up to arbitrary complex multiplier. Since
the Transformation (4.18) transfers the real functions in to the real,
the transformation A-*UgAU~l transfers self-adjoint operators into
self- adjoint. Hence it follows that Ug differs from the unitary operator
by the multiplier only. Thus, one can choose Ug unitary, the indefinite
multiplier equals 1 in modulus.

In what follows we consider this condition to be satisfied. It is
obvious that the correspondence g^Ugis the projective representation
of G. We show that it is irreducible. Let A be the bounded operator
permutable with all Ug. It follows from (4.19) that in this case A ( g z 9 g z )
is independent of g. Due to the fact that G is transitive, A(z9 z) = a = const.
It follows from a one-to-one correspondence between the operators
and the covariant symbols that A = aE, where £ is a unit operator in
JV Consequently, the representation is irreducible.

Show the explicit form of the operators Ug. Let 0"1 = _. _ then_. _

(4.20)

The unitarity of Transformations (4.20) is verified directly.
The property (4.19) follows from

bv + al

* (a-bv)-h = θ(ά-bv)-hφ—v (z).
(421)

In conclusion we indicate the covariant symbol Ug(z9z) of the
operator Ug. Combining (4.1) and (4.4) we get:

(Uβφ» φg) = θ(a-b?)-h (φ—z, φt) = θ(a- b?)-h φ—z(z)



General Concept of Quantization 169

Hence

17. (z, z-) = <KU.ΦI, M (φ» φύ - ' = 0 - Z L - (4.22)

6. Quantization by Means of Reflections (Analog of the Weyl Quanti-
zation). Let g(v, v) being reflection in the point υ

( _. 1 /-(l+vv) 2v \
(v, v)z — — ̂ - - - - , g = - . (4.23)v ' -2vz + i+υv ' * i-vv \-2ϋ i + vv)^ J

The operator Ug for g = g(v,v) will be denoted via UVtΰ. According
to the general formula (4.22) the covariant symbol of the operator
UVtΰ up to the multiplier 0, \θ\ = 1, has the form

Uh(v,υ\z,z) =
(i-zz)(l-vv) h

(i-zυ)(i-vz)\ Γ z-v z-ϋ

i—zv i—zv

(4.24)

We fix the operator UZtZ so that its covariant symbol has exactly
the form of (4.24).

The function

) (4.25)

will be called the Weyl covariant symbol of the operator A. The function
j/, by means of which the operator A is represented by the integral

U* *dμ(z> *> (426)

will be called the Weyl contravariant symbol of the operator.
The connection between the symbols A and j/ as well between sέ

and A is given by

Ξ), (4.27)

A(z,ϊ)=(ShJ)(z,z), (4.28)

where

(SJ) (z, f) = (1 - 1 j ί f ( v , v) Uh(v, ϋ\z, z) dμ(v, v)

[the formula (4.27) follows from (3.15) and from the symmetry

υh(v,ϋ\z,z}=Uh(z,z\υ,ΰ)].

To express the symbols stf and sf one via another, we need the
operator Sh as the function of the Laplace-Beltrami operator A. This is
possible due to permutativity of Sh and the operators (4.18) τg.

Performing transformations, analogous to (4.15), we obtain

(ASJ) (z, z) = - - 1 J (τj) (υ, v) (Δυ,ϋυh) (v, v\09 0) dμ(v9 v) .
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By means of elementary transformations we see that

Hence

l+2h

Iterating this relation, we obtain

(429)

Applying the calculations of n°3 to the operators SΛ, we have that
S^ = E. Therefore, passing in (4.29) to the limit n->oo we receive

(430)

Comparing (4.17) and (4.30), we get

Tk = ShS'h, (4.31)
where

( l + ( 2 f c + l ) Λ ) ( l + 2 f c Λ ) _

It follows from (4.31) and (4.8)

J=S'hA = S'hSh13/. (4.32)

§ 5. Quantization on a Sphere

When the number n = — is integer, the theory, relating to a sphere,

copies in detail the theory refering to the Lobachevskii plane. Let us
consider such a case. At first sight the condition of integrability of

— seems exstravagant. However, as it will be shown in § 6, quantization

on a sphere is, under some natural subsidiary conditions, unique up to

equivalence. Thus, we are free from considering non-integers —.

The main formulas will be given without deduction. Assume radius

of a sphere r = —-. A sphere is looked upon as the widened complex

plane. In this case the invariant measure on a sphere reads dμ(z9z)
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1. The space J^ consists of holomorphic functions /(z) with scalar
product _

(5.1)

We remark that if /(z) e J ,̂ then /(z) is a polynomial of the power no

higher then — : in all rest cases the integral, which defines (/,/), diverges.

Thus, dim &h = 1 + f
The vectors

(5.2)

form a supercomplete system in J^h. For any /e J^ following formula
is valid

(f,Φv) = f(v) (5 3)

We note that (5.2) becomes meaningless under noninteger — - in this

case φϋ(z) is a multiple valued function and separation of ambiguous
branch is impossible5.

2. Algebra of Covariant Symbols. The covariant symbol A ( z 9 z ) of
the operator A is the value of the function when v = z

$- (5 4)

ΰ> Φz)

The Function (5.4) is an analytic continuation of A(z, z) therefore,
there is a one-to-one correspondence between the covariant symbols
and operators.

The operator action onto the vector

(Af) (z) = + l ί A(

The product of the operators; if A = A1 - A29 then

^hdμ(v,ΰ).(5.Ί)

Connection between co- and contravariant symbols

The expression of the operator Th through the Laplace-Beltrami

The asymptotic formula (4.11) is valid for the operator Th. The
correspondence principle follows from this formula, as in the case of the
Lobachevskii plane.

3. Connection with Representations. The motions of a sphere produce
automorphisms τg of the algebra Ah according to (4.18). Denote the

5 The System (5.2) (in other coordinates) is the well-known system of Bloch coherent
states. See for example [9].
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projective representation of the group SO(3) which is connected with
automorphisms τg by (4.19), through Ug.

The group SO(3) acts onto a sphere according to

. "'"-d££
The operator Ug is defined by

(5.11)

( Under the odd — the representation Ua is two-valued. It is well-known
I h F β }
from the representation theory, that the whole set of projective repre-
sentations SO (3) is exhausted up to equivalence by the representations Ug.

§ 6. Problems of Uniqueness

1. Additional Definitions. Let 2^ and 2I2 be the quantizations of the
same classical mechanics. The quantization 2Ij will be named sub-
quantization 2Ϊ2 designated as ̂  C 212 if there exists the admissible
monomorphism ψ : (Ά1 ->212.

Quantisation 21 is colled maximum, if from 21 C 2ix follows 21 = 2^ .
Let 21 be a special quantization of the mechanics (SDΪ, ω) natural with
respect to some category Jf which involves the group G of motions of
the manifold 9W.

As it has been already mentioned, in this case the shifts generate
automorphisms of the algebra Ah by

M)(*) = /(0x). (6.1)

The quantization 2Ϊ will be effective if there is no natural isomorphism
(i.e. permutable with all τg) between the algebras Ahί,Ah2 for h1ή=h2.

The quantization will be irreducible if the algebras allow the exact
irreducible representations by the bounded operators in a Hubert space.

The quantization will be named w* quantization if the algebras Ah

are the w* algebras.
In particular, for the irreducible w* quantization the algebras Ah are

isomorphic with respect to complete algebras of bounded operators
in a Hubert space.

2. General Consideration. Consider a set M of the algebras A,
consisting of functions on a homogeneous manifold 9Jί with the group
of motions G and having the following features :

i) The algebra A is isomorphic to the algebra of bounded operators
in a Hubert space.

ii) The shifts (τgf)(x) = f ( g x ) are the automorphisms of the
algebra A.

iii) A unit of the algebra A is the function /0(x) = 1.
The algebras A1,A2εM will be called naturally isomorphic if

there exists an isomorphism between them, which is permutable with
the automorphism τ .
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A set of all classes of the algebras A, naturally isomorphic in pairs,
will be denoted through M.

A set of all irreducible projective representations of the group G
will be further denoted via T and via T a set of classes of unitarily equiv-
alent projective representations of G. Let us construct the monomorphic
mapping M-»T.

We fix AeM. Denote the isomorphic A algebra of bounded operators
in a Hubert space through L, and through φ the isomorphism A-+L.
Let σg = φτgφ~^ be the automorphism L. Since all the automorphisms
L are internal, there exists the bounded operator Ug9 which is defined
up to a numerical multiplier λ and produces automorphism σg:

σJ=UJU-ι. (6.2)

Due to the fact that σg is an * automorphism, it transfers the hermitian
operators into hermitian. Hence it follows that Ug differs from unitary
operator by the multiplier only. Thus, one can consider Ug to be the
unitary operator, an indefinite multiplier λ to be such, that |λj = l.

The operators Ug perform the unitary projective representation
of the group G.

Prove the fact that Ug is irreducible. Let /0 e L be permutable with
Ug and /o(x) = (p~1f0eA. Due to (6.2)

It follows from transitivity of actions of the group G onto 9Jί that
/o (x) = const = /0. In virtue of the feature iii) it means that f0 = f0E
where E is a unit operator in Jf . Therefore, the irreducible projective
representation Ug e f of the group G is confronted with each algebra
AeM.

We show that the algebras Al9A2eM are naturally isomorphic
if and only if the representations Ug

l) and U^2} corresponding to them,
are unitarily equivalent.

We give the indices i, i = 1, 2 to the objects, refering to the algebra At.
Let the representations Ug

l) be unitarily equivalent and F:JfΊ-»Jf2

be isomorphism of Hubert spaces, which performs this equivalence:
VUg

1}=Ug

2)V. We construct the isomorphisms L1-+L2 and A1-+A2

by means of V

The isomorphism (6.3) f-+ψf is natural:

Vice verse, let the algebras Aί9 A2 be naturally isomorphic and ψ : A1 -+A2

be isomorphism. In this case χ= φ2ψφΐΛ is isomorphism of the algebras
L1 and L2. Since L1 and L2 are the complete operator algebras, there
exists the isomorphism V\^-^J^2 which generates χ'.χf^V/V'1,
feL1. The naturalness ψ means the equality \pτ(

g

} = τ(2}\p. It follows
from this that χ σ (

g

} = σ (

g

] χ where σ(

g

} is the automorphism of Li9 such as
(6.2).
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In more detail :

VU™f(U(

β

l}Γl V = ϋ^Vfy-^ύ^Γ1 (6-4)
Hence „

7-ι(l/(2)Γι KC/ί1)/ = /7-1(C/ί2))"1 n/<1}. (6.5)

As (6.5) is valid at any/ eL1 ? then K"1^2^"1 VU(

g

1} = λE, consequently,
U(g1} = λV~1U(g2}V. The equality obtained denotes unitary equivalence
of the projective representations C/g

(1) and L^2).
Thus, the correspondence A-+Ug where ίζ is irreducible projective

representation of the group G, which is defined by (6.2), is a monomorphic
mapping of the classes M-» T.

3. Description of Quantizations on a Sphere. We show that quan-
tization on a sphere, described in §5, is unique maximum effective
irreducible w* quantization up to natural equivalence. Let 2ί be such a
quantization,^ the corresponding algebras, M, M, T, Γis a specialization
of the objects, introduced in No. 2, when 9W = S2

 an(i G = SO(3) is_a
group of motions. The algebras Ah have the features i)-iii), i.e. Ah e M.
Since there is no natural isomorphism between Ah at different h, classes
of the algebras A e M, naturally isomorphic to Ah, are different at
different h. We denote a set of classes involves Ah, through M^. The
quantization 21 is completely defined by the set My, and if (Ά1c

(H2

then M3ίl CM^2. Denote the quantization, described in §5, through 2I0.
To prove our assertion it suffices to check that M^0 = M. For this
purpose we use the monomorphism constructed in the previous section.
Let jζj0 and TM be the images of M^o and M under this monomorphism.
The following inclusions are obvious: 7 ô C TM C T. It has been mentioned
in § 5 that the representations Ug defined by (6.2), are exhausted up to
equivalence of projective representations of the group £0(3). Conse-
quently, Tgjo = T and, therefore 7i0 = TM, MUo = M.

We have not succeeded in describing analogously the quantization
on the Lobachevskii plane, since for the Lobachevskii plane only the
inclusion 7 ô C T is valid, but not the equality 7 0̂ = T.
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