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Abstract. We investigate the ergodic properties of the equilibrium states of systems
of infinitely many particles with respect to the group generated by space translations and
time evolution. The particles are assumed to move independently in a periodic external
field. We show that insofar as "good thermodynamic behavior" is concerned these properties
provide much sharper discrimination than the ergodic properties of the time evolution
alone. In particular, we show that though the infinite ideal gas is mixing in the space-time
framework, it has vanishing space-time entropy and fails to be a space-time K-system.
On the other hand, if the particles interact with fixed convex scatterers (the Lorentz gas)
the system forms a space-time K-system. Also, the space-time entropy of a system of the
type we consider is shown to equal its time entropy per unit volume.

1. Introduction

One of the outstanding problems of statistical mechanics is to account
for the fact that isolated macroscopic systems approach equilibrium. One
expects, of course, that this approach occurs, not because of any peculi-
arities of actual physical systems, but because of certain general structural
features relating to the nature of the interactions and the large size
(~1026 molecules) of macroscopic systems. Since thermodynamic
behavior becomes exact only in the infinite volume limit, we expect
that a precise mathematical formulation and justification of this behavior
may be possible only for systems consisting of infinitely many particles.

We therefore want to find a mathematical framework in terms of
which the problem of thermodynamic behavior can, hopefully, be
understood. Typically, ergodic theory has provided such a framework;
indeed, the time evolution of a finite system is mixing, an ergodic property
stronger than ergodicity, in just the case where "reasonable" non-
equilibrium states (i.e., absolutely continuous measures on the energy
surface of the phase space) approach (weakly) the equilibrium state
(microcanonical ensemble). We expect, however, that realistic systems
may exhibit thermodynamic behavior without being strictly mixing;
rather, large systems may be approximately mixing, in the sense that the
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infinite systems to which they "converge" (their infinite volume limits)
exactly satisfy some useful property, analagous to mixing for finite
systems, which implies that the system behave appropriately.

One is therefore led to the investigation of the ergodic properties of
the time evolution of infinite classical systems [1-5]—and to the discovery
that the time evolution of the infinite ideal gas has the strongest possible
ergodic properties: it forms a Bernoulli flow. This implies that the system
is mixing, so that states which are absolutely continuous with respect to
the equilibrium state (i.e., local perturbations of the equilibrium state)
approach equilibrium. We know, of course, that states of the ideal gas
representing global perturbations of the equilibrium state need not
approach equilibrium (e.g., a non Maxwellian velocity distribution will
not become Maxwellian) and, that mixing says nothing about these
(non-absolutely continuous) states. The dissipation of disturbances
which occurs in the ideal gas is of a purely nonlocal nature — the local
disturbances stream off to infinity where they are no longer visible.

Since an infinite system may possess such strong ergodic properties
as the Bernoulli (B) property without exhibiting good thermodynamic
behavior, the traditional ergodic theoretic concepts (ergodicity, mixing,
K-system, Bernoulli), all of which are implied by the B property, cannot
adequately account for such behavior. In fact, the situation may be
somewhat worse. It appears at least plausible that infinite systems of
interacting particles which exhibit good thermodynamic behavior also
form J3-flows [2, 6]. If this were the case, a theorem of Ornstein (see [7]),
implying that inflows of infinite entropy are isomorphic, would imply
that these systems are indistinguishable from the infinite ideal gas insofar
as the measure theoretic structure of their time evolutions is concerned1.
Thus, as well as new (ergodic theoretic) concepts, we need an expanded
framework to support these concepts.

Fortunately, there is a rather prominent additional element of
structure common to infinite systems of interest in statistical mechanics:
invariance under space translations. The dynamics as well as the
equilibrium states of infinite systems of particles are normally required
to be translation invariant. Thus, the measure spaces of these systems
possess, in a natural way, a larger invariance group than previously
considered [9]: the abelian group generated by space and time transla-
tions. The ergodic properties of the equilibrium states of these systems
under space translations have already been investigated (see [9]).
It thus appears natural to extend our abstract framework by replacing
the flow {Tt} in the quadruple (X,Σ,μ,{Tt}) (see [10]) by the larger
abelian group J> generated by space translations and time evolution (the

1 The time evolutions of infinite systems of particles typically have infinite (K - S)
entropy [8], as do their space translations.
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space-time group). Generalizations of the ergodic theoretic concepts
and results for a group generated by a single automorphism (or flow)
to a group generated by several commuting automorphisms (or flows)
have been obtained2 [11,12]. We shall show that the ergodic properties
of infinite systems relative to this framework provide a much sharper tool
of investigation than the ergodic properties with respect to space
translations or time evolution separately.

The extension of our framework to the larger group J has as an
immediate consequence that the implications of Ornstein's theorem
no longer afford us significant difficulty; though Ornstein's theorem
presumably extends to a generalized dynamical system [12] [(X, Σ, μ, J\
J> a group generated by several commuting automorphisms] it should be
much more difficult for infinite systems to be Bernoulli under the space-
time group3.

It seems reasonable to expect that good mixing properties under
the space-time group might require more than a "purely nonlocal dissipa-
tion of disturbances". We will see that the inclusion of space translations
in the automorphism subgroup allows us to control effects due to the
infinite extension of our systems; we shall see that though possessing
infinite time evolution entropies, the infinite systems which we will
consider have physically significant space-time entropies.

2. Poisson Systems4

Since the systems which we investigate are of noninteracting particles,
they can be conveniently represented as Poisson systems: Let (X,Σ,μ)
be a totally σ-finite nonatomic measure space5. Denote by X the set of
countable subsets of X, and for A e Σ let NA:X—>1R be given by

NΛ(x)=#(Anx)9

where 3 c e l , and " # " stands for "the cardinality of". Let Σ be the
smallest σ-algebra for which all of the NA are measurable, arid denote
by μ the probability measure on (X, Σ) representing a Poisson distribution
of points in X with density given by μ, i.e., the measure for which the
functions NA have distribution given by

2 We shall review some of them in the third section of the present article.
3 See Section 3.
4 We shall assume that all measure spaces to which we refer are Lebesgue spaces (see

[13] and [14], pp. 34 and 106).
5 We use the terminology of Halmos [15].
6 This condition (for all AeΣ) implies the independence of disjoint regions C X

(see [16]).
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For T an automorphism of (X9Σ9μ) define an automorphism T
of(X,Σ,μ)by

Tx = Tx

for X D 3c e X. We will call (X, Σ9 μ, T) the Poisson system built over
(X,Σ9μ,T).

We indicate a simple way (a Bernoulli construction) in which a
Pois_son j>ystem may be shown to be a Bernoulli shift. Recall that
(X, Σ9 μ, T) is a (generalized) Bernoulli shift if there exists a sub-σ-
algebra ΣOCΣ which is an independent generator for T: the sequence
Σθ9 T Σ 0 , T2Σ0,... forms an independent sequence of σ-algebras [17], and

00

\/ TjΣ0 (the smallest σ-algebra containing all of the T'Σ 0) = Σ(modO)
j=-CO

(see [13]). For I o e l w e denote by ΣXo the smallest σ-algebra for which
the functions / measurable in Xo [i.e., / is (Σ) measurable and f(x)
= f(xnX0) for x e l ] are measurable. If {TnX0} is a family of disjoint sets

00

with (J TnX0 = X, then ΣXo is an independent generator for T.
n= — oo

It is precisely in this way that the time evolution of the infinite ideal
gas may be shown to form a B-flow7. We may identify the infinite ideal gas
with the Poisson system (X1, Σ\ μ\ {T/}) built over {X\Σ\μ\ {7/}),
where X1 = W x IRV, Σ1 = the class of Lebesgue sets of lRvxlRv, dμ1

= (β/2π)v/2 e~1/2βv2 dqά% and T/(q, υ) = (q + υt9 v) for (q, v) e Rv x Rv. (v is
the dimension of the physical space.) If we let XQ = {(q,v)eXI\q1 + vίt = O,
for some 0 < t < 1}, we find that Σxi is an independent generator for
Γ(=Ti) 8 . We remark that, as one would expect, there exist Poisson
systems for which no Bernoulli construction is possible, which possess,
nontheless, very strong ergodic properties [1]; in fact the failure to
permit a Bernoulli construction is an indication of "better thermodynamic
behavior" than would otherwise be present.

We now describe a class of systems which may; be regarded as the
infinite volume limits of periodic systems of independent particles whose
one particle finite volume components form X-systems [1]. We will say
that the Poisson system (X, Σ, μ, T) is of periodic-K-type if the following
are true:

1) There exists an isomorphism φ from (Xo,Σo,μo)x(Έv, ΣΈv,μΈv)
[_(X0,Σ0,μ0) is a totally finite measure space and (Έv,ΣΈv,μΈv) is the
v-dimensional lattice {(il9..., zv) | ik e Έ, 1 :§ k ̂  v} with counting measure]
to (X, Σ9 μ) such that the translation group ίf{= φ(ίfΈV)) induced by the
translations S /:ZV->ZV, Sιk=k-\-l(kJeΈvl commutes with T.

7 Ornstein has shown that {7̂ } is a J3-flow (5-shift for all t) if Γx is a Bernoulli shift [7].
8 The infinite ideal gas is, of course, also a ΰ-system under translations, as are all the

systems whose space-time ergodic properties we shall consider.
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2) There exists a sequence of rectangles R( whose volumes approach
infinity, such that the induced automorphisms 7^. are IC-automorphisms9.
By a rectangle JR we mean a set of the form φ(X0 x 2 y , where ΈV

R is a
(finite) "rectangle" in Z v, by the volume of R we mean # (ΈR), and by TR we
mean the automorphism of R (equipped with the probability measure
induced by μ) induced by the natural map ΈV->ΈV

R (periodic boundary
conditions on R).

3) T(R0) is bounded. Here R0 = φ{X0 x {0}) and by bounded we
mean contained in a rectangle.

4) TRo has finite entropy.
The base system (X, Σ9 μ, T) will be called a base-periodic-K-system.
A Poisson system with base satisfying 1) will be said to be of periodic

type or periodic (with periodic representation given by φ\ while a Poisson
system with base satisfying 1) and 3) will be said to be of periodic-
bounded-type.

The measure space of the infinite ideal gas (in v dimensions) possesses
the commutative group of automorphisms generated by the flows {T/}
and {Sj,s}, 1 ίkjύ v, the space translations. If we identify £f with the
group generated by the automorphisms Sj = SjΛ, 1 t^jύ v, and T with
T1? we see that the ideal gas is periodic. However, corresponding to the
possibility of the occurrence of arbitrarily large velocities, it is not of
periodic-bounded-type, though it does satisfy a condition which will
be just as useful for our purposes. Denoting the group generated by
^ and Tψ and T) by J (J\ we will say that a periodic system (X, Σ, μ9 T)
is of periodic-o'-bounded type if there exists an increasing sequence
{Xn} of ./-invariant Σ-subsets of X such that T(XnnR0) is bounded
for any n and \J Xn = X. It is clear that the infinite ideal gas is of periodic-

n

σ-bounded type.

Given any measurable partition [13,14] ζ of (X, Σ, μ) we denote by ζ
the (measurable) partition of (X,Σ,μ) according to the number of
particles in the elements of ζ. In [1] it is shown that a system of periodic-
X-type is a iC-system with a X-partition ζ such that ζ is a base-K-
partitίon (see [1]). In particular,

a) C is invariant under Sf.(Sfζ — ζ.)
b) ζ is finer than Qo, the partition of X induced by the partition of Έv

into its points, (ζ ^ Qo: Qo = {φ(X0 x {/})}, i e Έ\)
Let (X9Σ,μ,T), (Xo,Σθ9μo), and φ be as in 1) and let To be the

automorphism of Xo obtained from TRo by the identification of Ro

(= φ(X0 x {0})) with Xo. Let Xo possess a measurable partition {Xa}
whose elements Xa are invariant under To, let {μα} be the canonical
system of measures [13] associated with {Xa} [and (Xθ9 Σθ9 μo)]>

 a n d l e t

9 If (Xf, Σ', μ', T') is a X-system, we say that V is a K-automorphism.
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Ta be the restriction of φ~ * ° T° φ to Xa x Z v. If {(Xα x Έ\ Ta)} (with the
obvious measure) forms a family of measurably related base-periodic-K-
systems (with periodic representation given by the identity mapping),
we will say that (X, Σ, μ, T) is of perίodίc-σ-K-type. By measurably related
we mean that there exists a family {ζα} such that ζa is a base-K-partition
for (Xα, μα, Tα) and ζ = (J ζα is measurable. It is shown in [1] that ζ

a

is a K-partition, so that a system of periodic-σ-K-type has a X-partition
with properties identical to a) and b) above for a partition of systems
of periodic-K-type.

It is a consequence of the work of Sinai [18, 6] that the dynamical
system representing an infinite gas of independent particles moving
with the same speed in a two dimensional (nonpathological) periodic
array of (fixed) convex barriers (from which the particles undergo elastic
collisions) is of periodic-K-type [1]. However, the Lorentz gas, in which
the particles have a Maxwellian velocity distribution-corresponding to
the thermodynamic limit of a grand canonical ensemble — and which is the
more natural object from the standpoint of statistical mechanics, is
not of periodic-X-type. It is, however, of periodic-σ-K-type [1].

3. Properties of Generalized Dynamical Systems10

We consider a (generalized) abstract dynamical system (X, Σ, μ,«/),
where J is generated by n commuting automorphisms of the probability
space (X, Σ, μ). To simplify the notation we explicitly treat only the case
n = 2. Let (S, T) be a pair of automorphisms which generates «/. Every
such pair determines a homomorphism from the group Έ2 to «/,
permitting the representation of the elements of J by the points of Έ2.
Though some properties will be formulated in terms of the pair (S, T),
they will, in fact, depend only upon ,/, unless we explicitly indicate
otherwise. However, we intend for the definitions which we shall give
to be applicable to dynamical systems of the form (X,Σ,μ,{S,T}),
where S and T are commuting automorphisms possibly satisfying some
relation such as S = T.

We will say that a sequence ρn of parallelograms in Έ2 approaches
infinity if the smallest of its dimensions (orthogonal distance between
parallel sides) approaches infinity. We will denote by N(ρ) the number of
points in the parallelogram ρ. For any measurable partition P and geJ>,
we let

pg= V tfP, Pg~= V 0*P> a n d P*= VV g V V
j — - oo 7 = — oo g' e J

1 0 For a general reference for much of the material of this section, see Conze [11].
1 1 We use the notation (V, Λ, ^ e , v, fj) of [14, 13].



Space-Time Ergodic Properties 309

We denote by Hi the orthogonal complement in L2(μ) of the constants.
(The generalization of the properties which we shall describe to the case
in which the group J is generated by two flows {Ss} and {Tt} parallel
the corresponding generalization from properties of a discrete dynamical
system to properties of a flow.)

a) Ergodίcity. (X, Σ, μ,«/) is ergodic if all A e Σ which are invariant
under J>12 are such that μ(y4) = 0 or μ{Λ)= 1. As in the case of a one
parameter group, we have that if (X, Σ, μ,«/) is ergodic, and only then,

lim ί/N(ρn) Σ /fox) = lim ί/N(ρn) £ f(SkTιx)
9eQn »•+«> {k,l)eQn

a.e.,

for ρn a sequence of parallelograms approaching infinity, /eL 1 (μ), and
xeX. Ergodicity with respect to J> is clearly a weaker property than, say,
ergodicity with respect to T. It is the only such property which we shall
encounter.

b) Mixing. (X, Σ9 μ,«/) is mixing if

lim μ(gAnB) = μ(A)μ(B)
#-•00

for all A,BeΣ13. Since convergence to infinity in TL2 is invariant under
automorphisms of Z 2 , the definition does not depend on the choice
of generators.

c) Countable Lebesgue Spectrum. (X, Σ, μ, J*) has countable Lebesgue
spectrum if there exists a family {/(}?/c)}, i e Z , (j,k)eΈ2, of functions
forming an orthonormal basis of Ψ* and satisfying

Tjnrjmfί fi
) — USUτJ(j,k)—J(j + n,k -m)

for all (j,k)eΈ2, (n,m)eΈ2, and i e Z 1 4 . Just as in the case of a one
parameter group, a system with Lebesgue spectrum is mixing.

d) Entropy. The entropy of a group J> is defined in a manner
completely analagous to the definition of the entropy of an automorphism
T 1 5 . We need mention only that the entropy of a (countable) measurable
partition P relative to the group J is defined by

O=lim ί/N(ρn)H(\/ #P),

1 2 A is invariant under «/ if and only if gA = A for all g e«/.
1 3 By #—>GO we mean in the sense of the natural locally compact topology on Έ2. The

generalization to an arbitrary locally compact topological group is immediate.
1 4 If F is an automorphism of (X, Σ, μ) we denote by UF the unitary on L2{μ) induced

by F:UFf = foF.
1 5 For the definition and properties of entropy, see [8, 10,14].
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where {ρn} is a sequence of parallelograms approaching infinity. The
limit is independent of the particular sequence of parallelograms, and,
consequently, h(P,<#) is independent of the choice of generators. In
much the same way as for a single automorphism, one verifies that if
H(P) < oo

) = H(P\\Ps- V(Ps)r)16.

We will call Ps~ V (Ps)f the past of P relative to (S, T) and denote it by
P} 1 7 . We also note that if Q is a generator for J> with finite entropy [i.e.,
Qs — £18 (mod 0), and H(Q) < oo], we have for the entropy of J>

h{J)= sup h{P,S)= sup h(P,S) = h(Q,S).
P finite H(P)<oo

Finally, we say that (X, Σ, μ, </) has completely positive entropy if
h(P, J)>0 for all nontrivial partitions P. If (X,Σ,μ, J>) has completely
positive entropy it is mixing.

e) K-Systems. We define the K-system property for an ordered
pair of (commuting) automorphisms (S, T) rather than for the group J
which they generate. Insofar as space translations and time evolution
play rather different roles in statistical mechanics, this distinction
is quite appropriate. The key to the generalization is the extension of
the natural ordering on Z, on the structure of which the notion of K-
system for an automorphism is implicitly based, to an ordering on Έ2.
We write (n, m) ̂  (p, q) if m < q, or if m = q and n ^ p. We will say that
(X, Σ, μ, (S, T)) is a K-system if there exists a measurable partition ζ
such that

1) C is increasing:

SnTmζ^ Sp Tqζ(mod 0) if (n, m) ̂  (p, q),

2) V
(n,m)eΈ2

Note that if (X, Σ, μ, (S, T)) is a X-system, (X, Σ, μ, T) possesses an
S-invariant X-partition, namely ζs. If (S, T) forms a K-system, the group
«/ generated by S and Thas completely positive entropy and, by essentially

1 6 We use the notation H{a || β) for the conditional entropy of the measurable partition
α relative to the measurable partition β.

1 7 There are, of course, seven other possible choices of a "past" of P which we could
insert in the above relation in place of P^ without altering its validity. For the systems which
we consider we make the "natural" choice for the pair of generators (S, T).

1 8 ε is the partition into individual points.
1 9 v is the trivial partition of X; its sole element is X itself.
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the same argument as for a single automorphism, countable Lebesgue
spectrum.

f) Bernoulli Systems. (X, Σ9 μ, */) is a Bernoulli system if there
exists a measurable partition P which is a generator for «/ such that
{gP},geJί, is an independent family of partitions2 0. If (X,Σ9μ9J) is
Bernoulli, then (X, Σ, μ, (S, T)) is a X-system for any pair of generators
(S, T): if P is an independent generator for «/,

ζ = \J SnTmP
(n,m)g(O,O)

is a X-partition for (S, T). Ornstein's theorems can be extended to this
generalized framework [12].

g) Formula of Abramov. If J is generated by {St),{Tt}9... {Rt}9

n commuting groups depending continuously on a real parameter,
a generalization of the formula of Abramov (h(Tt) = \t\ h^)) can be
obtained [11]. Let Γ be the subgroup of./ generated by Sί9 Tί9 ...9Rί.
If we regard / a s a real vector space with basis Sί9Tu ...9Rl9 we can
operate on Γ by a real n x n matrix M to obtain a subgroup ΓM. Then

= \det(M)\h(Γ).

4. Invariance of Space-Time Ergodic
Properties under Galilean Transformations

For many applications to classical statistical mechanics it suffices
to consider a dynamical system (X, Σ9 μ, </), where μ is an equilibrium
state for a v-dimensional infinite system of particles and J is the group
generated by S 1 > l 9 . . . ,S V f l 5 the unit space translations, and T l5 the unit
time evolution. In this framework we will consider only Galilean
transformations determined by integral velocities. Most of the results can
be extended to arbitrary Galilean and Lorentz transformations in the
case where «/ is generated by the complete (continuous) space-time
group.

Accordingly, let (X, Σ, μ) be a translation invariant equilibrium
state of a one dimensional (for notational convenience) system of
infinitely many particles. Let Tt denote its time evolution and Ss the
spatial translations. We can describe a trajectory induced by Tt by
specifying a family {#f(£)}? ίeIR, of functions representing the time
evolution of the positions of the individual particles, labelled arbitrarily.

2 0 By virtue of the natural correspondence between measurable partitions (mod 0)
and sub-σ-algebras (mod 0) (see [14,13]), this definition is a generalization of the definition
given in Section 2 for a single automorphism. For any measurable partition α, we denote
by ά the corresponding sub-σ-algebra, and conversely.
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A Galilean transformation Gv at velocity v transforms a trajectory
{qi(ή} into a trajectory {qi(t) — vt} = Gυ({qi(t)}). Gv, of course, also
transforms the velocities according to Gv({Vi(t)}) = {v^ή — υ). Thus, in an
obvious manner, Gv transforms the system (X, Σ, μ, (Ss, Tt)) into the
system (X\ Σ', μ', (S's, Tt')). From the standpoint of our abstract framework
we can identify the latter with (X, Σ, μ, (Ss9 TtSυt)), so that the effect of Gv

may be regarded as the replacement of the pair (Ss, Tt) by the pair
(Ss, TtSvt), or, in the discrete case, assuming v to be an integer, (S1? Γx)
by (Sl9 TΊSϊ) 2 1 ' 2 2 . Consequently, those properties which depend upon
only the group «/ are invariant under Galilean transformations: S and
TSV generate the same group as do S and T. Furthermore, the concept of
mixing for the pair (S, T\ which depends upon the notion of convergence
to infinity in 2£2, is invariant under Gv9 since the automorphism of Έ2

induced by the replacement (S, T)—•(S, TSV) leaves such convergence
invariant. Finally, the concept of K-system, which depends upon the
ordered pair (S, T) and, specifically, upon the ordering of TL2 which
the pair induces, is invariant under Gv, since (S, TSV) induces the same
ordering as does (5, T).

5. Space-Time Ergodic Properties of the Ideal Gas

We proceed to the investigation of the space-time ergodic properties
of periodic systems and, in particular, of the equilibrium states of
systems of infinitely many independent particles. We will deal with
one-dimensional systems; the results and arguments can easily be
adapted to several spatial dimensions. In this section we show that though
the ideal gas has countable Lebesgue spectrum even in the space-time
framework, it is not a X-system for the pair (5, T), since its space-time
entropy vanishes.

We first exhibit an example of two systems identical from the stand-
point of the time evolution considered by itself which are distinguishable
within the space-time framework. A system identical to the infinite ideal
gas except that, instead of a Maxwellian velocity distribution, all particles
move with unit velocity (to the right) is clearly a Bernoulli flow under the
time evolution and hence isomorphic to the ideal gas. However, since the
time evolution and the space translation act in the same manner on the
phase space of this system, it is not "jointly" mixing; in fact, SnTn (for
the appropriate choice of S Ξ SX) is the identity transformation for all n,
though (n, rc)—>oo in Έ2.

2 1 The effect of a Lorentz transformation would be the replacement, as well, of Ss by

some SasTβs,oc,βelR, since under a Lorentz transformation both the space and time axes

become obliquely oriented with respect to the original axes.
2 2 Henceforth, we will write (S, T) for ( S l 9 7\), etc.
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We denote by S7 the spatial translation on the one particle ideal gas
phase space X1 [i.e., Sl(q, v) = (q — s, υ\ (q, v) e 1R x 1R] and by Si the flow
on (X1, μ1) induced by S7. That (X1, μ1, {S7, f/}) is not isomorphic to the
system described above is a consequence of the simple

Proposition 5.1. (X7, Σ1, μ\ {S7, T/}) is mixing.

Proof. The proposition follows (see [1]) from the observation that
if A, B e Σ1 are bounded subsets of IR2,

lim μI((SI

sTt

IA)nB) = 0.
(s,ί)->oo

The space-time ergodic properties of the ideal gas are, in fact, some-
what stronger than mixing:

Proposition 5.2. (X1, Σ\ μ1, J1)23 has countable Lebesgue spectrum.
Proof. By virtue of the fact, the proof of which will be given in

Appendix I, that if (X, Σ, μ) is a Poisson probability space, there exists an
isomorphism from L2(μ) onto β, the boson Fock space of L2(μ), which
carries any induced unitary Uψ onto the unitary on β whose restriction
to the n-particle subspace is U®n{ = Uτ (x) (x) Uτ\ it suffices to show that
(X1, Σ\ μ1, Jι) has Lebesgue spectrum.

Let Us=Usi and Vt=Uτi. Then for feL2(^){=L2(]R2,e-v2dqdv))
we have

LQtxpoφ be the isomorphism of L2(1R2, e~v2dq dv) onto L2(1R2, e~w2lk2/\k\
- dkdw) obtained by composing a g-Fourier transform with the iso-
morphism induced by the change of variables (k9v)—>(k,w) = (k,kv).
This isomorphism carries Us and Vt onto U's and Vt

r, respectively, where

U'sVt'f(k, w) = e-i{ks-wt)f(k, w)

for feL2{]R2,e~w2lk2/\k\dkdw). We thus have a representation of UsVt

as the operator of multiplication by e-
ί(ks~wt^ O n L2(1R2, dμ(k, w)) with μ

a measure on 1R2 equivalent to Lebesgue measure, from which the
proposition easily follows.

Fortunately, countable Lebesgue spectrum is the strongest space-time
ergodic property which we shall find that the ideal gas possesses. In [1],
the nonlocal nature of the dissipation of disturbances of the ideal gas
was alluded to, as a sympton of which we might regard the manifestly
non translation invariant nature of its X-partition. Since a space-time
((5, T)) K-system must possess, in particular, a translation invariant
X-partition for the time evolution T, and since it appears implausible
that the time evolution of the ideal gas should possess such a X-partition,

2 3 J>1 is, of course, the group of space-time translations of X1, induced by the group
Jι of space-time translations of X1.
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we expect it to fail to be a X-system for (S7, T1). Rather than verifying
that no such partition exists, we will show that the space-time entropy
of the ideal gas vanishes. Since K-systems have completely positive
entropy, this will imply the desired result.

Theorem 5.3. hi!1) = 0, so that (X7, Γ7, μ7, (S7, f1)) is not a K-system.

Proof. We compute /τ(</7) by finding a partition P 7 of finite entropy
such that

P|7 = ε(mod0).

Then, since P1 will be a generator for </7, we will have

hi!1) = HP1,11) = tf (P71| PfT) = 0 2 4 .

For any xeX1 and m e Z , let (q^v^, ...,(qn,vn) be the coordinates
of the particles of 3c in [m, m + 1) x R If q{^ q. for i <j, we will say that
the particles in [m, m+1) are labeled in natural order, and that the
particle with coordinates (qhVi) has index i in [ra, m + 1). If a particle
of T 7x with coordinates (q 4- v, v) has index j in [m, m + 1), we will often
say that the particle of x with coordinates (q, v) has index j in [m, m + 1)
at ί = l .

We choose for P 7 the partition whose atoms are of the form

^ ( m , , * , ) (mf.ki) (» B ,u = ^e^l^o f i ]χR( 5 ) = w ' a n d t h e particle of x

with index i in [0,1) has index kt in [mi? mf + ί) at t = 1, for all i = 1,... n}.
The theorem now follows from two lemmas:

Lemma 5.4. PjΊ = ε (mod 0).

Lemma 5.5. # ( P 7 ) < o o .

Proof of Lemma 5.4. It suffices to show that

which we will do by showing that P 7 contains sufficient information to
determine (modO) all of the coordinates {(q^Vi)} of the particles of a
point 3 c e l 1 , and hence 3c itself. Now P$i determines the number of
particles in each unit cell [ί, i+ 1) xlR of 1R2, as well as the immediate
future of each particle to the extent of requiring, for example, that the
particle which at t = 0 has index j in [/c, k + 1) have index / in [m, m+1)
at t = I 2 5 . Similarly ( T 7 ) " x P$i provides analogous information for times
t = 1 and t = 2, and the index information determined by P 7 enables us to
unambiguously trace every particle from t = 0 to t = 2 with respect to the
partition of X1 into unit cells, using the information determined by

2 4 See [11] .
2 5 By the information (about 3c) determined by a part i t ion P we mean the information

we would have if we knew of which element of P x is a member.
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PgiV (T1)'1 P51. Proceeding in this way, we see that P determines the
trajectory of each particle of 3c e X1, with respect to unit cells, from
t = 0 to ί = oo, so that the velocities of all the particles are uniquely
determined. The Jacobi theorem for the irrational rotation of the circle
implies that the positions of particles with irrational velocity are also
determined by P1, since for irrational v the sequence q,q + υ,q + 2v9...
is dense in 1R (mod 1). Finally, since the Maxwellian distribution
μβ = ]/β/2π e~

ί/2βv2 assigns zero measure to the set of rational velocities,
we have that

The proof of Lemma 5.5, which depends upon elementary estimates,
will be given in Appendix II.

The method of proof of Theorem 5.3 is an extension to an infinite
system of particles of the method of proof for the vanishing of the entropy
of a finite ideal gas [14]. We also remark that a similar argument, using,
in particular, a partition analogous to P1, can be used to show that an
infinite one-dimensional system of hard rods has vanishing space-time
entropy (Aizenman, private communication). Finally, we observe that
though the above argument works only for a velocity distribution
assigning zero measure to rational velocities, the theorem is valid for an
arbitrary velocity distribution, since we can always change the time
scale in such a way that the argument is applicable and then apply the
formula of Abramov (Section 3g) to obtain that

where «/τo is the group generated by unit space and time translations
corresponding to a change of time scale by the appropriate factor τ 0 .

6. Space-Time Ergodic Properties of Periodic Systems

We will deal explicitly with periodic systems with one spatial dimension
(v = 1); the results and proofs extend readily to arbitrary v, at the expense
of a somewhat more cumbersome notation2 6. We denote by Se^ the
unit translation of the base measure space (X, Σ, μ).

a) Space-Time K-Systems

Having shown that the ideal gas is not a K-system for (Ψ9 T
1), we

formally distinguish it from systems like the Lorentz gas by establishing
2 6 We mention only that one must extend the lexicographical ordering, which will

be used in several places, to a lattice of a larger number of dimensions.
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that such systems are, indeed, space-time K-systems. That such systems
have K-partitions which are translation invariant strongly suggests
that this is the case.

Theorem 6.1. // (X, Σ, μ, T) is of periodic-K-type, then (X, Σ, μ, (S, T))
is a K-system.

Proof. If we can express ζ [ζ a base K-partition of (X, Σ, μ, T)] in
the form ξ& where ξ (a measurable partition) satisfies 1) and 3) of the
definition of an (S, T) K-system (see Section 2e), we will be done, since
2) and 4) follow from the (f) K-properties of ζ [1]. We_obtain such a ξ
by setting ξ = f ~xζV ζ+, where ζ+ is the restriction of ζto φ (Xo xΈ+\
i.e.,

where ε+ is the partition of X generated by functions measurable in
φ(X0 xΈ+). It is clear that ζ = ξΈ and that ξ is increasing. The theorem
thus follows from

Lemma 6.2. /\S~nξ=T~1ξ.
n

Proof. The lemma follows, using Doob's martingale theorem
(see [8]) 2 7, from the fact that for all A e Σ,

l ζ ) , a.e..

It sufficies to establish that the above equality is valid for A a member
of Σκ, K a bounded region of X. But for A of this form we can find an N
such that for n>N,

(\\T-1ξ), a.e.;

we merely choose N so large that

aιnKnφ{Xox{N,N+l,N + 29...})=φ9

for all oceT~1ζ.
The preceding argument can be applied, essentially without modifi-

cation, to systems of periodic-σ-K-type, such as the Lorentz gas 2 8 .
We thus have

Theorem 6.3. System of periodic-σ-K-type (and in particular the
Lorentz gas) form space-time K-systems.

21. For any probability measure μ, any measurable set E, and any measurable partition
α, we denote by μ(E || α) = μ(E || ά) the conditional probability of E with respect to a or ά
(see [8] and Footnote 20).

2 8 The region K must now be bounded in the "velocity" direction as well.
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b) Space-Time Entropy

We now investigate the space-time entropy of infinite systems of
noninteracting particles. The proof of the vanishing of the spacetime
entropy of the infinite ideal gas suggests - and can be generalized to show -
that the space-time entropy of any infinite system whose finite volume
one-particle components have vanishing time entropy vanishes as well.
We will prove a stronger result.

A natural quantity to consider for infinite systems is the time entropy
per unit volume. It would be nice if the space-time entropy of these
systems could be so regarded. We will show that this is quite generally
the case.

We first define the notion of the time entropy per unit volume of a
periodic system (X, Σ, μ, T). Recall that we have denoted by TR the
restriction of T to the rectangle R. Let (R, ΣΓΛR,]1R, TR) be the Poisson
system built over (R,ΣnR,μR,TR), where μR is the restriction of μ
to ΣnR, the sub-σ-algebra consisting of sets of the form AnR, AeΣ.
We define the T-entropy per unit volume by

h1(T)=\ϊm(ί/\\R\\)h(TR),
R-> oo

where \\R\\ is the volume of JR (see section 2) 2 9 . We will first prove

Theorem 6.4. If (X, Σ, μ, T) is of periodic-bounded-type, then

Proof. For P a partition of Ro of finite entropy, let us denote by
Q0P the "product" of Qo and P, i.e., the partition of X whose elements
are the translates of elements of P. Let h(P9 T) be given by

h(P9 T)= lim (ί/n)H((V T^Qop) nR0

/
j=o

= H\(TQ0P)nR0

where we are using the following notation: For any partition P' of X we
denote by FnR the partition of R induced by F [with normalized
measure μR/μ(R) on JR]. Let h(T) be given by

Λ(Γ)=sup h(P,T).
P finite

2 9 R{Ri) will always be a rectangle. By i^—> oo, we mean that the length of the smallest

side of Rι approaches infinity. The above limit exists because R\->h(TR) is superadditive.

3 0 When we write h(TR) we regard TR as an automorphi sm of the probability space

{R,ΣnR,μR/μ(R)).
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We will use the fact that in the same way as for a single automorphism
[14], if {Pn} is an increasing sequence of partitions of finite entropy
with \f Pn = ε (mod 0), or even with \J (Pn)y = ε (mod 0), then

n n

h{J)=\im h(Pn,J)
«—• GO

for any (normalized) dynamical system (X, Σ, μ, J). A completely
analgous result holds for h.

Theorem 6.4 easily follows from 3 lemmas:

Lemma 6.5. h(T) = lim h(TR) = h(TR).
K->oo

Lemma 6.6. h{J) = μ(R0) h(T) = ρh{T).

Lemma 6.7. h(TR) = μ(R)h(TR) = ρ\\R\\ h(TR).

Proof of Lemma 6.5. The first equality follows from the observation
that for R such that RoCR and T{R0)cRwe have

indeed,

for any finite entropy partition P of RQ. The second equality holds
because for any finite (measurable)31 partition P of Ro. we have

h((Q0PVTQ0P)nR, TR) = h((Q0P\/ TQ0P)nR0, T) 3 2 .

Proof of Lemma 6.6. We compute h(J>) in a manner similar to the
method used for computation of h^1). For P a finite partition of Ro,
let P be the partition of X constructed from Q0P in a manner analogous
to the way in which Pι was constructed from the partition of X1 into unit
cells: Let P = {fj}, i = 1, ...,fc, and label the atoms of Q0P using the
ordered pairs (n,ί),neΈ, i=ί,...,k: (n,ί) is the label of the "copy"
of Pi in Rn = SnR0. We order the labels lexicographically [i.e., (n, i)^(mj)
if n<m or if n = m and iSβ Using this labeling we form the future
<20P-names33 of elements xeX and order them lexicographically
using the lexicographical ordering of labels. Given xeX, we index the
particles in each element of Q0P according to this ordering. P is the
partition of X according to the number or particles in each of the elements
of P, the element of Q0P containing, at t = -1, each of these indexed
particles, and the indexed at t = — 1 in their respective elements of

3 1 All part i t ions to which we henceforth refer are to be unders tood as measurable.
3 2 (QoPV TQ0P)nR is finite since T(R0) is bounded.
3 3 If F = {P } is any part i t ion of a space X with automorphi sm T, the future P'-name

of a point x e l i s the sequence (iί, i2, ...) when Tjxe P[.J = 1 , 2 , . . . .
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Q0P of each of these (ί = 0) indexed particles. One easily verifies that,
like P7, P has finite entropy.

Using the remarks preceding Lemma 6.5 we may obtain that

h(J)= sup h(P,J):
P finite

we can easily construct an increasing sequence {Pn} of finite partitions
of Ro for which V (Pn)s = ε (mod 0). But

) = H(P\\Py) = Σ
n = 0

since the index information at t = — 1 is determined by Pf, particles
coming from R_n, n > 0 , at ί = 0, automatically having lower ί = — l
indices than particles from JR0, which in turn have lower ί = — 1 indices
than particles from Rm,m>0. Taking the supremum over P finite leads
to the desired result.

Proof of Lemma 6.7. We have that

h(TR)= ξ (e-»

= Σ (e-μWμ(R)n/n^nh(TR)
tt=O

= nh(TR).

The first equality follows from the fact that the entropy of a direct
sum is the average of the entropies3 4. The second equality follows in a
manner similar to the proof of Lemma 6.6.

Γf./nχn rrxn\ h(ΐ>Xn T^xn Λ
UL\Γ •> L ) — "l/symm-indexedj ^ symπv ?

where T is an automorphism of a probability space (X,Σ,μ) and
Psymm-indexed is the partition of Xs

nymm according to membership in the
elements of the partition P of the (future P-name) indexed "particles".]

3 4 (ί/n)H[ V TJ(PVγ)) ={ί/n)H[[ V TJP) \

1 ' T*P\\γ

where Tis an automorphism of a probability space with (invariant) components γk, γ = {γk}
is the partition into components, Pnyk is the restriction of P to yk, and Ty^ is the restriction
of T to yk.
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The third equality follows from the well known fact that the entropy
of a direct product is the sum of the entropies [since

We have thus shown that our expectations are realized for systems
of periodic-bounded-type: the space-time entropy equals the time entropy
per unit volume (in any rectangle R) which in turn equals the time
entropy of a single particle moving in any rectangle times the average
number of particles per unit volume.

We would like these results to be valid for systems such as the Lorentz
gas, for which T(R0) is not bounded because Ro contains points corre-
sponding to particles with arbitrarily high velocity, but which is non-
etheless of periodic-σ-bounded-type (see Section 2)35. (The speed of a
particle is a constant of the motion for the Lorentz gas.) Since systems
of periodic-σ-bounded-type are in a strong sense limits of systems of
periodic-bounded-type we should be able to "go to the limit" and obtain

Theorem 6.8. If (X, Σ, μ, T) is of periodic-σ-bounded type, then

Proof. Let X = (J Xn display (X, Σ, μ, T) as a system of periodic-σ-
n

bounded-type (see Section 2). Let Σ(Xn) be the (invariant) sub-σ-algebra
of Σ corresponding to the measurable partition of X into the set X — Xn

and the points of Xn. Let us denote the system (X, Σ, μ, T) by τ, and let
τ(Xn) be the factor of τ with respect to Σ(Xn)

36. Then τ(Xn) is "essentially"
of periodic-bounded-type, since τ(Xn) can be expressed as the direct sum

where τ'(Xn) is the restriction of τ to Xn and t(Xn) is the system consisting
of a single (invariant) "point" (of infinite measure) - the set X — Xn

3Ί.
Furthermore, W = r ( J Q x ϊ ( jς).

Now, since τ'(Xn) is of periodic-bounded-type we can apply Theorem 6.7
to obtain _ _ _

h(S'(Xn)) = K(T{Xn)) = (i/IIΛII) h(T;(Xn))

=μ(XβnR0)h{rR(Xj).
3 5 F o r the proof of T h e o r e m 6.7 the boundedness of T(R0) was used only to guarantee

the finiteness of the entropy of (TQ0)CΛR0. Therefore the conclusion of Theorem 6.7

in fact applies to the Lorentz gas (Maxwellian velocity distribution); the following theorem

indicates that for systems of periodic-σ-bounded-type no assumption concerning the

entropy of TQonRo or, in particular, the velocity distribution is necessary.
3 6 The factor of a system with respect to an invariant sub-σ-algebra Σ' is the system

obtained by identifying points in the same element of Σ.
3 7 We denote, as usual, the Poisson system built over τ by τ....
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We also have that

h(J(XH)) = h{J'(XH)); h(TR(Xn)) = h(Tί(Xn));

h(TR(Xn)) = (μ(XnnR0)/μ(R0)) h{T^Xn)).

By virtue of the remarks immediately prior to Lemma 6.5, the desired
result follows upon taking the limit n-*oo (using, for example, the
definition of a measurable partition [13,14] and a diagonalization
argument).

Finally, we "calculate" the space-time entropy of the Lorentz gas.
Let τ(=(X,Σ,μ, T)) be the base system of the Lorentz gas, and let τs

be the component of τ corresponding to a particle with speed s. τ is the
direct integral of its components τ s. We have shown that the space-time
entropy of τ is ρh(TRo). Using the representation of the entropy of a
direct integral as the integral of the entropies of the components [19]
and the formula of Abramov (see Section 3g), we obtain that

h(TRo) = J h(TRoJ λ(ds) = h(TRo,,) J sλ(ds),
0 0

where λ is the distribution on the speed of a particle induced by μ. Thus

consistent with the interpretation of it as a measure of the loss of
information (due to "collisions") per unit volume per unit time.

7. Concluding Remarks

The results of the previous section, in addition to indicating that the
space-time entropy of the systems we have considered has a natural
interpretation, establish that the time entropy per unit volume is an
invariant (see [8,10]) of our expanded framework, at least for the class
of systems of the kind considered. We also have the desirable result
that two such systems for which the "dissipation" per unit volume occurs
at different rates cannot be isomorphic.

We would like these results to extend to general translation invariant
equilibrium states of Hamiltonian systems (for which the infinite volume
time evolution can be appropriately defined [20-22]). The concept
of time entropy per unit volume could be defined by using, say, sequences
of cubes with either reflecting of periodic boundary conditions [21].
We might then expect the space-time entropy of the equilibrium states
of these systems to equal the time entropy per unit volume, so that the
"local rate of dissipation" would be an invariant of a larger class of
systems, including all systems of physical significance.
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We have found that a system (e.g., the ideal gas) may be Bernoulli
under both space translation and time evolution separately without
being even a space-time K-system, not to mention Bernoulli. We have
not found any models of realistic systems which are space-time Bernoulli,
though we can give a characterization of such systems which makes
clearer what is involved. It is clear that if a system is Bernoulli under the
space-time group, it is Bernoulli under space translation (5) and
possesses an S-invariant independent generator for T(the time evolution).
The converse is also true. Indeed, since factors of Bernoulli shifts are
Bernoulli [7], any S-invariant independent generator for T can be
expressed in the form ξs, with ξ, Sξ, S2ξ,... forming an independent
sequence of partitions, so that ξ is, in fact, an independent generator for
(S, T).

We give a simple example of a class of (S9 T) ^-systems: Let (B, f)
be a Bernoulli scheme. (We are here dropping explicit reference to the
measure.) Let X = BΈ (measure theoretic product) and T=fx and let
S act in the obvious way as a translation on BΈ. It is clear that X Qt (Qt = B

^ i

for i φ 0, Qo = P, an independent generator for f) is an independent
generator for (S, T).

We observe that though, e.g., the Lorentz gas clearly exhibits better
thermodynamic behavior than, say, the ideal gas, a nonequilibrium (i.e.,
non-Maxwellian) velocity distribution for it does not approach, as the
time approaches infinity, the appropriate Maxwellian distribution. This
is, perhaps, not at all to be unexpected because velocities are not very
"natural" within the framework of discrete symmetry (spatial for the
Lorentz gas). A question of interest might be the behavior of the velocity
distribution in systems with continuous symmetry (</ = full space-time
group) and strong (say, K or Bernoulli) ./-ergodic properties. Generalized
dynamical systems with continuous symmetry can be obtained in the
obvious way from systems of interacting particles, which we would hope
exhibit the appropriate behavior of the velocity distribution functions.

Finally, we note a connection between systems with completely
positive entropy (in particular, K-systems) and the possibility of "finite
approximation" of a dynamical system. A Hamiltonian system (say)
whose time evolution has completely positive entropy does not admit of a
finite approximation, in the sense that no coarse-grained (finite)
observation-corresponding to a finite partition-performed at regular
intervals (at times t= — τ, — 2τ, — 3τ,...) throughout the entire past can
always determine with absolute certainty the outcome of the measurement
at ί = 0, and conversely. It is therefore not surprising that the time
evolution of an infinite system should form a K-system (= completely
positive entropy for single automorphism [14]), since it is not very
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plausible that a (realistic) infinite system should be finitely approximable.
For a system with completely positive space-time entropy, however,
something much stronger is true: it is not even locally finitely approxi-
mable, in the sense that no finite local observation, performed at regular
intervals throughout all of space and the entire past, is sufficient to
always determine the outcome of a present performance of that obser-
vation.

Appendix I

Fock Space Representation of Induced Unitarίes
of a Poίsson System38

Let (X,Γ,μ) be the Poisson probability space built over (X9Σ,μ).
Let us denote L2(μ) by jf and let us write Jfn for J^fy

n

mm, n = 0,1,2, 3,...
(Jfo = <C 1). We identify jfn with the space of all symmetric square
integrable functions on (Xw, Σ*n,μXn). We will show in particular that
L2(μ) may be identified with the boson Fock space built over

( 00 \ 00

= 0 tfλ in such a way that Uτ is identified with 0 Ufn [for all
w=0 / n=0

automorphisms T of (X, Σ, μ)], which follows from the

Theorem. There exists a sequence of unitary mappings
£ n : J f B - > L 2 ( μ ) , rc = 0 , l , 2 , . . . 3 9

such that
1. Σn(Ufnf) = UfΣJforallfe 3tfn,n^ί (and all automorphisms T).
2. Σnj4?n is orthogonal to ΣmJ^m for all m + n.

3. I2(/i)=©ίχ
m = 0

A. If A is a subset of X with finite measure, and if f(xί9..., xn) e JΊ?n

is zero a.e. outside of A, then Σnf is measurable in A.
Proof. We proceed as follows: We first assume μ(X) = oo we prove

analogues of 1. and 2. for dense subsets of the 3/Vn and extend to all the
3tfn9 obtaining 3. and 4. in the process. We then use 4. to remove the
restriction μ(X) = oo.

Let $ denote the set of all square integrable functions on (X, Σ, μ)
with support in some A with μ(A) < oo [i.e., f(x) = 0 a.e. outside of A~]
and with j / d μ = O. Jf7 is dense in J f in view of our assumption that
μ(X) = oo. Let J^n denote the n-fold algebraic tensor product of $

3 8 The material of this appendix is due to Oscar Lanford.
3 9 Σo: Jfo—•(£ i c L2(μ) by inclusion mapping.
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with itself regarded as a linear subset of 2fCn. Now $n is dense in J-fM
and for /„ e jin

$μ(dxi)fn(x1,...,xn) = 0

for all i. Define Σn for / e J ζ with support in some A by

(a function on X). A straightforward computation indicates that for
each n, Σn defines a unitary mapping of $n into L2(μ) such that Σnjfen

is orthogonal to the constants and to ΣmJfm for m + n. We define Σn

through extension by continuity, immediately obtaining 1. and 2. of the
theorem. 4. is valid for fe3$n\ to establish it for all of 3tfn we compute
Σnf for feJίfn vanishing outside of A. If, for example, / e Jf7, we find a
sequence / ( m ) e Jife converging to / in L2(μ); then

ΣJ= lim Σ i / ^ .

We may construct the / ( m ) by forming a sequence Mm of subsets of X
with μ(MJ—>oo (μ(MJ < oo) and put

f m \ x ) = f { x ) - ( φ M J l

The latter term clearly converges to zero in L2(μ). Also,

Since NMJμ(Mm) converges to the constant function 1 [in L2(μ)], we have

Σ1f = Σ1f-ifdμ.

Proceeding in a similar manner, we may express Σnfn, for /„ e ̂  vanishing
outside some Λ, as a linear combination of the form

Σnfn = Σnfn + " l CjΣjfj (Σ0 = Σo) ,
7 = 0

where
fj{xu...,xj) = $μ{dxj+1)...μ{dxn)fn{xu...,xn),

displaying Σnfn as a function measurable in A. We see also that the
finite linear span of functions of the form Σnfn contains all functions
of the form Σnfn. Since functions of the form

exp(ίθNΛ)= f (iθNΛ)
n/n\

n = 0

are in the closed linear span of functions of the form Σnfn, we have
established 3.

4 0 φM is the characteristic function of M C X.
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Finally, if μ(X) is finite, we replace (X, μ) by ( l u Γ , μ®μ% where
(X\ μ') is an infinite measure space. This replaces (X,μ) by (XxX\
JixJΓ). Since 4. implies that if/e J^n{X), Σnfe L2(μ), the proof is complete.

Appendix II

Proof of Lemma 5.5

The finiteness of f/(Pθ follows from elementary estimates, using the
following:

a) For measurable partitions α, β9 and δ,

H(aV β\\δ) = H(a\\δ) + H(β\\a\/δ)

(see [14]).

b) All moments of a Poisson distribution are finite.
c) All moments of a Gaussian distribution are finite.

00

d) For Σ Pi = 1 and p-} ̂  0 for all j ,

n = l \ Ϊ I = 1

since log ί is concave in (0, GO).
e) H(P) S log k if P has no more than k atoms.
We estimate HiP1) by writing

p1 = p χ v P 2 V P J ,

where Px is the partition of X 7 according to the number of particles in
[0,1) x 1R, and P2 is the refinement of Px according to the cell membership
at t— 1 of the indexed particles in [0,1). We then have that

H(P') = H(Λ) + H(P2 || Pt) + H(P' \\ P1 V P2).
Now

1) = H(ρ)=- § (e-V/"!)log(e-V/n!),

where H(0) = 0 and H(ί) is continuous for £e[0, oo). (ρ = μI(R0)
= μJ([0,1) x R ) We also have that,

00

H(P2 | |P1)=Σ ( e-
e
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where a>n= {xeXI\N[OΛ)xΈL(x) = n} and Cβ is a uniform (in n and ί)
bound on the entropy of the partition of ocn (normalized to unit total
measure) according to the cell membership at t = 1 of the particle
with index i in [0,1)4 1.

For y an atom of P 1 V P 2 , let Pγj be the partition of γ according to the
index at t = 1 of the particle with index j in [0,1). We have that

H ( P ' | | Λ V P 2 ) = X μ'(y)H{PIny)
yePίVP2

n(γ)

S Σ μI(y)ΣH(Py,h
γeP1WP2 j=l

where n(y) = ihe value of ΛΓ[0 1 ) X I R characteristic of y. Let PγJ be the
partition of γ according to Nj9 the number of particles at time t = 1
in the cell containing the particle which at ί = 0 has index j in [0,1).
Then

H(PyJ 5Ξ H(PγJ V PγJ) = H(PyJ + H(PγJ \\ PyJ.

Now, using e) and d), we obtain

where pk is the probability, given y, that Nj = k. Also, Pyj is the partition
of γ according to the value of NAγ , with

ΛyJ = (T1)-' ([nj(γ)9 nj(y) + 1) x R) - [0,1) x R

where rij(y) is the left coordinate of the cell containing at t = 1 the particle
with index j in [0,1).

Thus H(Pyj) = H(μI(Ayj}\ with μ\AyJ)<Q, so it appears that
H(μI(Λyj))^H(ρ). In any case, since H(t) is continuous for ί e [ 0 , oo),
we have H(μI(Ay Jj) ^ H(ρ) for some ρ e (0, ρ] not depending upon y and j .

4 1 In the general situation (see Footnote_35) we do not obtain a uniform bound;
instead we reason as follo_ws: Let P = {PJ and P be as in the proof of Lemma 6.6. Since we
may write P = PγV ••• V Pm, where P£ is defined in the obvious manner, we may, by virtue
of a), assume that P is trivial. Let Q = TQ0 n # 0 and let Q{ϊ) be the partition of (jR J, (Σ n Ro)

x",
{μRo/μ(Ro))x") according to the "position" of the ith particle relative to Q. Let # i be the
index of the ith particle (see proof of Lemma 6.6). We also denote by # f the partition
of Rn

0 determined by # f. We have that H(Q) < oo and must show that H({QW V • V Q(n))
n { # 1 = l , . . . , # B = w})<oo.But
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Thus,

00

H{P> || Pί VP2)^Σ «£'(«») (H(Q) + log(n + p))

completing the proof.
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