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Abstract. Wigner's classification of irreducible corepresentations into three types is
generalised to irreducible multiplier corepresentations. Representations of Types I, II, and
III have commutants isomorphic to R, H, and C, respectively. The more general problem
of relating irreducible multiplier corepresentations of a group to those of an invariant
subgroup is considered, and some algebraic aspects of "generalized inducing" are described.
The Wigner classification is then re-obtained as a very simple instance of the general
theory.

§ 1. Introduction

1.1. Consider an irreducible P ̂ -representation (see Parthasarathy
[6]) U of a group G with respect to a fixed ^/^-decomposition G = G + uG",
with G~ non-empty. (Thus G must possess an invariant subgroup G +

of index 2.) If U is a version of U, then U(g) is a unitary (ge G+) or
antiunitary (geG~) operator on a complex Hubert space J f which
satisfies

(1.1)

where the (generalised) multiplier (with respect to the fixed [/^-decom-
position G = G + u G ~ ) σ is a function GxG^T { = complex numbers
of unit modulus) which satisfies, for all gl9 g29 g3 e G, the equation

σiβu Qi) σfaiβi,03) = σ(θn QiQi) <r(92> Q?>)91 (1-2)

Here λβ(λ e C, g e G) is defined to be λ if g e G+ and Jiϊ geG~. The map
g^ΊJ{g\ from G into the unitary antiunitary group of J»f, is called a
multiplier corepresentation of G with multiplier σ, or simply a σ-co-
representation. The multiplier a' of any other version U' of U will be
equivalent to the multiplier σ, satisfying that is

σ'foi, g2) = C%i) H92)9ίβ(9i9i)Λ o{gγ, g2) (1.3)

for some λ : G -• X.
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As is usual, we will always adjust'the overall phase of the U(g) so that

U(e) = I, (e = idG), (1.4)

whence the multiplier σ satisfies

σ(e,g) = σ(g,e)=l, for all geG. (1.5)

It will also prove convenient to make some arbitrary, but fixed,
choice of element aeG~. We also write G+=H, and so the fixed
IM-decomposition of G with which we are working is

G = HvaH. (1.6)

The restriction UH of U to the subgroup H is a ^-representation (whose
operators are all unitary) of H, where σH denotes the restriction of σ
to H xH and so is a multiplier for H in the more usual sense - i.e.
satisfies (1.2) except that no complex conjugation is involved in the
r.h.s.

1.2. Now Wigner [9] showed that ordinary (i.e. σ=ί) irreducible
corepresentations can be classified into three distinct types, according
as UH is irreducible (Type I) or decomposes into a direct sum D®C
of two irreducible representations D, C, with C linearly equivalent
(Type II) or linearly inequivalent (Type III) to D. In Theorems A and B
below we generalise Wigner's results to the case when the multiplier σ
is non-trivial. In this connection, observe that the direct sum D 0 C is
defined as a multiplier representation only when Z), C have the same
multiplier. Our proofs are essentially basis-free versions of Wigner's
proofs, with multipliers judiciously inserted. Actually - see § 4 - the
mathematical ideas which are involved are special instances (in which
the invariant subgroup is of index 2) of those employed by Clifford [3]
this last author in turn traces their earlier history, going back to the
work of Frobenius. We also show (Theorem C) that the three different
types of irreducible multiplier corepresentations may be distinguished
by their having different commutants - see also Ascoli and Teppati [1]
in this connection.

1.3. It is perhaps worth stressing that in our generalization of
Wigner's results the relevant notion of equivalence of two multiplier
representations DUD2 of H is still ordinary equivalence:

PDί(h)p-1=D2(h), forall/zetf, (1.7)

and not uprojective equivalence":

PD1(h)P-1=λ{h)D2(h). (1.8)
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In the case of linear equivalence [P in Eq. (1.7) a linear isomorphism]
it follows that D1 and D2 must have the same multiplier: σ1 = σ2: in the
case of antilinear equivalence (P an antiisomorphism) it follows that

Actually, as is well known, linear (antilinear) equivalence of D x

with D2 implies unitary (antiunitary) equivalence; in particular when
DUD2 in (1.7) are irreducible, P is necessarily proportional to a unitary
(antiunitary) mapping Jfλ-^J^2 (J^ = carrier space of D f,i = l,2) —
for (1.7) implies, on using D(h)f = D{h~ι\ that PfP commutes with
every Dx(h) and so is proportional to the identity operator on J ^ .

The reason why ordinary equivalence is still important when dealing
with multiplier representations is as follows. While one wishes, at any
rate in quantum mechanics, to classify multiplier representations of a
group H only up to projectίυe unitary equivalence, nevertheless for a
decomposable representation (such as UH in Theorem A) this involves
knowing its irreducible constituents up to ordinary unitary equivalence.
For example, suppose C, D are σ-representations of H and λisa non-trivial
1-dimensional unitary representation (character) of H. Then the σ-
representation D' of H defined by D\h) = λ(h) D(h) is clearly [take P = I
in Eq. (1.8)] projectively unitarily equivalent to D. Nevertheless it will
often be the case that Df and D are unitarily inequivalent - in which case the
σ-representations U = CφD and U' = C@D' are unitarily inequivalent,
even projectively speaking. A similar example for σ-corepresentations -
with λ a generalized character, satisfying

λ(g)λ(gy = λ(gg') (1.9)

- shows that we need to know the irreducible constituents of a de-
composable σ-corepresentation up to ordinary unitary equivalence.
Perhaps we have laboured this point too much - everyone knows in
quantum mechanics that overall phases are unimportant, but that
relative phases do carry physical content (in the absence of super-
selection rules).

1.4. The authors' interest in the general problem which is answered
by Theorem B - namely that of constructing the irreducible σ-core-
presentations of G out of the irreducible σH-representations of H -
arose in connection with the extended Poincare group ^ , where the
physically relevant C/^-decomposition is of course ^> = ^\j&ii (i.e.
space inversion S represented linearly and time reversal T represented
antilinearly). In [10], Wigner determined the physically relevant
representations of & by (in effect) proving Theorem B in the case G = ^,
H = 0>f. Another way of finding the representations of 0* is to proceed
at the little group level, as in a forthcoming paper by us [7]. In the case
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of the positive mass representations the relevant little groups, for
representations of 9 and ^ f , are 1 G = SU(2)xF 4 and H = SU(2)xF 2 ,
respectively, where F2 is the group of order 2 generated by S and FA

is the group of order 4 generated by S and T. Whichever approach
is adopted, it helps to have to hand the general Theorem B. In the second
approach, the theory of Clifford [3] and Mackey [5] needs to be gener-
alised2 so as to deal with cases where some of the group elements are
represented antiunitarily.

1.5. In § 4 we deal with some of the chief algebraic aspects of such a
generalization - see Parthasarathy [6] and Lever [4] for some relevant
measure-theoretic and analytical details. The Wigner classification
can then be seen (§ 4.5) as a particularly simple instance of the general
theory; in particular a corepresentation of Type III is a simple instance
of a corepresentation obtained by "generalized inducing".

§ 2. Classification of Irreducible Multiplier Corepresentations

Throughout this section h,huh2 will denote arbitrary elements
of the subgroup H of index 2 of G, while a will denote some fixed choice
of element such that G = HuaH. We will repeatedly use such elementary
facts as a2 e H, aha~* e H, ah1ah2 e H, etc. Before coming to Theorems
A-C it will be convenient to first state and prove a preliminary lemma.

Lemma. Suppose we are given
(i) a multiplier σ for the group G with respect to the decomposition

G = HuaH;
(ii) a σH-represention U of H with carrier space Jf:

= σ(hl9h2)U(h1h2),hl9h2eH; (2.1)

(iii), (iv) an antiunitary operator U(a) on Jf which satisfies

(iii) U(h) U(a) = [σ(/i, a)/σ(a, a'1 ha)'] U(a) Ufa'1 ha) (2.2)

(iv) U(a)2 = σ(a,a)U(a2). (2.3)

// we now extend U to the whole of G by defining U(g) for g e aH by

(v) U(ah) = σ(a,hΓ1U(a)U(h), (2.4)

then U is a σ-corepresentation of G.

Proof. We need to check that the representation property (1.1)
holds for the four kinds of choice g1=h1 or ah1 and g2 = ^2 or ah2.

1 In [6] Parthasarathy incorrectly (§ 5, Case 3) takes the little group for 0> to be
SU(2)xF 2 . This error results from omitting the complex conjugation in our Eq. (4.1).

2 But see § 6 of [3], where such a generalization is already embarked upon. See also
[11], [12] and [13].
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The choice g1 = ah1, g2 = ah2 involves the lengthiest check, and we
give it here, supposing first of all that the multiplier σ is identically equal
to 1:

UiahJ U(ah2) = U(a) [/(ΛJ U(a) U(h2), by (v),

= U(a)2U(a-1h1a)U(h2), by(iii),

= U(a2) υ{a-γhγah2), by (iv) and (ii),

= U(ahiah2), by(ii).

This check carries through for a general multiplier σ upon making
repeated use of Eq. (1.2). (See also § 3.1.)

Theorem A. For any irreducible σ-corepresentation U of G (with
respect to the decomposition G = HuaH\ one of the following three
mutually exclusive possibilities must hold for the restriction UH of U
to the subgroup H:

Type I: UH is irreducible.
Types II and III: UH decomposes into a direct sum UH = DφC of

irreducible σ^representations C, D, which are either linearly equivalent
(Type II) or linearly inequivalent (TypeIII).

A o-corepresentations U of Type II can (upon identifying the carrier
space J4?c of C with that 2tfΏ of D) be cast in the form

= σ(a,h)~1 U(a)U(h)9

where K is an antiunitary operator satisfying

KD{a~ιha) K~' = [σ(α, a~ιha)lσ{K α)] D(h), (2.6)

for all heH, and also satisfying

K2 = -σ{a,a)D(a2). (2.7)

A σ-corepresentation U of Type III can be cast in the form

o C(Λ)J ̂ U 0
U(ah) = σ(a, h)~1 U{a) U{h), (2.8)

where the irreducible σ[{-representations C, D of H are linearly inequi-
valent, and where K:34?D^>Jfc is antiunitary and satisfies

KD{a~ιha) K'1^ [σ(α, a'^ha)lφ, α)] C(h) (2.9)

for all he H.
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Proof. Let J f denote the carrier space of U (and hence of UH)
and let J ^ C J f denote the carrier space of some irreducible σH-re-
presentation D which is contained in the σH-representation UH. Let
Jfc denote the image of JfD under the action of U(a\ and let K denote
the restriction of U(a) to J^D,3^C: thus K : J?D-+ J4?c is antiunitary, and
K.-γ\#ec-*3feΏ exists.

On restricting the following identity [an immediate consequence of
Eq.(l.l)]

U{a) Uia'^a) U{a)~1 = [σ(α, a~ 'haj/σiK α)] U{h) (2.10)

to the subs'pace 3t?c, we see that the invariance of JfD under UH implies the
invariance of Jίfc under UH, and that the restriction C of UH to J^c

is given as in Eq. (2.9). Clearly the irreducibility of the σH-representation
D implies the irreducibility of the %-representation C.

The irreducibility of D implies that J ^ c n J ^ D can not be a proper
subspace of JfD. Moreover, since G is generated by H and α, the irredu-
cibility of U implies that JfD + Jt?c = Jf. Consequently either Jf7 = J^D

= J^C or J f = ^ f D 0 J ^ c ; hence the three possibilities listed in the first
part of the theorem are indeed the only ones to consider.

In the cases J f = J ^ D 0 Jfc (Types II and III) we have

where, in view of Eq. (2.10) the antiunitary operators K: JtfD-+3tf>

c and
L: Jfc->^fD must satisfy

KD(a"1ha) K~x = [σ(α, a-ιha)/σ{K α)] C(ft)

LC(α" X M L " x = [σ(α, α" ^ α ) / ^ , α)] D(Λ)

and, since 17(α)2 = σ(a, a) U(a2), must also satisfy

KL = σ(a, a) C(a2), LK - σ(α, a) D(a2). (2.13)

According to this last equation, we have L = σ(a,a)D(a2)K~1: hence
we have obtained the "canonical form" (2.8) in the last part of the theorem.

When (Type II) C is linearly equivalent to D, it is convenient to
identify fflc with 2tfΏ and to take C actually equal to D:

= D(h)@D(h); (2.14)

in which case we deduce from Eq. (2.12) that LK'1 commutes with
each D(h) and hence must equal ωl, where (since LK'1 is unitary)
|ω| = l. Moreover, when C = D, Eq. (2.13) yields LK = KL, i.e.
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ωK2 = KωK = ώK2, and so ω must be real; thus ω=±ί. Actually
the value ω = +1 can not arise, given, as we are, that U is irreducible:
for when L = + K the proper subspace of Jf consisting of those vectors
of the form φ®φ, φe JfD, is clearly invariant under the U(h) and under
U(a\ and hence under U(g) for all g e G. We are thus left with the
possibility ω = — 1, i.e. L = — K, in agreement with the "canonical form"
(2.5) in the second part of the theorem. This possibility does give rise
to an irreducible U - see the next remark (also Theorem C, Remark). •

Remark. The preceding derivation of the canonical form of a Type II
representation can be carried through in terms of a carrier space
^ = ̂ D®^2, where Jf2 *s a 2-dimensional Hubert space. Instead
of Eq. (2.5), we arrive at

U(h) = D(h)®I, U(a) = K®k, (2.5')

where the antiunitary operator K satisfies Eq. (2.6) and where, since
U(a)2 = σ(α, a) U(a2), we must have K2®k2 = σ{a,a)D{a2)®I. Hence

K2 = εσ(a, a) D(a2), k2 = εl, (ε = ± 1).

Whether or not U is reducible depends on whether or not the anti-
unitary operator k on #f2 possesses invariant rays. We thus rule out
ε = + l (k a conjugation), but allow ε = — 1 (when ι (Φθ) and kv are
always linearly independent). Of course a linear operator k on Jf2

always has an invariant ray, and this entails that in the corresponding
case (see § 3.4) of an irreducible σ-representation there is no analogue
of Type II. See § 4.5 in this connection.

Theorem B. Given a multiplier σ for G (with respect to the UA-
decomposition G = HuaH), then each irreducible σH-representation D
of H determines (up to unitary equivalence) a unique irreducible σ-co-
representation U of G whose restriction to H contains D as a subrepresen-
tatίon. The details are as follows.

Given σ and D, define, for each heH,

E(h) = [σ(A, a)/σ(a, a~ιha)-\ D{a~ιha) (2.15)

then E is an irreducible σ^-representation of H. The type of U may then be
determined as follows:

Type I: there exists an antiunitary operator K satisfying KEQήK'1

= D(h) and K2 = +σ(a, a)D(a2);
Type II: there exists an antiunitary operator K satisfying KE(h) K~1

- D(h) and K2 = -σ(a, a) D(a2):
Type III: the representations D and E are antilinearly inequivalent—

i.e. no antilinear operator K exists satisfying KE(h)K~ι =D(h) for all
heH.
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Given σ and D, the σ-corepresentation U of G is given (up to unitary
equivalence) in the above three cases as follows:

Type I U{h) = D{h), U{a) = K: (2.16)

(2.18)

where K in the first two cases is as in the second part of the theorem and
in the last case denotes any antiunitary mapping, and where, in all three
cases, U(ah) is defined by

U(ah) = σ(a, h)~' U(a) U(h). (2.19)

Proof. A straightforward check [using Eq. (1.2)] shows that E is
indeed a (irreducible) ̂ -representation of H, and (using also the lemma)
shows that U, as defined in the last part of the theorem, is indeed a
σ-corepresentation of G. Different choices KUK2 of K lead to unitarily
equivalent σ-representations U1, U2 of G:

PUMP-^Uiig), (P unitary).

For in the first two cases we must have (by Schur's lemma K2 = ωK1,
\ω\ = 1, and so we can take P = vl, where v2 = ω, while in the third case
we can take P = IφK2K^ί. The rest of the theorem follows quickly
from Theorem A. •

Theorem C. The irreducible σ-corepresentation U of G is of
Types I, II or III according as its commutant [17] is isomorphic to the
algebra of the real numbers R, quaternions H or complex numbers C.

Proof. By definition the commutant [£/] consists of all the linear
operators on the carrier space Jf of 17 which commute with U(g) for
every geG. If X, Y belong to [I/], then so do X+Y,XY, and λX,
for λeR: however iX does not belong to [Ό~\, since (iX) U(g) = — U(g) (iX)
whenever g e aH. Thus [£/] is an algebra over R but not over C.
(Actually - see § 3.3 - the irreducibility of U implies that [£/] is neces-
sarily a division algebra over R.)

We now make use of the canonical forms I, II, III of Theorem A.
In view of Schur's lemma, the equation XU(h)= U(h)X, for all heH,
already forces X to be of the form

Type I: α/; Type II: ^ ^ j ; Type III:



Irreducible Multiplier Corepresentations and Generalized Inducing 265

where α, β,y,δe C. The further property XU(a) = U(a) X then forces X
to be of the form

where λ e R, α, j8 e C. The theorem follows. Π
Remark. It follows from Eq. (2.20) that a non-zero I e [ [ / ] is always

invertible, and hence can not be a proper projection. Thus each Type I, II,
III of corepresentation U is indeed irreducible.

§ 3. Remarks

3.1. The above proof of Theorem B involves (partly via the proof
of the preliminary lemma) repeated and tedious appeal to Eq. (1.2).
This can be avoided by making use of the following obvious generalization
to corepresentation theory of a well-known resource in representation
theory (see, for example, Theorems 10.8, 10.16 in [8]).

Given a multiplier σ for G, make G x T into a group Gσ by defining

(gί9 ωγ) (02, ω2) = (^#2, σ(gu g2) ω1(ω2)
91). (3.1)

Then instead of dealing with the multiplier corepresentations U of G
(all with σ as multiplier), we may equivalently deal with those ordinary
corepresentations Uσ of Gσ which satisfy

Uσ(e, ω) = ωl, (3.2)

the passage from the one kind of representation to the other being effected
by

(3.3)

Theorems A and B now follow from the corresponding theorems
for ordinary corepresentations. For example in the case of a Type III
corepresentation the canonical form

implies that of Eq. (2.8):

since (a, I) 2 = (a2, σ(a, a)). Similarly the definition

E°{h,\) = D°[{a, I ) " 1 ( M ) («,
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implies that of Eq. (2.15), since we find

(α, I ) " 1 (h, 1)(α, 1) = [a~γha, σ(h, a)/σ(a, a'1 ha))

after using

{μΛY^ia-^σia-Ka)-1)

and [set g1 = a~1,g2 = a,g3 = a~ιha in Eq. (1.2)]

σ(a~1, a) = σ(a~\ ha) σ(a, a'1 ha).

3.2. In stating the above lemma and theorems we took care not to use
the fact that σ = σ~1, i.e. that σ(gu g2) e T. Also no essential use was made
of the unitarity or antiunitarity of the operators involved. Thus, on
replacing unitary and antiunitary by linear isomorphism and anti-
isomorphism, the theorems apply to general multiplier corepresentations.
(In the above proof of Theorem A we showed that L = ωK with ω real
and used the unitarity of LK ~x to deduce that ω = ± 1 in the more general
situation we can arrange for ω to be + 1 by means of a similarity trans-
formation U(g)-^PU(g)P~1 with P = λI®λ~1I9 for suitable λeR.)
In particular the representation UH subduced by U is fully reducible;
this applies even when (as in §4) the invariant subgroup H is not of
index 2.

3.3. When U is irreducible, Schur's lemma entails that every non-zero
I e [ [ / ] possesses an inverse; thus [17] is a division algebra over R.
By a well-known theorem of Frobenius, we thus know from the outset
that [I/] is isomorphic to R, H or C. It is tempting therefore to use
Theorem C as a definition of the three possible types of irreducible
multiplier corepresentations, and to carry on to use the knowledge
of [£/] to derive the "canonical forms" of Theorem A. However nothing
appears to be gained thereby, in that one still needs most of the ideas of
the above proof of Theorem A, combined with further considerations.

3.4. While on the topic of the representations of a group G possessing
a subgroup H of index 2, let us mention the obvious generalization to
multiplier representations of "Clifford's theorem" (see, for example,
Boerner [2], Theorem 13.3).

If U is an irreducible σ-representation of G, then either UH is irre-
ducible (Type "I") or else decomposes into a direct sum D © C of two
inequivalent irreducible σH-representations (Type "III"), where C, D are
related as in Eq. (2.9), except that K: JfD -> J>fc is now a linear isomorphism.
(Note that there is no Type "//"—the analogue of Type II being reducible,
as we previously noted in the remark after Theorem A. See also § 4.5.)

Given σ and D (an irreducible σ^-representation of H\ define the
(irreducible) ^-representation E of H by

E(h) = [σ(Λ, a)/σ(a9 a"1 ha)] D{a~ιha). (3.4)
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(E is called the conjugate of D by a e G—see Eq. (4.1) for the generalization
of this when G~ is non-empty.) There are two possibilities. Either E and D
are (linearly) equivalent or they are inequivalent. In the former case there
exists a pair K, — K of linear automorphisms satisfying

KE(h) K~'= D(h), and K2 = σ(α, a) D(a2), (3.5)

and D can be extended in two3 inequivalent ways (contrast this with the
unique extension in the corepresentation case) to yield the σ-representa-
tions U± of G (of Type "/ + ") :

Type"/ + " U±(h) = D(h), U±(a)=±K. (3.6)

(Of course U+ is projectively equivalent to U~.)
In the latter case D determines a unique (up to equivalence) irreducible

σ-representation 17 of G (of Type "III") such that UH contains D:

In this last "canonical form" we could insert an arbitrary linear iso-
morphism K to make it correspond with Eq. (2.18)—the choice K = I
which we have made amounts to making a (non-natural) identification
of two different carrier spaces.

§ 4. Irreducible Multiplier Corepresentations of a Group G
Possessing an Invariant Subgroup H

4.1. As previously, let G be a group having a fixed C/yl-decoinposition
G = G + u G ~ , with G~ non-empty. Each σ-corepresentation U of G
then subduces a σH-coreρresentation UH=U\H of a subgroup H of G;
all such subduced multiplier corepresentations of H are of course with
respect to the fixed LM-decomposition H = H+ vH~, where H± = HnG±

(and where H~ may or may not be empty). Following Clifford ([3]), one
is interested in the general problem of the structure of UH in the case when
U is irreducible and H is an invariant subgroup of G, and in the reverse
problem of constructing U from an irreducible σH-corepresentation
D of if.

In this section we outline some aspects of this general problem;
the previous classification of the irreducible σ-corepresentations of G
into three Wigner types then fits into place as the special case H = G+.
In particular a Type III σ-corepresentation U of G will be seen to be a
very simple instance of an induced σ-corepresentatίon. However we wish
here to concentrate entirely upon the algebraic aspects of the problem,

3 Clifford [3] calls U+ and U~ associates.
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and so will assume that the representations are finite-dimensional and
that the subgroups are of finite index. (See [4, 6] for relevant measure -
theoretic and analytical material needed to generalize the full-blown
Mackey theory [5] to multiplier corepresentations of I.e. groups.)

4.2. The Relevant Action of G upon Hσ. Let σ be a multiplier for G
and let D be a σH-corepresentation of the invariant subgroup H of G.
For fixed g e G the conjugate representation of D, by g e G, is that σH-
corepresentation4 gD of H defined (up to unitary equivalence) by

(gD) (h) = [σ(/z, g)/σ{g, g^hg)] Dig^hgf . (4.1)

(More generally, this definition applies even when H is not invariant,
gD then being a ogug-^—corepresentation of the conjugate subgroup
gHg~1.) See Eq. (4.3) for the origin of this definition. Here, for any linear
or antilinear operator A on the carrier space V of D, we define

± l f g E G + > (4.2)
A, if geG~, V ;

where A = KAK'X denotes the complex conjugate of A with respect
to some fixed antiunitary mapping K_\ V-+V. Thus when geG~, the
carrier space of gD is an anti-space V of V. (If we like, we can - in a
non-canonical way — take V to be Vand K to be a conjugation: K2 = I.)

If D is irreducible, then clearly so is gD. lΐHσ denotes the set of all the
irreducible σ^-corepresentations of H (with unitarily equivalent re-
presentations being identified) then we use Eq. (4.1) to make Hσ into a
G-space. This action of G upon Hσ is forced upon us, whenever we deal
with o--corepresentations with respect to the given UA-decomposίtion
G+ uG~ of G, as witness the following.

Let U be an irreducible σ-corepresentation of G with carrier space J"f,
and let V denote the carrier space of some irreducible subrepresentation
D of the subduced σH-corepresentation UH. Upon considering the
restriction to the subspace U(g) V of the identity

U(h) = [σ(/z, g)/σ(g, g-γhg)~\ U(g) U{g-lhg) U{gΓ1, (4.3)

we find (see [3], the argument being a slight generalization of that in the
proof of Theorem A above) that the elements of Hσ which occur in the
decomposition of UH are precisely all the conjugates gD, geG, of D;
thus U is associated with a single orbit in Hσ.

The (generalized) isotropy subgroup GDQ G of the irreducible σH-co-
representation D of the last paragraph is defined by

GD = {g:geG,gD~D}, (4.4)

4 Here, and in the ensuing, D and gD will merely be σH-representations in the case

HCG + .
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where u ~ " denotes unitary equivalence. In more detail GD = G
where G J consists of all g e G + such that the σ#-corepresentation

lσ{g, g-'hgft D{g-ιhg) (4.5)

is unitarily equivalent to D, and G~Ώ consists of all g e G~ such that the
σH-corepresentation

' ' h g ) (4.6)

is antiunitarily equivalent to D. Of course GD contains H as an invariant
subgroup.

For convenience we also write G' = GD. Let P = G/G' denote the
space of left cosets of G', and for each pe P choose a coset representative
rpeG:p = rpG'. We choose rp o = e, where p0 denotes the coset G'. Let
pt-+gp denote the canonical left action of G upon P:grpG

f = rgpG
f;

thus r~pgrpe G' for each pe P,geG.
Define the subspace Jtf"CJf to be the sum (not usually direct)

of the subspaces U(g) V for g e G'\ then 2tf" carries a σG. -corepresen-
tation U' of G', the operator U'(g'\ g' e G', being the restriction to J>ff

of U(g'\ (Equivalently $(" is the sum of all the equivalent irreducible
invariant subspaces of J f belonging to D) Let 3tfp denote the image of
Jίf" under U(rp), and denote by Kp: Jff( = Jίfpo)^Jfp the corresponding
restriction of U(rp). Corresponding to the coset decomposition
G = [j (rpG

f) we then have (arguing as in [3]) the direct sum decomposition

^ = 0jf p, Jfp = KpJf', (4.7)
p

where Jfp is the carrier space of a multiple n = np of the irreducible
σH-corepresentation rpD, the multiplicity n being in fact uniform,
i.e. the same for each pe P. Since all conjugates gD of D occur in UH,
the index of G' in G equals the number of ((7-equivalence classes of)
representations e// σ which are conjugate to D with respect to G. (Of
course a different choice of coset representative rp would not affect the
space Jίfp, but would change the choice of isomorphism or anti-iso-
morphism Kp:JP'-+Jfp.)

The representation U of G is now seen to be an imprimitive one,
based upon the transitive G-space P = G/G'. Upon restricting the
identity

U(g) = lσ(g, rp)/σ(rgp, r Jgr,)] U(rgp) U{rjgrp) U(rpΓ
1 (4.8)

to the subspace Jίfp, we immediately obtain Eq. (4.10) below, and so see
that the σ-corepresentation U of G is that representation U' | G obtained
from the σG,-corepresentation Uf of the subgroup G' by "generalized
inducing", provided the latter term is defined as in the next subsection.
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It then follows easily that the irreducibility of U implies that of U'.
Conversely, just as in § 4 of [3], if U' is any irreducible σG,~corepresen-
tation of the isotropy group G' of De Hσ, such that U'H contains D as a
subrepresentatίon, then the induced σ-corepresentation U"\G of G is
irreducible.

43. Generalized Inducing. Let σ be a multiplier of G, let G' be any
subgroup (of finite index) of G, and let U' be any σG,-corepresentation5

of G' with carrier space Jf". For each coset peP = G/G', choose (i)
a Hubert space J^p isomorphic to Jtf" = Jfpo, (ii) a coset representative
rp9 with rpo = e, (iii) a fixed unitary (rpeG+) or antiunitary (rpeG~)
mapping K p : Jf"-•J^, with KPo = I. Then the induced σ-corepresen-
tation [/' IG of G is that representation U, having carrier space J f = (+)^>
defined by U(g) = ®Up(g), "(4.9)

V

where Up(g):Jί?p-+Jfgp is [taking our cue from Eq. (4.8)] defined by

Up(g) = ίσ(g, rp)/σ(rgp, r^gr,)} KgpU'(r^ grp) K~1. (4.10)

If σ = 1, then one sees immediately that U is indeed a corepresentation.
For an arbitrary multiplier σ on G (with respect to the given U^-de-
composition G + u G " ) our lead-in via Eq. (4.8) strongly suggests that U
is indeed a σ-corepresentation. A direct check, using Eq.(1.2), that the
multipliers do work out, is possible but somewhat tedious and it is
simpler to proceed as in § 3.1.

It should be noted that a different choice Kp of the mappings Kp

merely results in a σ-corepresentation U which is unitarily equivalent
to U, for clearly U{g)=TU(g)T-\ where T= @KpKp~

ι is unitary.
P

Of course, in a matrix realization of I/, we can arrange for each Kp to
be the identity matrix - if {et} is a orthonormal basis for 2tf\ choose
{Kpβi} as orthonormal basis for J4?p.

Also note that different choices of coset representatives lead to unitary
equivalent representations. For, in the case σ = 1 of ordinary corepresen-
tations, U is clearly unchanged under the simultaneous replacements
rph>rphp, Kp-^KpU'(hp\ for any hpeG'. Hence, using the method of
§ 3.1, and noting that (rphp91) = (rp, 1) (hp9 σ(rp, hp)~ι\ we deduce that the
induced σ-corepresentation U is unchanged under the replacements
r^rphpi Kp^Kpσ(rp, hp)~1 U\hp\ hp e G'.

Two cases can be distinguished, as in [6], according as we induce
from a subgroup G' which is or is not contained in G + .

Case (a): G ' n G ~ Φ ψ . In this case P = G/G' can be identified also
with G+/(G')+, and for convenience we may choose rp to lie in G + , and
hence Kp to be unitary, for every p e P. (Even if we do not make this

5 In Case (b), (see below), U' is in fact a representation, not a corepresentation.
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choice, the induced representation U above has the correct property
of being antiunitary upon the coset G~ -for, in the present Case (a),
U' is a genuine corepresentation, being antiunitary upon G'nG~.)
Observe then that the restriction U+ of U to G+ is precisely the represen-
tation which arises by ordinary inducing (see for example § 13a of [2],
with appropriate insertion of multipliers) from the restriction U+ of U'
to(Gf)+:

C/+ = [ / ; t G + . (4.11)

Case (b): G' C G +. In this case P = GjG splits into two G + -orbits:

, P+=G+/Gf, P~ = aP+, (4.12)

where a denotes any element of G~ (but which will be kept fixed through-
out the following). The direct sum decomposition

Jf = J f + Θ.J^- , where Jf± = 0 3tfp9 (4.13)
peP±

clearly decomposes the representation U+ of G + into two subrepresen-
tations, say X+ and X_, where

X±(0)= ® Up{g)9 geG+. (4.14)

Note that X+ is that representation of G+ induced from the representation
Uf of G'. Since Z_ = φ Uap9 we soon see, on choosing rap = arp for

peP +

p e P + , that X_ is unitarily equivalent to the conjugate representation
aX+ of X+ by ae G~. Thus, in the present case, U+ decomposes at least
to the extent:

G+). (4.15)

We can also check that a(Ό']G+)~(aU')ΊG+, where [see the remark
in parenthesis after Eq. (4.1)] all' is a representation of the subgroup
aG'a'K

4.4. The Determination of the Irreducible Multiplier Corepresen-
tations of a Group G Containing an Invariant Subgroup H C G+. We return
now to the set-up in § 4.2, with H invariant in G. However we will now
assume that H CG + . We lose almost nothing by making this assumption,
since if it does not apply we can always switch our attention to H + = H n G+

which is also invariant in G. The plan of campaign (cf. [3, 5]) for deter-
mining all the irreducible multiplier corepresentations U of G (with
respect to the given [/^-decomposition) thus runs as follows:

(1) determine the equivalence classes of multipliers of G;
(2) for each multiplier class, fix upon one multiplier σ and determine

the G-orbitsiniϊσ;
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(3) for each orbit, fix upon one point D -(i.e. an irreducible σH-
representation of H) and determine its (generalized) isotropy group
GD = G';

(4) determine (up to unitary equivalence) all the irreducible σG,-
(co)representations U' of G such that U'H is a multiple of D:

(5) for each U' construct U=U"[G.
We will say nothing here about Step (1). Instead we concentrate

on another weak link, namely Step (4). If the operators U'(g') are all
unitary [i.e. Case (b) of §4.3] then it is well known that the U' are fairly
amenably related to D and to the irreducible multiplier representations
of G'/H - see Theorem 3 of [3] and Theorem 8.3 of [5]. We now show
that the situation is entirely analogous even when the U' are genuine
corepresentations [i.e. Case (a) of §4.3].

On the one hand, suppose that U' is given, with U'H equal to a
multiple n of D. Then we may take the carrier space Jtf" of U' in the form

(4.16)

where Jfn denotes an n-dimensional Hubert space and where V carries D:

U'(h) = D(h)®I, heH. (4.17)

For convenience, let us temporarily drop the primes from Jf7', G\ U'.
In other words we are in the special case of § 4.2 which arises when
Gf = G, i.e. when the representation D is selfconjugate: gD~D, for all
geG. Thus for each geG+(G~) there exists a unitary (antiunitary)
operator T(g) such that

T{g) Dig-^hg) T{gYι = [_σ{g9 g-γhg)KK g)l D(h) (4.18)

holds for all heH.
For each #eG+(G~~), choose any unitary (antiunitary) operator

Σ(g) on J ^ . Then, upon using Eqs.(4.17), (4.18) in Eq. (4.3), it follows
that for each geG the unitary operator U(g)°(T(g)(g)Σ(g))~1 commutes
with D(h)®I for all heH, and hence (Schur's lemma holding, since G
is an irreducible σ^representation) is. of the form I0L(g) for some
unitary operator L(g) on Jfn. On writing Ω(g) = L(g)Σ(g) we see that U
is of the form

U(g)=T(g)®Ω(g), geG. (4.19)

Of course the irreducibility of U implies that of Ω.
Thus the PlL4-representation U of G under consideration, with

carrier space J^=V®J^n, determines uniquely two other PUA-
representations T and Ω of G, with carrier spaces V and Jfn. For any
versions U, T, Ω of U, Γ, Ω such that Eq. (4.19) holds, the multipliers
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σ, τ, ω are of course related by

σ = τω, (4.20)

and T satisfies Eq. (4.18). The P ̂ -representation Ω of G is effectively
a PίΛ4-representation of the quotient group G/H, since from Eq. (4.17)
we have Ω(h) = I, and hence Ω(gh) = Ω(g) for all geG, heH; i.e.
Ω = Ω o of9 where ί20 is some P ̂ -representation of G/H and / is the
canonical homomorphism G-^G/H. Thus we can choose versions
[satisfying Eqs. (4.19), (4.20)] such that

T(h) = D{h)9 Ω(h) = I, geG, (4.21)

and such that the multiplier ω satisfies

ω(gh, g'K) = ω(g, g'), g,g'eG, h,h'eH: (4.22)

i.e. ω is of the form ω = ω 0 ° (/ x /) for some multiplier ω 0 for G/H.
On the other hand, starting from a given Deίίσ which is self-

conjugate with respect to G (where we are still dropping the primes!),
then there exists for each geG+ (G~) a unitary (antiunitary) operator
T(g) satisfying Eq. (4.18). Using Schur's lemma, it follows quickly
that Tig) is uniquely determined by g and that T(g) T(g') TXgg')"1

commutes with D(h) and hence is a scalar multiple of the identity operator.
Thus D, together with a, determines uniquely a P LL4-representation
g-+ T(g) of G, having the same carrier space V as D.

Any version of T according gives rise to a τ-corepresentation T
of G where the multiplier τ is determined up to equivalence by σ and D.
Defining the multiplier ω for G by Eq. (4.20), we wish to prove that ω
is equivalent to a multiplier which satisfies Eq. (4.22). To this end,
note first of all that according to Eq. (4.18) we may choose T so that

T(h) = D(h), for all heH. (4.23)

This choice entails that σ and τ agree on H x H:

ω(h,h')=ί, foτaΆKh'eH. (4.24)

Given that D(Λ)=Γ(ft), and hence D(g~ίhg)=Tig~1hg\ we see that
Eq. (4.18) holds also when σ is replaced by τ; thus ω satisfies

ω(g,g-1hg) = ω(Kg), geG, heH. (4.25)

Next we show that we can arrange for ω to satisfy

ωfa,ft) = l=ω(ft,0), geG, heH. (4.26)

in other words the version T can be chosen so as to satisfy

geG, heH.
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Choosing coset representatives si9 we can certainly arrange for ω(si9 h)=ί,
by taking λ(sih)=ω(shh) in Eq. (1.3). Setting g1=sh g2

 = h\ g^ = h in
Eq. (1.2) then yields ω(g,h)=ί, (with g = sft = a general element of G).
Equation (4.25) now yields ω(h, g) = 1 also. Finally the desired property
(4.22) follows quickly from Eq. (1.2) upon using Eq. (4.26): setting
Qι=g,Qi = g\ gi=h we obtain ω(g9g') = ω{g,g'h) and setting gί = g9

g2=K g?,=g' we obtain ω{gh,g') = ω(g9hg') = ω{g9g'). (Incidentally,
setting gγ = h, g2 = g, # 3 = g' we also obtain ω(hg, g') = ω(g, gf)h, whence
we deduce that Eqs. (4.23), (4.24) imply that HcG+: this should not
surprise us, since we have been leaning heavily upon the assumption
HcG+ in our appeal to Schur's lemma.)

Thus, given σ and a self-conjugate D e Hσ, we have shown that there
exists a multiplier τ for G and a τ-corepresentation T of G which satisfies
Eqs. (4.18), (4.27) [and in particular Eq.(4.23)]. The multiplier ~ω = σ/τ
thus satisfies Eq. (4.22) (and in particular Eqs. (4.24), (4.26)) and so
determines a multiplier ω0 for the quotient group G/H. Since Γis uniquely
determined by D and σ, the multiplier τ, and hence ω and ω0, is determined
up to equivalence.

If Ωo is any ω0-corepresentation of G/H, then U=T®Ω, with
Ω = Ωo of, is a σ-corepresentation of G such that UH is a multiple of D.
Since every linear operator belonging to the commutant [D®/] is of the
form 7®X, we see that the map X\->I®X sets up an isomorphism
between the commutants [£20] and [T®Ω]. Since I is a projection
if and only if 1®X is a projection, it follows that T®Ω is irreducible
if and only if Ωo is irreducible6. Since similarly a linear mapping X
intertwines Ω^, Ω{

0

2) if and only if 1®X intertwines T®Ω{1\ T®Ω{2\
we see7 also that Ω(Q\ Ω{Q] are unitarily inequivalent if and only if T® Ω{1\
T®Ω{2) are unitarily inequivalent.

By our previous discussion leading up to Eq. (4.19), every irreducible
σ-corepresentation U of G, such that UH is a multiple of D, is of the kind
U = T®Ω just considered. Thus the mapping Ωot-*T®Ω sets up a
1 — 1 correspondence (unitarily equivalent representations being identified)
between the irreducible ω0-corepresentations of G/H and those irreducible
σ-corepresentations of G which reduce on H to a multiple of D.

So much (after restoring the primes!) for step (4). As described in
§4.2, we can now combine together Steps (4) and (5). Given σ and D e Hσ,
and hence also G' = GD and O = the G-orbit of D, the mapping

6 By a modification of the foregoing proof, this conclusion holds more generally, for
corepresentations which are not UA (and which therefore may reduce without decomposing).

7 If W intertwines T(χ)Ω(1), T®Ω{2\ then We[D®Γ\ and so W must be of the form
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sets up a 1 — 1 correspondence (unitarily equivalent representations
being identified) between the irreducible ω0-corepresentations8 Ωo

of G'/H and those irreducible σ-corepresentations U of G having O as
orbit. Of course DuD2eHσ can give rise thereby to unitarily equivalent
representations if and only if D 1 ? D 2 lie on the same G-orbit.

Following § 4.3 we can usefully distinguish between two cases.
Case (a) : G'nG~Φφ; i.e. D~aD, for some ae G~. In this case Ωo,

U' = T(g)Ω and U are all genuine corepresentations; moreover they
must necessarily be all of the same Wigner type9. For, since (F x© V2) ΐ G+

= ( F 1 | G + ) 0 ( F 2 t G + ) , the fact that U is of the same type as V follows
quickly from Eq. (4.11) upon applying the ordinary theory (e.g. § 8 of [5])
to the chain #<α(G') + CG + . The further fact that [/' is of the same
Wigner type 1 0 as Ωo follows from Theorem C since, as previously noted,
[T(χ)Ω] is isomorphic to [Ωo] (Incidentally all three Wigner types can
arise—take H = {e}, for example.) One way of determining all the
irreducible ω0-corepresentations Ωo of G'/H is to first of all determine all
the irreducible ω0-representations Γo of (G')+/H and then apply Theo-
rem B. As noted in the second part of that theorem, the Wigner type of
Ωo (and hence that of U) is determined entirely by the properties of Γo.

Case (b): G ' C G + ; i.e. D and aD are unitarily inequivalent for all
a e G~, i.e. D and aD belong to distinct G +-orbits in Hσ. The σG+-represen-
tations l/'TG+ and a{U'\G + ) = (aU')\G"r in Eq.(4.15) are thus unitarily
inequivalent, since their orbits contain D and aD, respectively, and so
are distinct. Thus, in the present case, U is always of Wigner Type III.

4.5. Classification of Irreducible Multiplier Corepresentations. If G
is any group having a U^-decomposition G = G + u G " , with G~
non-empty, then its irreducible σ-corepresentations can be determined,
given a certain knowledge of the irreducible σG+-representations of G + ,
by applying the plan of attack of § 4.4 to the simple special case H = G + .
Three distinct possibilities are then seen to arise, and we thereby rederive
the previous classification (Theorems A and B) into three Wigner types.

Given then a multiplier σ for G = HvaH, and given an irreducible
^-representation D of H, the details are as follows.

Type III: G' = H, i.e. D and aD are unitarily inequivalent, i.e. D
and E [in Eq. (2.15)] are antiunitarily inequivalent. Thus, as in § 4.4, U is
obtained from Ό' =D by [Case (b) of] generalized inducing: U = D | G ,
and we reobtain Eq. (2.18) as a special case of Eq(4.9).

Types I, II: G( = G, i.e. D - aD. Thus G'/H ~ Z 2 = {e, e'}, say. Bearing
in mind that Z 2 here inherits the L/A-decomposition {e}u{e'}, we see
that there are just two inequivalent multipliers for Z 2 , ω J and O)Q,

8 In Case (b), Ωo is merely a ω0-representation.
9 Not of course to be confused with Von Neumann-Murray type referred to in [5].

1 0 Of course, by Eq. (4.23), T is of Wigner Type I.
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where cύo(e',e')=±ί. Up to unitary equivalence we easily see that
there is just one irreducible ωo-corepresentation ΩQ of Z 2 , given as
follows: the corepresentation ΩQ is 1-dimensional, with e' represented
by a conjugation, while the ωό -corepresentation ΩQ is 2-dimensional,
with ef represented by an antiunitary operator k satisfying k2 = — /, and
hence such that keγ = e2, ke2 = — eί for some orthonormal basis {eu e2).

Setting K=T(a) in Eq. (4.18), the two possibilities ω±(a,a)=±l
correspond to D being such that K2 = + σ(α, a) D{a2\ and give rise to the
Wigner Types I and II for U:

Type I: D ~ aD, K2 = +σ(α, a) D(a2); hence U = Uf = T®Ω+ ^ T is
given by Eqs. (2.16) and (2.19).

TypeH: D~aD, K2 = -σ{a,a)D(a2); hence E/= [7; = T<g)Ω~ is
given by Eq. (2.5;) [equivalently by Eq. (2.17)] and Eq. (2.19).

Remark. Following on from § 3.4, let us compare the above results
with the "Clifford's theorem" results, where G+=H and G~ = aH
are both represented unitarily:

Type 'ΊIΓ: Gf = H,D<^aD: hence U = Df G, and we obtain Eq. (3.7)
as a special case of Eq. (4.9) (the X's now being unitary).

Type"I±": Gf = G, D~aD, U± = T(g)Γ±. Here G'/H~Z2 has, up
to equivalence, only the one multiplier (in the ordinary sense) ω 0 = 1
however there are two inequivalent irreducible representations Γ 1

of Z 2 , both 1-dimensional, given by Γ±(ef) = ± 1. (In the corepresentation
case, there were two multipliers for Z 2 , each giving rise to one irreducible
corepresentation, the dimensions being 1 and 2.) It follows that
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