Commun. math. Phys. 38, 341—343 (1974) © by Springer-Verlag 1974

A Correction to My Paper Spectra of States, and Asymptotically Abelian C*-Algebras

Commun. math. Phys. 28, 279–294 (1972)

Erling Størmer

Department of Mathematics, University of Oslo, Blindern, Oslo, Norway

Received May 25, 1974

It was pointed out to me by Daniel Kastler that I was too careless in the use of the strong-* topology in the proof of Theorem 2.3 in the above paper [1]. As a result it is necessary to change the definition of the spectrum of a state on a C^* -algebra somewhat.

Definition 1. Let \mathfrak{A} be a C*-algebra and ϱ a state of \mathfrak{A} with GNS representation $(\pi_{\varrho}, x_{\varrho}, \mathfrak{X}_{\varrho})$. Then the spectrum of ϱ , denoted by Spec (ϱ) is the set of real numbers u such that given $\varepsilon > 0$ there is $A \in \pi_{\varrho}(\mathfrak{A})''$ for which $\omega_{x_{\varrho}}(A^*A) = 1$ such that

$$|u(\pi_{o}(B) A x_{o}, x_{o}) - (A \pi_{o}(B) x_{o}, x_{o})| < \varepsilon \varrho (B^{*}B)^{1/2}$$

for all $B \in \mathfrak{A}$.

In the previous definition we asserted that we could choose $A \in \pi_{\rho}(\mathfrak{A})$.

Let \Re_{ϱ} denote the von Neumann algebra $\pi_{\varrho}(\mathfrak{A})''$ and E_{ϱ} the projection $[\Re'_{\varrho}x_{\varrho}]$, which is the support of $\omega_{x_{\varrho}}$ on \Re_{ϱ} . Let Δ_{ϱ} be the modular operator of x_{ϱ} relative to $E_{\varrho}\Re_{\varrho}E_{\varrho}$ acting on $E_{\varrho}\mathfrak{X}_{\varrho}$, and consider it as an operator on \mathfrak{X}_{ϱ} by defining it to be 0 on $(I - E_{\varrho})\mathfrak{X}_{\varrho}$.

Definition 2. With the above notation we call Δ_{ϱ} the modular operator of the state ϱ .

Remark 1. Spec(ϱ) = Spec($\omega_{x_{\varrho}} | \Re_{\varrho}$). Indeed, if $u \in \text{Spec}(\varrho)$ and $A \in \Re_{\varrho}$ satisfies the conditions in Definition 1 then for all $B \in \pi_{\varrho}(\mathfrak{A})$

$$|u(Ax_o, B^*x_o) - (Bx_o, A^*x_o)| < \varepsilon \|Bx_o\|.$$

Since $\pi_{\varrho}(\mathfrak{A})$ is strong-* dense in \mathfrak{R}_{ϱ} the same inequality holds for all $B \in \mathfrak{R}_{\varrho}$, and thus $u \in \operatorname{Spec}(\omega_{x_{\varrho}} | \mathfrak{R}_{\varrho})$. The converse inclusion is trivial since $\pi_{\varrho}(\mathfrak{A}) \subset \mathfrak{R}_{\varrho}$.

Theorem. Let \mathfrak{A} be a C*-algebra and ϱ a state of \mathfrak{A} with modular operator Δ_{ϱ} . Then Spec $(\varrho) = \text{Spec}(\Delta_{\varrho})$.

E. Størmer

Since the proof has to be modified we give a complete proof of the part that $u \neq 0$ in Spec(ϱ) is contained in Spec(Δ_{ϱ}). In order to simplify notation drop the subscripts ϱ , so $\Re = \Re_{\varrho}$, $E = E_{\varrho}$, $x = x_{\varrho}$, $\Delta = \Delta_{\varrho}$, etc. By Remark 1 we have to show Spec($\omega_x | \Re$) = Spec(Δ).

Let $u \in \text{Spec}(\omega_x | \Re)$. Assume $u \neq 0$. Let $\varepsilon > 0$ and choose $A \in \Re$ such that ||Ax|| = 1 and such that

$$|u(BAx, x) - (ABx, x)| < \varepsilon ||Bx|| \tag{1}$$

for all $B \in \mathfrak{R}$. Apply (1) to B(I - E). Since (I - E) x = 0 we have u(B(I - E) Ax, x) = 0, so that (I - E) Ax = 0 by cyclicity of x. Thus Ax = EAx, and in particular ||EAEx|| = 1. Apply next (1) to EB. Then

$$|u(BEAEx, x) - (EAEBx, x)|$$

= $|u(EBAx, x) - (AEBx, x)| < \varepsilon ||EBx|| \le \varepsilon ||Bx||$,

so $u \in \operatorname{Spec}(\omega_x | E \Re E)$. Thus in order to show $u \in \operatorname{Spec} \Delta$ we may and do assume x is separating and cyclic for \Re , so E = I.

Let J be the conjugation on \mathfrak{X} so that $J\Delta^{\frac{1}{2}}Bx = \Delta^{-\frac{1}{2}}JBx = B^*x$ for all $B \in \mathfrak{R}$ [2, Theorem 7.1]. Now the Tomita algebra \mathfrak{R}_0 (called modular Hilbert algebra in [2]) is strong-* dense in \mathfrak{R} [2, Theorem 10.1]. (We identify \mathfrak{R} with the Hilbert algebra $\mathfrak{R}x$, and \mathfrak{R}_0 with \mathfrak{R}_0x .) Thus in particular (1) holds for all $B \in \mathfrak{R}_0$. Since \mathfrak{R}_0x is contained in the domain of $\Delta^{-\frac{1}{2}}$, see proof of [2, Theorem 10.1], we have from (1)

$$|u(Ax, \Delta^{-\frac{1}{2}}JBx) - (Bx, J\Delta^{\frac{1}{2}}Ax)| < \varepsilon ||Bx||$$
$$|(Ax, u\Delta^{-\frac{1}{2}}JBx) - (Ax, \Delta^{\frac{1}{2}}JBx)| < \varepsilon ||JBx||.$$

Let $\tilde{\Delta} = u\Delta^{-\frac{1}{2}} - \Delta^{\frac{1}{2}}$. Then $J\Re_0 x$ belongs to the domain $\mathfrak{D}(\tilde{\Delta})$ of $\tilde{\Delta}$ and we have

$$|(Ax, \tilde{\Delta}y)| < \varepsilon ||y||$$

for all $y \in J\Re_0 x$ and thus for all $y \in \mathfrak{D}(\tilde{\Delta})$ by proof of [2, Theorem 10.1]. In particular the linear functional $y \to (Ax, \tilde{\Delta}y)$ is bounded on the dense linear subspace $\mathfrak{D}(\tilde{\Delta})$ of \mathfrak{X} . Therefore it has an extension to \mathfrak{X} with the same bound. By Riesz representation theorem there is $z \in \mathfrak{X}$ such that $||z|| < \varepsilon$ and

$$(Ax, \tilde{\Delta}y) = (z, y) \tag{2}$$

for all $y \in \mathfrak{D}(\tilde{\Delta})$.

or

By definition of the adjoint of an unbounded operator, $Ax \in \mathfrak{D}(\Delta)$, and

$$(\Delta A x, y) = (z, y)$$

342

Correction

for all y in $\mathfrak{D}(\tilde{\Delta})$, and hence for all $y \in \mathfrak{X}$. In particular $\tilde{\Delta}Ax = z$, so $\|\tilde{\Delta}Ax\| < \varepsilon$. Since the operator $\Delta^{-\frac{1}{2}}(u^{\frac{1}{2}}I + \Delta^{\frac{1}{2}}) \ge I$ we thus have

$$\begin{aligned} \| (u^{\frac{1}{2}}I - \Delta^{\frac{1}{2}}) Ax \| &\leq \| \Delta^{-\frac{1}{2}} (u^{\frac{1}{2}}I + \Delta^{\frac{1}{2}}) (u^{\frac{1}{2}}I - \Delta^{\frac{1}{2}}) Ax \| \\ &= \| \Delta^{-\frac{1}{2}} (uI - \Delta) Ax \| \\ &= \| \widetilde{\Delta} Ax \| < \varepsilon \,. \end{aligned}$$

Since Ax is a unit vector and ε is arbitrary, $u^{\frac{1}{2}} \in \operatorname{Spec}(\Delta^{\frac{1}{2}})$, hence $u \in \operatorname{Spec}(\Delta)$.

The rest of the proof of the theorem should be as before except that in the proof of $u \in \text{Spec}(\Delta)$ implies $u \in \text{Spec}(\varrho)$, we show as before that $u \in \text{Spec}(\Delta)$ implies $u \in \text{Spec}(\omega_x | \Re)$, and apply Remark 1 to conclude that $u \in \text{Spec}(\varrho)$.

From the above proof we have

Corollary. Let notation be as above. If $u \neq 0$ belongs to $\text{Spec}(\varrho)$, and A is as in Definition 1 then Ax_{ρ} belongs to the domain of $\Delta_{\rho}^{-\frac{1}{2}}$.

Proof. With the notation as in the proof we have $Ax_{\varrho} \in \mathfrak{D}(\tilde{A})$. Since $\tilde{A} = uA^{-\frac{1}{2}} - A^{\frac{1}{2}}$ and $Ax_{\varrho} \in \mathfrak{D}(A^{\frac{1}{2}})$ it follows that $Ax_{\varrho} \in \mathfrak{D}(A^{-\frac{1}{2}})$.

References

- 1. Størmer, E.: Commun. math. Phys. 28, 279-294 (1972)
- 2. Takesaki, M.: Tomita's theory of modular hilbert algebras and its applications. Lecture Notes Math. 128. Berlin-Heidelberg-New York: Springer 1970

Communicated by H. Araki

E. Størmer Department of Mathematics University of Oslo Blindern, Oslo 3, Norway