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Abstract. For the truncated Schwinger functions of the P(Φ)2 field theories, we show
strong decrease in the separation of points. This shows uniqueness of theories with P
of degree four. We also extend the domain of analyticity in the coupling constant. For
theories with P of degree four, the combination of these two results gives Borel summability.

Introduction

In this paper, we consider the two dimensional Euclidean boson
field theories and we give bounds on the truncated Schwinger functions
which have the decay properties expected from perturbation theory
and introduced in statistical mechanics in [3]. We use methods known
from statistical mechanics [9] to obtain these bounds.

We first formulate the bound and give then some applications. The
Schwinger functions for Euclidean field theories in two dimensions in a
finite (space-time) volume A are defined as the moments of the normalized
measure

where dμm2 is the Gaussian measure on 5 '̂OR2) with mean zero and
covariance (-Δ+ m2)~\ and

V(Λ)= $d2x:P(Φ):(x).
A

Here, P is a lower bounded polynomial, and Wick ordering : : is with
respect to the free theory defined by dμm2.
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Let SF(λ) = $Fe-λv{A)dμm2, where F= f\ Fj9 and
7 = 1

1=1

with suppWjCΔj x ••• x zlj9 A } a unit square in 1R2 centered at a lattice
point of Έ2, and Wj e Lp, for some p. The degree of F, is defined to be
k{j)

£ n\j\ The truncated functions are then defined by
1=1

n A P({1,...,«}) p

sJ = - Σ - Σ Π (-Sπ

where Σp is the sum over all partitions of {1,...n) into p non empty sets
Rx, ...Rp. Our main technical estimate is

Theorem A: There is an ε > 0 , and constants K1,K2,K3 depending
on p>\ such that for \λ\ <ε, Re/l>0, and m sufficiently large,

Σ
3=1 j=l\i,Δi =

• n\ e-
κ3d(AΊ,...Δί<)

where A[,...Ak are the distinct squares in KjAt and d(Δ[,...Δβ is the
length of the shortest tree connecting the centers of these squares.

This theorem is given as Theorem 6 and 8 below. Theorem A states
that the "strong decrease property" of Duneau, Iagolnitzer, and Souillard
[3 b] holds in P(Φ)2 models. Our improved bounds as compared to [5]
come from using methods from statistical mechanics which exhibit
in a better way the cancellations between the numerator and the
denominator (see also Section 3 for a more detailed explanation).
In the same way one proves (cf. Theorem 7 below):

Theorem B: Let F = Fί. Then, for \λ\ < ε, Re/l > 0, and m sufficiently
large,

dn I SF(λ)
dλn\SF=1(λ)/

where d is the degree of the interaction polynomial P.

Theorem B implies that the Φ 4 theories (degP = 4) are uniquely
defined by the Taylor series of the Schwinger functions at λ = 0, since
they are analytic in R e λ > 0 , \λ\ < ε and C00 on the imaginary axis with
bounds preserved (cf. Hardy [7], p. 194). This means that among all the
theories which are analytic in the same region, the one constructed by
Glimm, Jaffe, and Spencer [5], is the unique one corresponding to
conventional perturbation theory.
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Im λ

Re λ

Fig. 1

In Chapter II, we extend the domain of analyticity and the bounds for
P(Φ)2 in λ to a region of the form of Fig. 1. Let <3)k

p be the set of functions
/ which, for some ε > 0, are analytic in the region

{(z 1,. . .,z 2 / c)eC 2, |argz ί |<ε,z=l,.. .,2/c}

and for which

ll/llp.e = osup<e( f dx1...dx2k\f(x1e
iε\...,x2ke

u')\η ' < w .

Then we show the

Theorem C:// Wje @k

p

u\j= 1,... n and degP = 4, one has Borel
summability of the Schwinger functions SF{λ)/SF=1(λ) at λ = 0.

Note that such a result has been obtained for Φ4 theories with
cutoffs by Rosen and Simon [8]. Also, Dimock showed in [1]
SF(λ)/SF = ί (λ) to be C00 at λ = 0 for all lower semi-bounded polynomials P,
and that the derivatives can be identified with truncated functions, which
is a useful input for the proof of Theorem B.

Theorem D: The "pressure" lim logSF=1(λ) has the same sum-

mobility properties as SF(λ)/SF=1(λ).

Chapter I
Bounds on Truncated Schwinger Functions

(Mayer Expansion)

1. A Reordering of the Γ-Expansion of [5]

We define a reordering of the Γ-expansion of Glimm, Jaffe, and
Spencer [5] which will turn out to be well adapted for the cancellations
we want to carry out in the truncated Schwinger functions.

In this section, we use some notations of [5] without repeating the
definitions. We apply the Γ-expansion to the theory inside a box Y
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(a union of unit lattice squares over TL2 ClR2) with an interaction inside A,
with YjΛ,dYndΛ = 0 and Dirichlet boundary conditions on dY.
We shall obtain bounds independent of Y and A. As the theory is "regular
at infinity" [5, p. 209], proving uniform bounds for all bounded Y
and A C Y implies that the same bounds hold in the infinite volume limit.

We change notation with respect to the introduction and we will
come back to the original notation in Section 6. Define Fj as in the
introduction. For Ω a union of lattice squares, define

j'.AjCΩ

with the conventions F(&}= 1, empty products = 1. Let

note that

The basic formula of [5] is

s i d s d

ΓcY* 0 beΓ dSb

ΓcY*

where 7* is the set of lattice lines of Y\dY. Two lattice squares are
called connected if they have a boundary segment in common. Given
Γ c P , the lattice lines YQ where YΓ: = dYv{Y*\Γ) define a partition
of Y into connected sets Xί9 ...,XpiΓ). Let Xi = Xi — d(X^ so Γ defines
a partition into connected sets Xί9..., Xpin Note that dXinΓ = 0
and therefore the Xf define a partition Γ = uΓ f , Γi = ΓnXi of Γ. By
definition of SF ( β ) > y l > r, there are Dirichlet boundary conditions on dXi9

so that
P(Π

ί = l

The rearrangement consists now in collecting all terms in £ which give
r

rise to the same partition of Y. Given X, connected, Γ C 7* is called
compatible with X, (notation Γ/X) if X\XΓ is connected. In other terms,
if &— {Xu ..., Xp} is a partition of 7 into connected sets and FJX^ for
all ί, then Γ = u Γ ( generates again ^ . Therefore

P{Y)
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where Σp(γ) denotes the sum over all partitions of Y into r = 1, ...|Y|
non empty connected sets (which are unions of lattice squares).

We now fix F and A, and we define

ί Σ SF(ΩnX),Λnx,n if X & connected

S' (X) = \ Γlx

Ω 10 , otherwise.
Then

P(Y) r

Xι,...Xri=l

and
P(Y) r

C p-λV(Λ)j _ Y ΓΊ c/ (y\
J e ahicγ~ 2-ι 11 ύφ\Λί) •

Note that for XnΩ = 0, S'Ω(X) = S'φ(X).
In contrast to [5], we also expand in sums over compatible contours

for regions not intersecting Ω = supp F, i.e. we keep the expansion in
its primitive form and do not perform the resummation over the above
terms.

2. The Functional Calculus for Power Series

It is our desire to perform cancellations in SF(ΩhΛ/SF(φhΛ by expanding
the numerator and the denominator into power series and we then
invert the series for the denominator. We apply the formalism of Ruelle
[9] with the following conventions.

We number the (centers of the) unit squares in Yin the obvious manner
by a subset Y of Έ2. The ^indices" in our series will be elements of the
set Ϋ of functions N from Y to the non negative integers, N(ί) ^ 0 for i e Y.
The support N of N is the union of the lattice squares associated to the
ieΈ2 for which N{ί)>0. We write N^ 1 if N(ί)^ 1 for all i, we use the
notation |N| = £ N{i\ and for XCY we define the characteristic

function χx by χx(i)= 1 if i "in" X, 0 otherwise; (χx) = X, χxS l Also
N\= Y\N(ι)l

i

The functional calculus relates functions on Ϋ as formal power
series. If /, g are functions on Y, then f*gis defined by

(f*9)(N)= Σ Nl

and / + g by linearity. The unit for the product is 1 (JV) = 0 unless N = 0.
Inverses, exponentials and logarithms are defined in the obvious fashion,
and one defines (DNf)(M) = f(M + N); for \N\ = ί, DN is a derivation
with respect to the ^-product.
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3. The Series for the Normalized Schwinger Function

We combine the definitions of Sections 1 and 2 and we proceed to an
expansion in those components of the partition ΛΓl5... XpiΓ) for which
\Xt\ = 1. Since a contour Γ/X has the property of factorizing the measure
across dX, we see that what we are doing is actually an expansion in the
smallest regions for which the measure factorizes. It will then turn out
(as to be expected) that for the truncated function, these regions have
to be connected and to contain all squares of Ω, and this will yield the
desired decay properties (strong clustering of [3]) which allows for the
bounds on derivatives with respect to λ.

We say that X is Ω-connected {X^Ω) if X C Y and if each connected
component of X has a non trivial intersection1 with Ω. Also X^Ω means
X^Ω and i D Ω . W e rewrite Eq. (2) W

P(Y)

SFM,Λ= Σ Π S'anXj(Xj) Π S'φ(Xj)
Xi...Xry. Xj^Ω / : -iXĵ Ω

P(X) r P{Y\X) s

= Σ Σ Π S W ^ ) Σ Π W ).
XDΩWι...Wrj=l Xί...Xsj=l

Define now Z(X) = /]^[ S'φ(Δ)\ where the product ranges over the
\

unit squares of X. By continuity, Z ( J ) ^ i for |A|<λ0, Re/l^O. Note
that Z ( I u Y) = Z(X) Z(Y) if Xn Y= 0. Now

P{X) r

SFW.A=Σ Σ ΠS'an
Wγ...Wr j=l

P(Y\X)

• Σ z{γ\x) Π ;

Xi. .Xs J' lXjl^i

This suggests the definition of two functions on Y:

IfΩΦ0,welet

P(N) r

Σ Π Sf

a(Xj) Z"1 (Xj), if N S 1 and

Xj^Ω V

LO, otherwise,

and if Ω = 0,

_ }Sφ(N) Z'^N), if N S 1 and N connected, \N\ φ 1
SφiN)~ 10, otherwise.

1 I.e. at least one unit square.
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We observe that SΩ(N) (Ω arbitrary) describes the fluctuations
between a theory in which there is coupling from the free covariance
(absence of boundary conditions) and a theory in which there is no
coupling (Dirichlet data on lines in Γc, Γ\N). These fluctuations are
small at large mass. It is therefore our aim to do an expansion in
elementary squares with these fluctuations as coefficients. This is the
purpose of dividing by Z~ι(N) in the above definition.

We note now that
P(X) 1

Σ =ΣJv Σ .
Xί...Xr

 r

and setting Sφ(0) = 1, we get

where exp is the *-exponential.

SF{Ω)Λ ΣΩ{

Xi is connected

/ ι_i \^^\P ώ) \Xw)
WCY\X

Therefore

Σ '
WcY

We Y\X J

lexpSΦ)(χw)

Let T(N) = (exp Sφ) (N) if JV^l, and 0 otherwise and let D{N)
(SΩ * T) (N) if N S 1J and 0 otherwise. Then we define ^Ω by writing

SF(Ω),Λ = N =Y#'(N)NΓ1 (4)
SF(Φ),Λ ΣTWNΓ1 j: Ωy ' '

N

so that 9?

Ω = D * Γ" 1 . Note that the sum in (4) extends over all JV and
not only over N of the form χ z ; this is due to the inversion of the power
series for T~

4. Bounds on £fΩ{N)

We rewrite Eqs. (3) and (4) as

W 0 = Σ SΩ{χx)Qx(N-χx)
 N[ (5)

NDX^Ω \^—Xx)1

where the "quotient" Q is

QX(M)= Σ AMJT-^Mz)—-. (6)
Mi+M2 = M M2

MιnX=φ

The bound on £fΩ(N) comes from a bound on Qx.
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Lemma 1. There is a C1 > 1, and for all K>0, there is a λo>0
such that for \λ\ < λ0, Re A > 0 and m sufficiently large one has

Proof. The proof uses an induction on \M\ + |X| and the following
recurrence relation, valid for A C X, A a unit square

Proof of the recurrence formula (7):

Σ Σ
Mί+M2 = M-χA Nι + N2=

Σ CΊ / A T \ V ^

NίC(M-χAΓ N2n(XuNι) = 4

which proves (7).

Note that \X\A\ + \M\ <\X\ + \M\ and \XuN\ + \M-χAuί9\<\X\
+ |M|, so that Eq. (7) allows for an induction on |X| + |M|. To start the
induction, note that Qφ{M) = 1 (M). Suppose now the lemma is true for
\X'\ + \M'\ < \X\ + |M|. Then, by (7)

NnX=

where e α | y | bounds Z( 7).
We now use the definition of S'φ(Y\ By the bound of Proposition 5.3.

of Glimm, Jaffe, and Spencer [5, p. 218], we find

\S'JY)\ S Co exp(- (I Y| - 1) K(m
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Here, we have used that the number of bonds to make Y connected is at
least \Y\— 1. On the other hand, there are at most 2 4 | y | ways to place
bonds in Y. The construction of Sφ(Y) ensures that | 7 | ^ 2 . Therefore,
if \λ\ is sufficiently small, Re/l>0 and m sufficiently large, then

for some ε > a + 8 log 4. The bound on QX(M) follows now by setting

<Γ ( e -" ) | r |

where the last sum is finite because the number of Y^ A with 171 = k is
bounded by 48k. This completes the proof of Lemma 1.

We have the following bound:

Lemma 2. There is a C2> 1 and for all K>0 there is a λ0>0 such
that for \λ\ < λ0, ReA>0 and m sufficiently large one has

π lAϊ
AίeΩ

for some p> 1. Here nt is the number of Φ's in JFw localized in At.

Proof. By the theorem of the Appendix, we have that

Now Corollary 9.6 of [5, p. 237] follows with Π nt\ replaced by Π ^ ! 1 / 2 .
We now follow the proof of [5, Lemma 10.1] which is the main input
for the bound [5, Lemma 10.2].

(Lemma 10.Γ: There exists a K 1 3 independent of ra0 and nt such that

Π N(A)!1/2 S β K l 3 | Γ | C Σ n ί Π {M(Δ)\y Π ntI
1'2

Δ Δ

where N(Δ) is the number of Φ's in A coming from nt and the applications
of e~λV{A)). Lemma 2 now follows as in [5, Proposition 5.3, p. 218,
proved in § 10, p. 239].

By Eq. (5) and Lemmas 1 and 2 we get

NDX
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The last sum is bounded by 2 | iV | and therefore we have shown that for
all K > 0,

\ ̂  ||w||p Π |/nΓi Cψe~κm'mN! (8)

if Re λ > 0, |λ| < λx for some λ1 > 0, m sufficiently large.

5. Bounds on SF{Ω)tA/SF{9)tA

These bounds are obtained by using Eq. (8) and the following support
property of SfΩ.

Lemma 3. ^Ω{N) = 0 unless NQ^Ω.

Proof. We call X and Y separated (X<-+Y) if they have no boundary
segment in common. The formal power series have the properties:

PI) If for all M^N one has F(M + N) = F(M)F(N) and F(0) + 0
then also F~ι{M + N) = F~1{M)F~1{N\

P2) Qx(M)=i(Nf) if XnM = 0,
P3) if M++N, XnN = 0 then QX{M + N) = QX(M) 1 (JV),
P4) if M^N, then QX(M + N) = QXnM(M)QXnχ(N).
We leave the proof of PI) and the inspection of P2) to the reader.

Proof of P3): Sφ(N) = 0 unless N is connected. Therefore exp Sφ and T
factorize in the sense of P1), and thus so does T~ *. We rewrite QX(M + N),

0= Σ ΆM,) TiNJ T~\M2) T-\N2) ^\NJ
M1+M2=M M2\N2\

= Qx{M)l(N), which is P3).

P4) is now an easy consequence of P3).
We come back to Lemma 3. Let N = N1vN2, N2<-+Ω, then by

definition

AM
W 0 = Σ So{χx)Qx(N-χx)

XJΩ — Xx> •

= Σ Sn(Xx)Qx((N1-Xx) + N2)~F

Nl

= Σ SΩ(χx) QAN, - Xx) 1 (N2)
 Nl1 (by P4))

which is zero if N2 φ 0. q.e.d.

The bound (8) and Lemma 3 are the input to

Theorem 4. >F(Ω),Λ
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Proof. By (8) and Lemma 3, we see that for λ ̂  0,

SF{Ω)Λ v _λ

SF(Φ),Λ N N .N^Ω

since SF^>Λ ^ 1 by Jensen's inequality.
But,

L e - L L 11 (

NDβ XDΩ N(i)^ί i"e"X
w v / "e" Λ:

for some 0<K' <K iϊK is large enough. We use again the argument about
the number of X^Ω with \X\ = kto obtain the bound on the expansion
Σ ^ Λ O Λ Π " 1 for Re/1^0 and \λ\^λ0. Now, unnormalized Schwinger
functions of a finite volume are analytic in ReA^O, as can be seen by
approximating through cylinder functions and using Vitali's theorem.
Therefore the terms &Ώ(N) are analytic in the region ReA^O, | λ | < 2 0

since Z(Λ) does not vanish in this region. Thus Σe9β(A/r)AΠ~1 is an
analytic function which equals SF(Ω)>Λ/SF(φ)fΛ on λ^O so that
SF(Ω),Λ/SF(Φ),Λ is actually analytic in Re/1^0, \λ\ ̂  \λo\ with bounds
preserved, and independent of the volume A.

6. The Truncated Functions

Consider the functions of section 1, F = F1...Fn. For each subset
{iί9 ...,ΐk} of {1, ...,rc}, one can define a function ^iu^jk(N) associated
to F' = Fir..Fίk in the same way as SfΩ{N) was associated to F, Eq.(4).
Now write also S{iu>ik] for SF,{Ω)iAISF{φ)iΛ. Then the truncated function
Si is defined by

P({1,...«}) / γ\p p

SF = — X - Π SRj '
Rι...Rp P j=ί

JP({1,...«»
where ^ is the sum of partitions of {1,... ή) into p= 1,... n non

Ri...Rp

empty sets Rj= {ijr- ijrU)};j= U --P- We can rewrite this as

P ( % ' " } ) ( i ) p ^w^ίΛg
FF

J = l

We define therefore
1,...«}) / j\p

Σ " - ( ^ 1 * - * ^ p ) ( Λ 0 (9)
P

S O t h a t
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In analogy to the earlier sections, we establish support properties and
bounds on £fj.

Lemma 5. ^J(N) = 0 unless N is connected and N^Q={jAh

where A {is the support of F{.
 ι = 1

Proof. Case 1: Suppose N does not contain the square Ak. Then all
terms in the sum (9) contain a factor of the form ^R^k{Nj) with N{nΔk = ίd
which is zero by Lemma 3. Therefore ^t,..n(N) = 0 unless NjΩ.

Case 2: Suppose N = Nx + N2, AΓ^A^, NxDΩl9 N2^Ω2. Then
^ u M + N2) = SeΩι(Nγ)SeΩl{N2\ because

since SΩ factorizes in the sense of PI), p. 260. The assertion follows now
from P4) and well-known properties of truncation sums (9).

In order to bound ^ / , we want to be more specific about what the
functions Ft are in our case. We want to bound the rc'th derivative with
respect to λ of the Schwinger function S{λ) defined by

Sdμce~λV^

By the explicit calculation of Dimock [1],

d λ Δ2,...Δn

where F(A) = f: P(Φ): (x) dx. For simplicity, we assume P is a monomial
Δ

I 2of degree 2d, d > I 2 . Let the degree of F1 in Φ be v and let w1 have support
in Aγ.

Write Ω= uzl f as a union of distinct lattice squares A[,... A'k, and
let rii be the number of Δj — A\. Let d(Δ[,... A'k) be the length of the shortest
tree connecting the centers / t h e A\. Our main bound is then

Theorem 6. With the above assumptions and definitions, there is for
all K3 > 0 a λ0 > 0 such that for \λ\ < λ0, Reλ > 0, and m sufficiently large
one has

\ST

F\S WwApKiKi Π (Πiiy-'

for some p, Kί9 K2 > 1.

The assumption that the Ft are monomials is for notational convenience only.
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Proof. Let A[= Av Given a subset R of {1,... n}, we define nR(A)
to be the number of i e R with i ̂  2, and At = A.

The degree nR(A'j) of the monomial Y[ Ft in A) is 2dnR(A'j) in general

and 2dnf

R(A'j) + v if 1 e R a n d ; = 1.

By Eqs. (8) and (9) and Lemma 3

ieR

( { , } ) \

Σ ^ ! -
Rί...Rp P (11)

Σ C 3 e e 11 11 \/nR\Δ) >

where (Rt) = (J Aj. Since the degree v of Fι is fixed,

n p '

Π Π V^RMV- ̂  c( v) 2dBf] π
r = l

by the inequality ( ) ^ 2a

We

We

have

next

used

estimate

Pπ Π nRi(AV'^
ΛC(Rΰ

k

P

1,...«}) ^ p « i

Σ IΠIKJI^Σ! Σ
w!

! n \
n ι = l

t
P = i P

Going back to (11), we get

^ Σ | | w 1 | | l , C ' " + 1 Π n / ! < ' - 1 n ! e - κ | N | ,

N connected



264 J.-P. Eckmann et al.

and summing over N as in the proof of Theorem 4,

Σ -K\N\ < -§d(A{,...Ak) Y e

N connected

we complete the proof of the theorem.

Finally, we formulate the bound

Theorem 7. - p S
dλn

Proof. By the symmetry of F 2 , . . . F n , [Eq. (10)],

Σ #,.ι

< V V V l^τ

/c == 1 λj > 1 V — / 1 * fe J A

which is bounded by

Σ
1 v |iΛA. II ir JΓ» ΓT ί'M h d ~ i

/ W i -tv i J v 9 I I I fϊ I I

. y e-K3d(Ai,...Ak)

A[...Ak

By [3a, p. 196], the sum over Δ\ is bounded by K\(k— 1)!, so (12) is less
than „ k

/c = 1 «f ^ 1 i = 1

from which the assertion follows by adapting the constants.
The following generalization of Theorem 6 is useful when considering

truncated functions of general arguments. Let SF(λ) be defined as in the
introduction with fc=l, and let nt= £ (degF,-). Let Sj be the

corresponding truncated function.

Theorem 8. For all K3>0 there is a λo>0 such that for \λ\<λ0,
Re λ > 0 and m sufficiently large one has

for some p, X l 5 K 2 > l
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Proof. The proof is an easy adaptation of the proof of Theorem 6.
Given a subset R of {1, ...n) one defines now

ieR

p k

and Eq.(ll) holds in this case. Now f ] Π VnRj(A)1 = Π (n« !)1/2

j=lΔe(Rj) ' i=l

and the remainder of the proof is as in Theorem 6.

Chapter II

Extending Analyticity Domains

We show that it is possible to extend the analyticity and the bounds
of Chapter I for a P(Φ)2 interaction to a region of the shape of Fig. 1.
This yields the Borel summability of the Taylor series of the Schwinger
functions at λ = 0 (Hardy [7, Theorem 136, p. 192]). The extension rests on
two basic identities related to dilatations and changes of mass. The use
of these well-known identities for the present problem has been advocated
by Simon.

We make the convention that Wick ordering is always with respect
to the covariance occurring in the integral in question. This necessitates a
Wick reordering formula, which we give now.

Let
[n/2] I

)— V φn~21 !

It is easy to see that

:Φn:mi = :Amhmί(Φ"):mi (2)

and we extend A by linearity to polynomials.

Our two basic formulae are

Lemma 1. J fj : φnj '•(*]) W ^ " ,xk)e~λSd2χ:P{Φ):{x)h{x)dμm2

x1...dxk (3)
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Lemma 2. For \b\ <m2

ubeIR,

lim
h - > l

e ΐ} Kdμn (4)

These two lemmas are easy to prove and will be shown at the end of
this chapter. It is worth noting that Lemma 2 means (we always write

k

J Π :Φn>:(xj)W(x1,...,xJe-*f-*1 -M"dμn2
7 = 1

7 = 1

Also, the left hand side of (5) is an analytic function of ft, in \b\ <m\a
for a fixed α > 0, as can be seen by the proof of Theorem 4.

Combining Lemmas 1 and 2, we get with V(Λ)= J : P(Φ): (x)dx:
A

k λ

f(λ,β)=lim
A—* oo

7 = 1

qV(A)
dμm

βf ί Π : Φ"J': (^)
= lim

= g(λ,β)=lim[Se-
A—• oo

(6)

• ί Π :

where V(Λ) = j : Am2fm2(1 +β)(P): (x) dx and jβ being real and small.
A

We now want to extend β into the complex plane, and we identify /
with the analytic continuation of the first expression in (6), g with the
last.

If \β\ < \, m2 large and \λ\ < e(m2), Re
λ

ί+β
> 0, then, as in the proof

of Theorem 4, f(λ, β) is analytic in λ and β in the above region, and in this
dn

region one has, uniformly in λ and β,

where P has degree 2d, by Chapter I.
dλn
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The discussion of g(λ, β) is more delicate. We first restrict β such
that the map Am2 m2(1+β} has analytic coefficients. This is the case for
|jS|<l,cf.Eq.(l). '

If | 4 |j8| are small (say < εx) and Reλ ^ 0, Reβ > 0, then g(λ, β) has a
cluster expansion, cf. Theorem 4.

By the assumption of Theorem C (p. 5), W has analytic continuations
into some angle and thus the terms in the expansion are analytic and
therefore the expansion defines the analytic continuation of g(λ, β)
in \λ\ < ε1? \β\ < ε l 5 ReΛ. > 0, Reβ > 0. Also we have again

dn

,Kn

2(n!f

for some δ > 0,

cf.p.5 3 .

By Eq. (6), the two functions f(λ, β) and g(λ, β) coincide in an open
real subset in λ and β which is interior to their domains of analyticity.
So they are analytic continuations of each other, and verify a bound
of the form:

dn " " ~ KKΊWWW^K'Knΐf,
dλn

where /is the common analytic continuation of/ and g. Combining the
domains of analyticity we see that SF(λ) extends to a function analytic
in the region:

= \λ\λ = < ε, Re >0br(Reμ>0,Rej8>0,

so that

1+/*

λ, \λ\< —, |arg/l|< —- +arctg—->, which is the region

of Fig. 1. Theorem C is now an immediate consequence of Eq. (7), the
form of % and Theorem 136 in Hardy [7, p. 192].

Proof of Lemma ί. Consider the cylinder function F(Φ(f1),..., Φ{fn))
with /i, ...,/„ linearly independent functions in ^(1R2). Let (Λm2)0

= (fh Cm

2fj} w i ώ On2 the free covariance with mass m. Let dvm2 the
measure on 1RW given by

dvm2(z) =

We thank B. Simon for pointing out an error in the original manuscript at this step.
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then J F(Φ(Λ),..., *(/„)) dμm2 = J F(z) <Jvm2(z). We now dilate, then

JHx-y)

fMy)dkdxdy, 2 , 2 2
/C "T" S Yiϊ

= s\ff\ Cs2m2ψ) = ̂ (A^Uij with />>(x) = /((sx).

T h u s d v m 2 ( z ) = , , < _ , / , / . _ ! _ , ' _ , = d v S n 2 ( s ^ ) a n d
Jexp{— ̂ s z(ΛgJm2) s z}ds z

v j z \ — f F(z)dvis) I ( Ϊ ~ 2 7 ) — f F ί \ + 2 z W v ( 5 , } .C/Ί

since the //s) are also linearly independent.
The general case follows by approximating Wick polynomials as in

Dimock and Glimm [2]. We first replace Φ{y) by Φκ{y) = ̂ (Xκ(' -y))

with χκ an approximate δ function, χκ(x)= -r^rχ{K~xx), χ(0) = 1,

= 0 f o r | x | > l j χ ( x ) d x = l .
2Then we replace integrals by Riemann sums J dx2 -• -^ Σ .

j xejΈ2

In this way we can approximate our expressions by cylinder functions for
which we gave the proof. The result comes from the fact that dilatations
go through this approximation procedure.

Proof of Lemma 2. The proof relies solely on the Gaussian character.
Think of C as ( — zl+ra 2)" 1, typically. There is a unique countable
additive measure dμc such that J eιφ(f)+^{f'Cf)dμc= 1 and this measure
is Gaussian [Gelfand-Vilenkin, 4]. By Dimock and Glimm [2]

J Φ{g) eiφ^+^f,cf)dμc = S d x d y g{x) c(χ, y) J
^Φ(j )

(8)

The Gaussian character of dμc implies that for all measurable functions F,

SF(Φ)emfHMf Cf)dμc = $ F(Φ + f)dμc,

where (Φ + /) (g) = Φ{g) + i{Cf, g). Lemma 2 is proved if we can show for
C'~* =-C~* + ft, ft a symmetric function in R 2 x 1R2, that

f eiΦ(g)+-k(9,C'g)e-ϊίΦ(x)Φ(y)h(x, yϊdxdy^

f e-i:SΦ(x)Φ(y)h(x,y)dxdyd

and by taking limits on ft.
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Write g=C'-1f=C-1f + h*f,h*f(x) = $h(x,y)f(y)dy, and use
the Gaussian character of dμc [Eq. (8)]. So the left hand side of (2) is:

C eiΦ(C-1f)+iΦ(h*f) + ±(f,C~ίf) + j[(h*f,f)-4tSΦ(x)Φ(y)h(x,y)dxdy(l

J e-ϊSΦ(x)Φ{y)h(x,y)dxdydμ

= C ei(Φ + C-1f)(h*f) + jt(h*f,f)-4tUΦ + Cy>ίf) (x)(Φ + C-ίf)(y)h(x,y)dxdy(^

== f e-^ίΦ(x)Φ(y)h(x,y)dxdy^

= 1 this is obtained by evaluating the exponent.

Finally we give the

Proof of Theorem D. By [6, Chapter VI] lim -^--\ogSF=ι(λ) con-
Λ->ΊR.2 \A\

verges. Let FΔ = j : P(Φ): (x) dx. The derivatives of the pressure are of the
Δ

(— l)fc

form —:—:— Y Sΐ ... F (λ), by Dimock [1]. Now by TheoremB,

the sum over A2, ...,Ak converges and the sum over Aγ yields a contribu-
tion bounded by something proportional to \Λ\ and hence the theorem
is proved.

Appendix

We consider integrals of Wick monomials with respect to a Gaussian
measure dμc with covariance C e ^ , the set of convex combinations of
( — A+rnly1 with Dirichlet boundary conditions along Γc [5, p. 202
and p. 224].

We index TL1 by numbers /= 1, 2,..., and we write 1R2 = (J St where

the Si are unit lattice squares centered at points of 2£2C1R2. Let
r

R = J Y\ : Φ(Xi)Pi: w(xί,..., xr) dx, with w supported in Sh x x Slr. Let

w / = Σ P y ' t n e degree of R in Sf. Let m0 ^ 1 and q*tp'- (max /?,-), n = Σn,-,

Theorem. .For C e f

ί = l

Proof. The theorem is a slight improvement of Theorem 9.4 in
00 00

[5, p. 236], replacing]^] n{\ by \\ n t !
1 / 2 . The proof is identical to the

i=ί i = l

one in [2], but we give a better bound on

Σ Πe~ α d i s t ( s ^ 2 ) > (Aj
GeΨ(R) I
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where i^(R) is the sum over all vacuum graphs G (pairings of Φ's),
Y\ is the product over all the bonds in the pairings, extending from

^square Sh to Sh and α ̂  —^- > 0.

We show (AJ ^ Y\ni\1/2Cn, which, inserted into the proof of
i

Theorem 9.4 of [5, p. 236] proves our assertion.
Let now qkι denote the number of bonds from square Sk to square S*.

Then (Ax) can be bounded by

where Σ/r ranges over the set {gfcί\qkl = qlk, J ] ^ k z = rck,^k/c even}, and the

first factor comes from the number of ways one can choose the points
which connect to a given point, and the other factors come from the
number of pairings and the exponential decrease.

We use now

and Πα;!^(Σa^ ! , and we symmetrize the product f\ by taking square
k>l

roots, to obtain the following bound for (A2)

Σ"Π
nk\

k M l
\ I

(A3)

The theorem is proved if we can show that (A3) is bounded by Cn

2 H(nk ! ) 1 / 2 .
Now (A3) is certainly bounded by

III Σ ^Ύe-^^^^\ct(nkϊ)
1'29 (A4)

lH !

\ i = o

and the theorem follows if we can show that the ( ) in (A4) is bounded by

Cf.
Note now that there is for each k an arrangement of indices such that

dist (Sk, Si) ;> | ( / 1 / 2 - 3), so that it suffices to bound

Σ
j = o

For k=l, qkk is the number of bonds times 2.
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which is equal to

oo \d

i = 0 /

and this proves the theorem.
Remark. The combinatorial argument extends to any number v

of dimensions because there is an arrangement of indices such that
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