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It was pointed out to me by Daniel Kastler that I was too careless
in the use of the strong-* topology in the proof of Theorem 2.3 in the
above paper [1]. As a result it is necessary to change the definition of
the spectrum of a state on a C* -algebra somewhat.

Definition ί. Let 91 be a C*-algebra and ρ a state of 91 with GNS
representation (πρ, xρ, 3Eρ). Then the spectrum of ρ, denoted by Spec(ρ)
is the set of real numbers u such that given ε > 0 there is i e π e ( 2 l ) "
for which ωXβ(A*A) = 1 such that

\u(πρ(B) Axρ, xQ) - (Aπρ(B) xQ9 xρ)\

for all B e 91.
In the previous definition we asserted that we could choose A e πρ(9I).
Let 9ΐρ denote the von Neumann algebra πρ(9I)" and Eρ the projection

[9ΐ'ρxρ], which is the support of ωx on 9ίρ. Let Δρ be the modular
operator of xρ relative to Eρ9lρEρ acting on EρXρ, and consider it as an
operator on 3£ρ by defining it to be 0 on (/ — Eρ) Xρ.

Definition 2. With the above notation we call ΔQ the modular operator
of the state ρ.

Remark 1. Spec(ρ) = Spec(ωxJ 5Rρ). Indeed, if u e Spec(ρ) and A e 5Rρ

satisfies the conditions in Definition 1 then for all B e πρ(2ϊ)

\u{AxQ9B*xQ)-(BxQ,A*xQ)\<ε\\BxQ\\.

Since πρ(9I) is strong-* dense in 5Rρ the same inequality holds for all
Be9lρ, and thus ue Spec(ωxJ9ίρ). The converse inclusion is trivial
since π ρ(2l)c9l ρ .

Theorem. Let ?l be a C*-algebra and ρ a state of 9Ϊ with modular
operator Δρ. Then Spec(ρ) = Spec(zlρ).
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Since the proof has to be modified we give a complete proof of the
part that wφO in Spec(ρ) is contained in Spec(Λρ). In order to simplify
notation drop the subscripts ρ, so 91 = 9?e, E = Eρ, x = xρ, A = Aρ, etc.
By Remark 1 we have to show Spec(ωJC|9l) = Spec(zl).

Let u G S p e c ^ 15R). Assume u φ 0. Let ε > 0 and choose Λe9i such
that ||Ax|| = 1 and such that

\u(BAx9x)-(ABx9x)\<ε\\Bx\\ (1)

for all BeM. Apply (1) to B(I - E). Since (I-E)x = 0 we have
u(B(I-E)Ax9x) = 09 so that (I-E)Ax = 0 by cyclicity of x. Thus
Ax = EAx, and in particular | |£A£x|| = 1. Apply next (1) to EB. Then

\u(BEAEx, x) - (EAEBx, x)\

= \u(EBAx, x) - (AEBx, x)| < ε ||£Bx|| ^ ε ||£x|| ,

so u 6 Spec(ωJ£9ϊ£). Thus in order to show u e Speczl we may and do
assume x is separating and cyclic for % so E = I.

Let J be the conjugation on X so that JA^Bx = A~^JBx = B*x
for all Be^i [2, Theorem 7.1]. Now the Tomita algebra 9t0 (called
modular Hubert algebra in [2]) is strong-* dense in 9Ϊ [2, Theorem 10.1].
(We identify 5R with the Hubert algebra 5Rx, and 9ΐ0 with 9tox.) Thus in
particular (1) holds for all B e 9t0. Since 9ίox is contained in the domain
of A~*9 see proof of [2, Theorem 10.1], we have from (1)

\u(Ax, A-ίJBx)- {Bx, JΔ*Ax)\ <ε||βχ||
or

\{Ax, uA->JBx) - {Ax, A^JBx)\ < ε || Jβχ| | .

Let A=uA~^ — Δ*. Then J9iox belongs to the domain T)(A) of A and
we have

for all y e J$lox and thus for all y e T)(A) by proof of [2, Theorem 10.1].
In particular the linear functional y->(Ax, Ay) is bounded on the dense
linear subspace T)(A) of X. Therefore it has an extension to X with the
same bound. By Riesz representation theorem there is z e X such that
||z|| <ε and

(Axjy) = (z9y) (2)

for all y e X)(i).
By definition of the adjoint of an unbounded operator, Axe ΐ>(Δ),

and
(ΔAx9y) = {z9y)
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for all y in D(J)5 and hence for all yeX. In particular AAx — z, so
||zL4x|| <ε. Since the operator A~*(tfil + A^)^I we thus have

= \\A-*(uI-A)Ax\\

= \\AAx\\<ε.

Since Ax is a unit vector and ε is arbitrary, w^e Spec(zl^), hence
we Spec (A).

The rest of the proof of the theorem should be as before except
that in the proof of u e Sρec(zl) implies u e Spec(ρ), we show as before
that u e Spec(zl) implies u e Spec(ωx 19ΐ), and apply Remark 1 to conclude
that we Spec(ρ).

From the above proof we have

Corollary. Let notation be as above. If u + 0 belongs to Spec(ρ),
and A is as in Definition 1 then Axρ belongs to the domain of A~*.

Proof. With the notation as in the proof we have AxρeT)(A).
Since Δ=uA~^ — Δ^ and Ax ρ e ΐ)(A*) it follows that Axρ
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