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Abstract. We consider a class of distributions, appearing in electro-production and
satisfying a Jost-Lehmann-Dyson representation. We then prove without further assump-
tions that only their singularity structure near the light cone is relevant for the behaviour
of their Fourier transform in the Bjorken limit. Furthermore we study the ambiguity
in this singularity structure introduced by the fact, that scaling is known only in the space
like region of momentum space.

1. Introduction1

A great deal of theoretical interest has been shown in deep inelastic
lepton-nucleon scattering experiments such as inelastic e — p scattering.
This has to do with the claim, often expressed in the literature, that in
these experiments one is measuring the commutator of two currents
in a region of the configuration space where the theoreticans may have
some intuition, namely for light-like separations. This has led to the
development of the so-called light cone physics [2]. However the argu-
ments put forward as justification for the close relation between light
cone and Bjorken limit are somewhat formal and not totally con-
vincing [3].

In this paper we study rigorously the distribution theoretical problem
of the dependence of the momentum space asymptotics on the con-
figuration space structure of a structure function [4-6]. Because of the
special singularity structure expressed by a Jost-Lehmann-Dyson
representation it is possible to answer this question completely:

It is indeed the degree of singularity on the light cone which determines
the Bjorken limit of structure functions (see our Theorem II).

This goes far beyond the general statements on asymptotic behaviour
of Fourier transforms which can be found in standard books on dis-
tribution theory [7, 8].

* Work supported by the Bundesministerium fur Forschung und Technologic.
1 This work is a slightly improved version of the author's thesis [1].
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We further discuss the question of ambiguity in the light cone
structure due to the fact that scaling can be measured for space-like
momenta only. The result is the asymptotic analogue of the already
known result concerning the arbitrariness in the determination of a
causal distribution if one knows its spectrum in the space-like region
only [9,10].

2. The Structure Functions of Inelastic e — p Scattering
and Their Bjorken Limit

We recall the well known relation between the cross section for
electroproduction (e + p-^e + anything) and the one-proton expectation
value for the hadronic part of the electromagnetic current commutator
[11]. The spinaveraged cross section depends on two invariant dis-
tributions V±(q,p) and V2(q,p) and has the form:

where θ is the scattering angle of the electron in the lab frame, q its four
momentum transfer and E its final energy. The four momentum of the
proton is denoted by p.

The so-called "causal structure functions" Vv and V2 are defined
on the whole g-space by the following Fourier transform:

\ Σ
s=±i

v + pvqμ) pq - pμpvq
2 - 9μv(pq)2) V2(q, p) .

The subscript ί denotes the commutator without vacuum contribution.
The following properties of the "causal structure functions" are conse-

quences of basic physical principles and will be relevant for our analysis
(i=l,2):

i) For any fixed value of the four momentum p contained in the
mass shell

Vι(q, p) is a tempered distribution in g-space.
Under a Lorentz transformation L it behaves as follows :

(Vt(q9 p\ φ(L~ ί q)) = (Vt(q9 Lp\ φ(q)) (φ



Light Cone Dominance 227

ii) For any fixed value of the parameter p e M Vt(q, p) is the Fourier
transform of a causal distribution Ff(x, p):

Vi(x,p) = Q for x 2 <0.

iii) For any fixed value of the parameter p e M the support of the
distribution V^q.p) is contained in the following subset of the g-space:

] (peAf).
All these properties are shown in the literature [3, 6, 12].
Next we introduce the new real variables λ, ω and n. The fourvector n

obeys n - p = 1 and n2 = 0. We define a linear coordinate transformation
in the g-space by:

The famous Bjorken scaling law can now be written in the following
way [10]:

F2(ω) 1 2

—7—^T+oί'1 ) (1)

1—»+ 00, ω<0.

The one dimensional distribution FL and F2 are called "scaling functions".
The precise meaning of the Landau symbol 0(...) for distributions will
be explained later on.

Remember that all experimental information about the structure
functions is restricted to the region q2 < 0, which has ω < 0 for λ > 0.

The properties i)-iv) listed above define the class of tempered dis-
tributions which we want to study in the Bjorken limit. We continue to
call the members of this class (generalized) structure functions (in mo-
mentum space).

Because of Lorentz covariance (property i) it is obviously sufficient
to study these structure functions for the parameter value p = (1,0,0,0)
only (structure function in the "lab frame").

In the following we will restrict ourselves to this special choice and
suppress the p-dependence.

For a structure function in g-space we shall write f or f(q). The
corresponding distribution in configuration space will be denoted by T or
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T(x). Our convention for the Fourier transform is the following:

(f(q),φ(q)) = (T(x)9φ(x))

φ(x):= Sdqj

The properties ii)-iv) are just the conditions which T=Vt has to
satisfy in order to have a Jost-Lehmann-Dyson representation [13]:

Γ(x)= ]dsh(x,s)Δ(x,s). (2)
o

As usual A stands for the well known Pauli-Jordan function. The
"spectral function" is a tempered distribution on 1R3 x [0, oo> with the
following properties :

Application of a test function φe^([Q, oo)) in the variable 5 gives
a rotation invariant function hφ on 1R3

hφ(x)'9 = (h(x9s)9φ(s))s.

The spectrum of hφ ( = support of the Fourier transform) is contained
in some compact subset K ClR3. K is independent of φ.

One can specify the spectrum of hφ even further, but for our purpose
this is sufficient.

One has to be a little bit careful in interpreting formula (2). In general
it cannot be understood as an integral with respect to ds even not in
sense of distribution theory (unless h is a function on 1R3 x [0, oo».
Its meaning is given by:

(T(x)9φ(x)) = (h(x9s)9φ(x9s))
+ 00

φ(x9s):= J dx0A(x,s)φ(xθ9x).
— oo

It is not difficult to see that φ is a test function for the distribution h.
Instead of working with formula (2) we prefer a different represen-

tation for T :
00

T(x) = f ds g(x, s) ε(x0) δl(x2 - s) . (3)
0

The definition of ε(xQ)δl(x2-s) (s^0,/ = 0, 1,2, ...) is standard. The
function g is continuous, polynomially bounded on 1R3 x [0, oo> and
rotation invariant in the first variable. Its spectrum with respect to the
first variable is contained in the same compact subset K as before.
K is independent of s ̂  0. The pair (/, g) is then called a representation
of the structure function T.

Formula (3) has the advantage that the ds-integral there, is a well
defined parameter integral in the distribution sense [14]. We show in the
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appendix that a representation (3) can be derived from the Jost-Lehmann-
Dyson representation (2).

Formula (3) is the starting point of all our proofs.
There are several definitions in the literature for the asymptotic

behaviour of distributions [8,15]. Schwartz seems to have given the
most convenient one, both from the mathematical and the physical
point of view. We apply it to the Bjorken limit.

Consider a distribution U on g-space. The regularisation of U by a
function φe^(IR4) is a C°°-function. We can study the behaviour of
this function in the limit:

The symbol p stands simply for p = (1,0,0,0).
Definition. Let U be a distribution on g-space, which is rotation

invariant in the q dependence.
Let/: <0, oo>-><0, oo> be a continous function.
We say: U vanishes in the Bjorken limit faster than the function /, iff

lim (17 * φ) (λn + ωp) (f(λ))~ί = 0

for any rotation invariant function φ e ^(IR4). For any fixed test function
φ this limit is understood to be uniform with respect to ω, ω varying in a
compact intervall.

In symbols we write for this behaviour: U(q)-^->o(f).
Obviously this definition does not depend on the special choice for

the light like vector n. We demand the uniformness to fit the definition
to the physical situation. The Landau symbol in (1) is now well explained.

3. Light Cone Dominance

In a first theorem we show that only the light cone in configuration
space has a chance to contribute to the Bjorken limit of a structure
function.

Theorem I. Let Te^'OR4) be as in formula (3). For an arbitrary
ε > 0 we have:

ds g(x, s) ε(x0) δl(x2 - s)
L ε

for all n elN.

Proof. We regularize the Fourier transform of

00

Tt(x):=ίdsg(x,S)δl(x2-s)
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through a test function with compact support. This is by the convolution
theorem equivalent to the replacement of g(x, s) in the integral by its
product with a function φ e J [̂̂ (1R4)]. The Fourier transform of this
product

g(q, s) := f dxeίqx φ(xθ9 x ) g ( x , s)
IR4

has its support in the compact set:

Kφ '•= {(°> q) + q';qeK,q'e suppφ} .

The regularized Fourier transform of Tε(x) is then given by:

The star denotes the convolution with respect to the variable indicated by

a dot. — — - 1 A(q, s) is simply the Fourier transform of ε(x0) δ
l(x2 — s),

(s^O). The convolution is well defined because g( ,s) is a function in
^(IR4) for any s ̂  0.

We show now that the ds-integral converges. To this purpose we use

an explicit form for — — I A (q, s) valid for q0 > 0 and 5^0:
ds

l + k _l + k
Λ 2 „ 2

q0 o

Jl + k is the Bessel function (of the first kind) of order ί + f c and (q2) +

denotes the product of q2 with the Heaviside function θ(q2}. The function
within the squared bracket is analytic with respect to s and (/ + fc)-times
differentiable with respect to the ^-variables. The formula is valid for
fc = 0, 1,2, .... In the case / = 0 the derivatives can be understood only
in the sense of distribution theory. It is then a generalisation of a well
known expression for the Pauli- Jordan function.

With this expression we can write the convolution integral as follows:

(q)

l+k l+k

= (-2fs 2 J dq'((q-q')2

+) 2 Jk+l(}/s(q- q')2)
£
"•φ

i \*+* , ,
g(q, s).
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This equation is valid for those values of q = (g0, q) with

Now we substitute q = λn + ωpm order to take the Bjorken limit. The
scalar ω is contained in some compact intervall J. There are the following
bounds for the different factors in the integral above :

First, there exists a constant C t such that:

ί

The constant Cv depends only on the two compact sets J and Kφ.
Secondly, the absolute value of the Bessel function is bounded by 1

for all positive arguments.
Finally one verifies immediately the inequality:

-d 1 k+ 1

with some integer m and for all values of λ > 0 such that:

The result of these three properties is the bound:

8 V \
-̂| Δ( , s ) \ ( λ n + ωp)

l + k

λ2 J±i
<2l( + S) — C^ C f da'= Λ £T7 ^FfΓ ^1 °2 J a(i -

~~τ~ Λ ίt
S 2 φ

If we choose /ceN sufficiently large, this shows that the following
integral is convergent:

00 / / d V \
Tf(λπ + ω/7)= f d s [ g ( ,s)* \—-^—\ A(-,s) }(λn + ωp).

\ \ d s ] J

Furthermore we have proved the bound:

l-k-2 l + k oo

λ C^2 C2 \ dq - ] ds ^+
Kφ ε s 2

for λ sufficiently large. Since /ceN may be chosen as large as we like
this bound proves the theorem.
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4. Singularity Structure on the Light Cone and Asymptotic Behaviour
of the Fourier Transform

In a second theorem we show the relation between the strength of the
singularity on the light cone of a structure function and the behaviour of
its Fourier transform in the Bjorken limit. This strength is characterized
by / the degree of singularity of ε(x0) δl(x2 — s) with respect to 5 and
the Holder index of the function g(x, s) with respect to s at the point
s = 0. The precise definition of this concept will be given later.

Theorem II: Let Γe^'(lR4) be as in formula (3). Furthermore if
β < 1 satisfies the two conditions :

a) sβg(x9 s) is polynomίally bounded in (x, s) for (x, s) elR3 x [0, oo>.
b) lim sfg(x,s) = Q.

s-»0 +

We then have the following bound for the Fourier transform f in
the Bjorken limit:

Proof. According to Theorem 1 it is sufficient to prove the statement
for the case g(x, s) = 0 for s ̂  ε > 0. The representation (3) reduces in
that case to :

T(x)=ldsg(x,s)ε(x0)δl(x-s).
o

By definition of the Bjorken limes we have to study the regularized
Fourier transform fφ of T.

The same arguments as in the proof before give :

l + k l + k

1 \k+1^

for !
g0>sup{^elR; cf eKφ}.

Remember g was simply the following test function on g-space:

g(q, s) = j dx eίqxφ(x0, x) g(x, s), (φ e j
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Let P be an arbitrary polynomial depending on four variables. We have:

P~ί-r sf>g(q9 s) = dxe*xg(x, s) sPφ(xQ, x) P(x").

It follows immediately from our assumption a) that

is bounded for all (q, s) elR4 x [0, oo>. If we use assumptions a) and b)
and Lebesque's "Dominated Convergence Theorem" we conclude
furthermore:

lim P l - i
dqμ

Now we investigate the Bjorken limit of fφ(q):

λ->oo , ωeJ fixed.

J is a compact intervall.
For this purpose we substitute u : = λs in the integral expression

for fφ(q) and we derive for all values ofq with q0 > sup {q'0 e 1R; q' e Kφ]

ελ l + k+2β

\duu 2

0

λ

λ \k+1 J , u\ίu

In order to obtain a bound for that integral we use the following
inequalities:

For the Bessel function Jk + l one has the bound

y

As mentioned in the proof of Theorem 1 we have

λ

for those values of q — λn + ωρ with λ > 1 and ω e J. The constant Q
depends only on the two compacts sets Kφ and J.
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For all those values of q = λn + ωp with

λ - 1 ^ sup [\q'0 - ω\ ω e J, qf e Kφ}

it is easy to see that there exists a constant C3 j k with

_ A

for all r with r <^ 5 ̂  k + 1.
Combining these three inequalities we derive a bound for \fφ(q)\:

l + k oo
2 C k + ίC 3 f k J

l+k+2β
2

1

k + ϊ
ς'τAτ

This bound is valid for:

λ - 1 ̂  sup {|^ό — ω\'9ωεJ,q'e Kφ} .

Pk denotes a one dimensional polynomial.

Remember Pfcί-r-p-j
\cqQJ \ Λ / \ Λ /

/c + 2j8>2 then the following integral

', — — I is bounded too. If we choose

fceN large enough to have

oo l + k+2β

dun 2 - J^', const
C1J κφ

converges (because of β<i\ The integrand serves as a dominating
function to apply Lebesque's "Dominated Convergence Theorem"
to 2~l\Tφ(q)\ λ~l~β + 2. It tells us that the right side of the ine-
quality for 2~l\Tφ(q}\ λ~l~β + 2 vanishes in the limit Λ,-»αo because

") vanishes there, for u > 0.

The constants Cl9C
f

k+l and C3 > f c do not depend on the particular
value of ω 6 J. The convergence is therefore uniform with respect to
ω e J. This completes the proof.

Remark. The function g in formula (3) is continuous in 1R3 x [0, oo>.
Therefore any β > 0 satisfies the assumptions a) and b) in Theorem II.
The condition β < 1 is therefore no restriction.

The rotation in variance of g(x, 5) is not used in the proofs of theorem I
and theorem II. These theorems are true without this assumption.
This fact may be helpful if one wants to study the Bjorken asymptotics
for non forward Compton scattering.
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5. The Degree of Singularity on the Light Cone

Here we give a precise definition for the degree of the light cone
singularity of a structure function T [16]. First we note that the integer
/ and the function g in formula (3) are not uniquely determined by the
structure function T. If (/, g) defines a representation (3) of T, it is obviously
true for (/+ i,g(~ί}) too, where

s

g ( ~ 1 } ( x , s ) : = J ds' g(x, sf) .
o

Of course we would like this degree of singularity to have a meaning
independent of the special representation. This is done by the following
definition :

Definition. Let T be a generalized structure function in configuration
space. Consider the infimum of all numbers I + β such that there is a
representation (/, g) of T and sβg(x, s) is polynomially bounded in (x, s)
for all(*,s)eIR 3x[0,s>.

Then this infimum is referred to as the degree of singularity of T
on the light cone. We denote it by SG [Γ]. Note that — oo is not excluded.

To justify this definition we mention the following properties of SG:
i) We have SG[T] = — oo if the structure function coincides with a

polynomially bounded C°° -function in some neighbourhood of the light
cone. This is true especially for those T with

suppTc{xeR 4 ,x 2 >ε}.

ii) We have SG[T] = -σ for T(x)-/(x)disc(x2)σ. / is a function
with compact spectrum and disc(x2)σ is a shorthand for:

Γ(-σ)[(~x2 + ί6Xor-(-x2-iεx0Π, (σelR).

Now we are ready for our first important application to inelastic
e — p scattering :

It is an immediate consequence for our Theorem II that the scaling
relations (1) can hold only if the structure functions V1 and V2 have:

S G E F J g r l , SG[F2]^0. (4)

Here we assume that the scaling functions do not vanish identically.
Proof. If the inequalities (4) would not hold, then there is a represen-

tation (3) for V1 given by (/, g) and a β such that Theorem II applies with
I + β < 1. Consequently we have

with ρ < — 1. This is a contradiction to (1) unless FL vanishes identically.
The same argument with ρ < — 2 applies to V2 and F2.
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The concept of the degree of singularity on the light cone makes it
possible to define a light cone expansion [17].

Definition. An expansion of a structure function Tinto a formal series
00

Σ Tt of structure functions is called a light cone expansion of T iff the
i = l

sequence of the remainders has strictly decreasing singularity degrees
on the light cone.

As a consequence of Theorem II, we are allowed to Fourier transform
a light cone expansion term by term and the result is an asymptotic
expansion of the Fourier transform in the Bjorken limit.

In the preceeding paragraph we found a lower bound for SG[F1]
and SG[F2] as a consequence of the experimentally verified scaling
law. It is well known that it is impossible to derive an upper bound
for these degrees from the scaling law (1). One is always free to add to
V1 or V2 terms like: [10, 18]

P denotes a polynomial and χ is a Lorentz invariant, uneven distri-
bution. The Fourier transform of this distribution vanishes in the
measurable region q2 < 0 and satisfies the Conditions I)—IV) for structure
functions. Since χ can be chosen as singular as one likes, this shows the
impossibility to derive an upper bound for SG[t/

I ] as a consequence
of the relation (1) only.

We are going to demonstrate that singularities with SG > 1 (resp.
SG > 0) in the structure function V1 (resp. V2) are necessarily of the
type P(x0) χ(x) mentioned before.

Take Vi for example. We assume that V± has a light cone expansion as
follows:

N m

Σ
i = 0 7 = 0

+TN(x). (5)

The defining condition is thereby σ ί<σ ί + 1^ — 1, SG[TΛΓ]<1. Loga-
rithmic correction terms are taken into account by differentiating
disc(x2)σ with respect to the exponent σelR.

The Fourier transform of a term :

is in Bjorken limit equal to:

}' [22σ+4(21Γ*-2 (/, 0_ β _ 2 ) (co)]
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Here we introduced :

and we made the substitution q = λn + ωp. From this expression and
Theorem II we obtain for the Fourier transform V± in the Bjorken limit:

^(λn + ωpH-π'f-j-) ^ Vln2λ)M/oΛ>*0-σo-2)(ω)

(6)

Comparing this result with the scaling law (1), we conclude that the
coefficient (/0>0 * #_σ o_ 2)(ω) in the expansion (6) has to vanish for
ω<0.

Since supp/0 0 is compact and symmetric, its convex hull is given by
an intervall [ — α, α], αΞ^O. The support of g-σ-2 is either the whole
intervall [0, oo> or concentrated at the origin (for σ 0= — 1,0, 1, ...)•
We write:

9-σ0-2 — d-σo-2 + 9-σ0-2

with:
supp0_ σ o _ 2 e[ί+α, oo>

and:
supp#_ σ o _ 2 C[0,2 + α].

The vanishing of /0 0 * #_ σ o _ 2 on the left side of the real axis is obviously
equivalent to the vanishing of / 0 0 * § _ σ o _ 2 for this set. The convex
hull of supp#_ σ o_ 2 is given by an intervall [0, b~\ with Q^b^2 + a.

An important theorem of Titchmarsh on the support of a con-
volution gives the relation [19]:

[-α,α] + [0,b]C[0,oo>.

This can be true only for α = 0. The support of /0 0 is therefore concen-
trated at the origin. According to a well known theorem in distribution
theory this forces /0 0 to be a polynomial. Consequently the spectrum of

/ d \n°
fo o(χo) ^~Ί disc(x2)σ contains no space like momenta and its

' . ^ i
Fourier transform does not contribute in the measurable region.

We can repeat now the same argument with the next, less singular term
in the expansion (5) and so on.

In this way we derive that all fitj with ί^N-i or ί = N but j>0
have to be polynomials. Only for (ίJ) = (N,ff) we must have σN= — 1
and we get the well known relation for the scaling function :
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This can be written also in the form :

The same analysis applies to V2(q) and F2(ω), if we replace σN= — 1
by σN = — 2. Therefore the higher than canonical singular terms in an
expansion of type (4) have to be of the already mentioned kind P(x0) x(χ)

Acknowledgements. I would like to thank Professor H. A. Kastrup for many helpful
discussions and his continuous interest in this work.

Appendix

We start with a J.L.D.-representation for T:

OO

T(x) = J ds h(x, s) A (x, 5).
o

For any test function ψ e 5 (̂[0, oo» is

x~-+(h(x,s),ψ(s))s

an entire function with compact spectrum JK"V and there exists a compact
setKcIR3 such that:

KΨCK (v>e^([0,oo>)).

The J.L.D.-representation contains more information on the spectra
of these functions, but we shall not use it.

If φ e ^(IR4), we have

(x)) = (h(x,s),φ(x,s))
with:

+ 00

fhiY <z\ ' — I /7 Y A(' Yψ\Λ, Λ j .— J α Λ 0 Z J ^ Λ ,

For the Pauli-Jordan function we have the following expression:

1 5

\k+l

= ε(xo)

fork = 0, 1,2, ... .
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With a test function φ e ^(IR4) we obtain:

(A(x,s)9φ(xo,x))xo

239

We introduce the abbreviation :

1 φ(x0,*)-φ(-Xo,x)

χk is a test function and even with respect to the variable x0. We can
write now

j n /Sχ
2\

(x2)k

+ -!(Δ(x, s), <j0(x0, x))xo =

co +00

0 -co

- ds'(s'f+ (ε(x0) δ"+1(x2 - 5),
0 (|/SS)

The last formula is valid for all k = 0, 1, 2, . . . .
If we choose k sufficiently large, the function :

defines a test function for h(x, •) depending continuously on the parameter
s'^0. This function is a test function because it is analytic and:

d
= o(s for

The following function of x and s' is therefore well defined:

Our assumptions for h(x, s) tell us that this function has a compact
spectrum and it depends continuously on s'. Thus we have the equation:

), φ(x)) = - s), φ(x)) .

This is our representation (3).
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