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Abstract. We construct for a boson field in two-dimensional space-time with polynomial
or exponential interactions and without cut-offs, the positive temperature state or the
Gibbs state at temperature 1/. We prove that at positive temperatures i.e. < oo, there
is no phase transitions and the thermodynamic limit exists and is unique for all interactions.
It turns out that the Schwinger functions for the Gibbs state at temperature 1/f is after
interchange of space and time equal to the Schwinger functions for the vacuum or tempera-
ture zero state for the field in a periodic box of length B, and the lowest eigenvalue for the
energy of the field in a periodic box is simply related to the pressure in the Gibbs state at
temperature 1/B.

1. Introduction

Although the study of the statistical mechanics for quantum systems
has made good progress the last ten years [1], the progress has been
best for discrete systems of lattice systems. The main difficulty in
connection with continuous systems has been that the group of time
automorphisms a, for the Schrodinger particles is non local. The con-
sequence of this non locallity is that the infinite system of interacting
Schrodinger particles do not agree well with the generally accepted
picture of a quantum statistical mechanics described in terms of a local
C*-algebra or a C*-algebra of local operators, on which the time acts
as a group o, of C*-automorphisms. Hence we get a somewhat dis-
couraging situation, that the only known realistic model of a statistical
quantum mechanics, namely the system of interacting Schrodinger
particles, does not conform to the highly developed abstract theory of
quantum statistical mechanics.

For this very reason the question of studying relativistic particles
instead of Schrodinger particles appears quite natural, since in any
relativistic theory there should be an upper bound for the propagation
speed and this would force the group of time automorphisms «, to be
local. This is the motivation for this paper.

We know free relativisic particles are described by free quantum
fields and it is a general belief that interacting relativistic particles are
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to be described by the interacting quantum fields. Unfortunately at
present time the interacting quantum fields are well understood only
in the case of scalar fields in two space time dimensions with polynomial
or exponential interactions.

In the case of weak polynomial interaction in two space-time
dimensions we have by the recent results on the particle structure
by Glimm, Jaffe, and Spencer [2], that in fact the interacting quantum
field is a description of a system of infinitely many interacting relativistic
scalar particles. Hence we see that at least in this case the interacting
relativistic particles are described by the interacting quantum fields,
so that the statistical mechanics of interacting relativistic particles
is nothing but the statistical mechanics of the interacting quantum
fields. So that for instance the vacuum state for the interacting quantum
field is nothing but the zero temperature state for the infinite system
of interacting relativistic particles described by the field. In the case of
weak polynomial interaction and strong exponential interactions in two
space time dimensions one also has a very clear picture of what happens
with the vacuum in the infinite volume limit, or as we would like to say
it here, one has a very clear picture of the thermodynamic limit in the
case of temperature zero. For the weak polynomial interactions this
was treated by Glimm, Jaffe, and Spencer [2], and in the case of expo-
nential interactions by Albeverio and Heegh-Krohn [3]. Hence good
candidates for a quantum statistical mechanics of interacting relativistic
particles are the polynomial and exponential interactions in two space-
time dimensions.

In this paper I study the thermodynamic limit of the positive tempera-
ture Gibbs state for the polynomial and exponential interactions in
two space time dimensions.

The method I use is strongly influenced by recent works by Nelson [4],
and may be denoted as the Markoff field approach. The Markoff field
approach was also a main ingredient in [3] and played also a certain
role in [2]. One of the advantages of the Markoff field approach is to
make available for quantum fields the methods of classical statistical
mechanics, and this is the way it is used in [3], leaning heavily on the
work of Guerra, Rosen, and Simon [5]; that introduces a framework
which describes the Markoff fields as Ising ferromegnetic systems.

The way the Markoff field approach is used here is somewhat
different. In this paper we use the Markoff field to transform the problem
about the thermodynamic limit for the Gibbs state at temperature 1/f
for the relativistic quantum statistical system into the problem of the
uniqueness of the vacuum for the system in a periodic box of length .

In fact it turns out that for any of the interactions we consider,
namely the polynomial and the exponential interaction, the Markoff
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fields for the Gibbs state at temperature 1/f is the Markoff field on the
cylinder S; x R, where S; is a circle of length f, that corresponds to the
Markoff field for the vacuum in the plane R x R, and this last Markoff
field is the limit of the first one as the temperature 1/§ goes to zero.

Using this method it is proved that the thermodynamic limit for the
Gibbs state exists for all positive temperatures 1/f and all interactions
considered i.e. for strong exponential interactions as well as strong
polynomial interactions in two space time dimensions.

We see that this is in strong contrast to the vacuum or temperature
zero case for the polynomial interactions, where Glimm and Spencer
were only able to prove the existence of the infinite volume limit for
weak interactions, and from Dobrushin and Minlos [6] we know by now
that this is best possible, in fact for any even polynomial interaction in
two space-time dimensions they get that the thermodynamic limit is not
unique in the temperature zero case for strong enough interactions.
The reason for this difference is the above mentioned fact that while for
the temperature zero case we have a Markoff field in the plane R x R
so that the problem is two dimensional, we have for positive temperature
a Markoff field on the cylinder S; x R so that the problem is essentially
one dimensional, and therefore in a sense much simpler.

The Gibbs state at positive temperature 1/f is of course not invariant
under the Lorentz group since it is given in terms of the energy operator.
There is however, a Lorentz invariant analogy of the Gibbs state at
positive temperature 1/8. But this Lorentz invariant Gibbs state is
only to be found in a closed universe, the so called De Sitter universe,
and it will lead too far to give the construction of the positive temperature
state in the De Sitter universe in this paper. This will be dealt with
separately in a forthcoming paper.

2. The Gibbs-State for the Harmonic Oscillator

Consider the self adjoint operator

Hy=—3A+4(x, A%x)—%tr 4 2.1)
. Noo? .
on the Hilbert space # = L,(R"), where 4= ) e and A is a real
i=1 i

symmetric N x N matrix bounded below by a positive constant, 4 = cl,
¢>0, xe R" and (,) is the natural inner product in RV,

Let 4y, ..., Ay be the eigenvalues of A. It is well known that H, has
discrete spectrum consisting of the points of the form

Y i 2.2)
k=1
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and zero. Hence for a positive B, e #H0 is of trace class and we get

N
- 111'
tre PHo— > € =y ,
n1=0,...,nn20
hence
N
tr e o= ﬂ (1—e PM)~1, (2.3)

i=1
Let V(x)= —b be a real measurable function bounded below such that
H=H,+ V(x) (2.4

is essentially self adjoint. We say that H is the Hamiltonian for the
anharmonic oscillator. From V= —b we get H= H, — b, which-gives
us that H has discrete spectrum and together with (2.2) it gives a lower
bound for the eigenvalues of H, which is transformed into an upper
bound for the eigenvalues of e ##. Hence e ## is of trace class. Therefore
we may form the normal state w; on the von Neumann algebra B(#’)
of all bounded operators on 4, given by

wy(A)=(tr e PH) "1 tr(Ae” PH) (2.5)

for A e B(#). w, is called the Gibbs-state for the anharmonic oscillator.
By the Feynman-Kac formula we know that the kernel e #H(x, y)
of the operator e~ ## is given by

e_BH(xa J’) = E?x,y) > (26)

B
—JU(x(t))dt}
e ©

with U(x)=3%(x, 4°x)—3tr 4+ V(x) and Ef, , is the conditional ex-
pectation with respect to the Brownian motion in Ry given that x(0)= x
and x(B)=y. So that Ef;, ,, is the expectation with respect to the normal
distribution indexed by the real Hilbert space h of continuous functions
x(7) from [0, 8] into RY, such that x(0)= x(8) =0 and the norm square

Bldx(r) dx(r)
I( dt ’ drt )dt

2.7)

0

is finite.
Consider the Hilbert space L, ([0, f]; RY) of L,-integrable functions
from [0, f] into RY, and let k; i(s’ t) be the kernel of the inverse operator

of the self adjoint operator — % with boundary conditions x(0)=x(f)=0

on L,([0, 1: RY). Then
k;i(s, t)=k(s, 1) &;;
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and
%s(ﬁ ) s<t
ks, 1) = . 28)

—(B—s5)t s=t
5 (B—s) =
The normal distribution indexed by & is the same as the Gaussian
process with mean zero and covariance function k; (s, t).

It is well known that the Brownian motion, hence also the process
above has support on the continuous functions from [0, f] into R™.

In terms of the measures introduced above Ef, , is the expectation
with respect to the measure obtained from the normal distribution
indexed by h by a transformation on the continuous functions from
[0, B] into RY given by

x(1)— x + %(y —x)+x(1). (2.9)

From (2.6) we now get that the kernel e #H(x, y) is a continuous function
of x and y. It is well known in that case that tre™## = [ e ##(x, x) dx,
which together with (2.6) gives

B
—fU(x(r))dt
X

tre” M =(Ef [e o (2.10)

By (2.9) Ef, ,) is the expectation with respect to the measure on the

continuous periodic functions from [0, 8] into RM obtained from the

normal distribution indexed by h by the transformation x(t)— x(z) + x.
Since U(x) =%(x, A?x) —4tr A + V(x) we have that

B
~fU(x(r))dt

[ Efjx,x) [e °
RN

B 8
—3§(x(®),42x(x))  —[V(x()ds

dx= [ Ef ,le ° e ©

RN

dx. (2.11)

On the other hand we easily verify that for any real continuous
function F defined on the space of continuous periodic functions from
[0, B] into RY

B
-4 [ (x(1),4%2x(7))dt

f Efx.x) [é ° F
RN

dx=CE’[F] (2.12)

where E* is the expectation with respect to the normal distribution
indexed by the real Hilbert space g of continuous periodic functions
from [0, B] into R", x(0) = x(B), such that the norm square

f dx(t) dx(z)
o ( dtv ’ dt

) +(x(r),A2x(r))} dt (2.13)
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is finite. C is some positive constant independent of F. By setting V=0
in (2.11) we get that C=tre #Ho,
We have thus proved the following formula

B
—fV{(x()dt

tre P =tr g PHOEP o o (2.14)

where E? is the expectation with respect to the normal distribution
indexed by the real Hilbertspace g of periodic functions from [0, f]
into RN with norm square given by (2.13). Now tre ™ #Ho is given by (2.3),
and since 1 —e #% are the eigenvalues of the real symmetric matrix
1 — e #4 we get from (2.3) that

tre~PHo —|{ — ¢~ B4~ 1 (2.15)
where |1 —e #4] is the determinant of the matrix 1 —e #4. Hence
(2.14) may be written

B
—fVi(x(z)dz

tre PH=|{ —e P41 E”[e 0 (2.16)

Let now F,e B(#) i=0, ...,n be multiplication operators by bounded
continuous functions F;(x),i=0, ...,n,and let 0=s,<s;--- <5, <5,=p.
Consider the operator

Foe S F e~ 627508 | o= (n=sn-0H (2.17)

From (2.6) we have that the kernel of Fe™¢i+1~H ig given by

- Mo
F;(x) e Gsi+ 1_Si)H(x’ y) — FSi+17si Fi(x(O)) e 0

(x,y)

(2.18)

Since the Brownian motion is a homogeneous process, (2.18) may be
written in the form
Egil;)nu 1]

Fi(x(s))e - (2.19)

. U(x(z»dr]

where Efo5i+ s the conditional expectation with respect to the Brownian
motion given that x(s;) = x and x(s;, ,) = y. Utilizing now the Markovian
properties of the Browian motion we get that the kernel of the operator
Foe stHF e~ 2750 jg given by

— f U@ de

Fy (X(SI)) € :’ ] (2.20)
[ - Iz U(x(r))dt

o —SIZU(x(r))dr
[dz 258 |Fy(x(0) e © CEfssd

(x,2) (z,y)

— Fl0,s2]
- E(x,y)2

Fo(x(0)) Fi(x(s) e °
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By induction we get the kernel of the operator (2.17) is given by

—JU(x(@)d

Ef;., {I:TO Fi(x(s))e ° J (2.21)

By computing the trace of this kernel in the same way as we computed
the trace (2.16) of the kernel (2.6), we prove the following theorem.

Theorem 2.1. Let F,e B(#) i=0, ..., n be multiplication operators by
bounded continuous functions F(x), i=0,...,n, let 0=s,=<5;---<5,=0,
and let H be the Hamiltonian for the anharmonic oscillator (2.4) then

tr(F. e—s1HF e—(sz-‘sﬂH ...F _ e—(ﬁ—sn—l)H
( 0 1 n—1 ) (222)

~f V(x(t))dtn—1
=[{l—e M7 E e © [ Fi(x(sy)
i=0
where |1 —e™?4| is the determinant of the matrix 1 — e #* and EF is the
expectation with respect to the normal distribution indexed by the real
Hilbert space g of continuous periodic functions from [0, ] into Ry,
x(0) = x(p), with norm square equal to
brid d
1[5, 20) 4 (50, 47x00)

0

dt.

By a direct calculation one easily verifies the following remark.
Remark. The expectation E” in the theorem above is the expectation

with respect to the homogeneous Gaussian process on a circle of length
with values in R¥ given by the covariance matrix E#(x;(s) x;(1)) equal to the
matrix

1 2 & [4n? -1 27

— AT+ = ( n2+A2) cos—n(s—1t). (2.23)

B B n; p? i
Summing up this series we get a more explicit expression for the co-
variance matrix

EP(x,(0) x;(1)) = (2A(eP* — 1)) ! [e¥ 794 + £'4] (2.24)
for0<t<p.
Let o, be the C*-automorphism of B(#) defined by
o,(B)=e itHBe!H (2.25)
then
tr(Ba,(C) e~ PH)
=tr(Be "HCe (b~ nH) (2.26)

=tr(Ce™ ¥~ 10H B~ itH)

is analytic in ¢ in the strip — § <Imt <0, with boundary values at real t
equal to tr(Bo,(C) e #H) and at t —if equal to tr(Co_,(B) e #H).
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Consider now an operator of the form (2.17).
tr(Foe StEF e 2708 | F o~ (F=n-0H) (2.27)

is obviously analytic in the domain 0<Res; <Res,---<Res,_;<f
with boundary values at Res;=0, i=0,...,n which are continuous
and uniformly bounded and given by

tr(Foo,, (Fy) o, (Fy)...0, (F,— ) e #H) (2.28)

for s, =it, k=1,...,n—1.

The continuity of (2.28) follows from the strong continuity of e

Lemma 2.1. Let t;e R and F; be bounded continuous functions on R¥,
then B(J) is the smallest strongly closed linear space of operators that
contains all operators of the form o, (Fy)- o, (F,) ... a, (F,).

Proof. Since the smallest strongly closed linear space containing
the operators above is obviously a strongly closed C*-algebra of
operators, it is enough to prove that if Be B(#) commute with o,(F)
for all t and all continuous functions F then B= AI. Therefore assume
[B, o, (F)] =0 for all t and F. Then [e,(B), F]=0 for all F and ¢, hence
o,(B) is a multiplication operator by an L -function for all ¢. Hence for
any real L_-function W

itH

"o (B)e " =u,(B) (2.29)
so that i I 7 .t
(e'"W e nHy BeinHe =Wy = o (B). (2.30)
By the Trotter-Kato product formula
strong lim (enHe Wy = gitH-W) (2.31)
and therefore by (2.30)
o, (B)= e "H=W) BitH=W) (2.32)

By letting W(x) increase to U(x), we get that (1 + H— W)~ ! increase to
(1 —%4)"" so that (1 + H— W)~! converge strongly to (1 —54)™! and
so by the semigroup theorem ™" converge strongly to e™*4.

Hence by (2.32) we get that

o, (B)=e#4Be” 154,
Since «,(B) is a multiplication operator for all ¢+ we have that B is a
multiplication operator. But it is easy to see that if B is not equal to Al,

then e*4Be~ %4 is not a multiplication operator. This proves the lemma.
Using that w; is a normal state we get the following theorem

Theorem 2.2. Let B and C be in B(F), then
wﬁ(Bat(C)) = wﬂ(a—t(B) -0)
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is analytic in the strip —p<Imt<O0, and continuous and uniformly
bounded in — B<Imt=<0. The boundary values satisfy the KMS condition

wﬁ(B“z—i/s(C)) = wﬂ(C“—z(B))
for real t.

Moreover, any operator B in B(#) may be approximated strongly
by linear combinations of operators of the form o, (Fy) o, (F,)...o, (F,),
where Fi,...,F, are multiplication operators by continuous functions
Fy(x), ..., F,(x), hence wy(B) will also be approximated by the same linear
combinations of wp(ot,, (Fy) 0, (Fy)...0 (F,). Furthermore wy(Foo, (F;)
..o, (F)) is analytic in 0>Imt, >--->Imt,> —p and its value for
te=—is k=1,..,nwithO=s,<s, <---<s,< f is given by

wﬂ(FO(x~is1(F1) oc--is,.(Fn))

< ——fV(x(r))dt]>_ ! n _?V(X(T))df
=\Efle © EF|T] Fix(s)) e °
i=0

where E* is the expectation given in Theorem 2.1.

3. The Gibbs-State for the Free Scalar Quantum Field

Let ACR" be a bounded domain in R" with a regular boundary
0A. Let A% = — A+ m* where 4 is the Laplace operator in A with some
self adjoint boundary conditions on dA. If the constant functions satisfy
the boundary we shall assume that m > 0 if not only that m = 0, so that in
any case, A7 is a self adjoint operator on the real Hilbert space I5(A) and

Ay=zcl, ¢>0. (3.1)

It is well known that A4 4 has discrete spectrum and that e~ #4 is of trace
class for all §>0, so that the Fredholm determinant |1 — e~ #44| exists,
and by (3.1) it is different from zero.
Let h, be the real Hilbert space D(4,)C L3(A) with norm square
equal to
2(x, A x) (3.2)

for xe D(4,) where (,) is the inner product in LR(A). h, depends of
course also on the boundary conditions on dA4. Let now L,(h,) be the
complex Hilbert space of L, integrable functions with respect to the
normal distribution indexed by the real Hilbert space h,.

The Hamiltonian H,(A) for the free scalar field in A with mass m
and the given boundary conditions is a self adjoint operator on L,(h,)
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which is denoted by
Ho(A)= 34, +3(x, A3x)=3tr 4, (33)

where 4, denotes the Laplace operator on I5(A) and (,) is the inner
product on L&(A). (3.3) is not a definition of Hy(A) but just a convenient
notation. We shall now give the proper definition of Hy(A).
Let {e,}i>, be the complete orthonormal base in L5(A) of eigen-
functions for A,
Aqe,= ey . 3.4)

The probability space for the normal distribution dn, , indexed by the
real Hilbert space h, is then in a natural way identified with infinite
product of the probability spaces for the one dimensional normal
distributions

A \F 2
= (}?) o7 kdx, (3.5)
so that
dn,, = X dn,, . (3.6)
k=1

Hence L,(h,) may be identified with the infinite tensor product
Ly(hg) = ® Ly(dny,) (3.7)
k=1

relative to the vectors f, € L,(dn;,) given by fi(x,)=1. Now L,(dn;,)
may be identified with L,(R) by the identification

ANV L,
g(xk)H(Yk) e~ FHkg(x,) (3.8)

for ge L,(dn,,). Therefore L,(h,) may be identified with the infinite
tensor product

mm=§u® (3.9)

relative to the vectors g, € L,(R) given by

LY Lo
gk(xk)=(7"> e Fhuic, (3.10)

Let now H; be the Hamiltonian for a one dimensional harmonic
oscillator given by
1 d? Y A
H =—— Tk 2 Tk 341
wWST2 a2 T G.1)
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as a self adjoint operator on the k-th component in the tensor product
(3.9). €' is then a strongly continuous unitary group on the k-th
component wich leaves the vector g, invariant. It is then well known

fe o]
that the infinite tensor product (X) e’ exists and forms a strongly
k=1
continuous unitary group on the infinite tensor product (3.9). We now
define H,(A) as the self adjoint infinitesimal generator of this unitary
group on L,(h,).
a0
Definition. et = (X) ¢itHx (3.12)

k=1

relative to the tensor decomposition (3.9).
From this definition we get immediately that e ##ol is of trace
class for >0 and that

tr e PHoW — | — o= FAs|~ 1 (3.13)

We now define the Gibbs-state for the free scalar field of mass m in 4
with the given boundary conditions by

@9(A) (B) = (tr e PHoA)~ 1 {r(Be~PHo) (3.14)

for any B in the C*-algebra B(L,(h ).
Let F be a bounded continuous function on R". From (3.9) we get
the following tensor decomposition

L2<hA)=L2(RN)®[ ® L2<R)] (3.19)

k=N+1

where the infinite tensor product here is also relative to the vectors
(3.10). F may then be identified with an element F®1 of B(L,(h,))
in accordance with the tensor decomposition (3.15). We shall denote this
element in B(L,(h,)) also by F. By L.(h,) we shall understand the
maximal abelian algebra in B(L,(h)) containing all bounded continuous
functions F on RY for all values of N. It is obvious that L (h ) is the space
of L_-functions on the probability space associated with the normal
distribution indexed by h,.
Let HY(A) be the infinitesimal generator of the unitary group on
L,(R") given by N
eitHg’(A): ® eitHk, (316)

k=1

and let Fy,...,F,_; be bounded continuous functions on R¥ and
O=s9=<---<s,=f. It follows then immediately from the definition
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(3.12) of Hy(A) that if we consider F,, ..., F,_, as elements in L (h,) then

tr(FOe—mHo(A)Fle—(S2—s1)H0(A) F le—(ﬁ—sn-l)Ho(A))
PR S

5 (3.17)
= H (1 —e‘ﬂlk)—l trN(FOe_SngJ(A)'”Fn_le"(ﬂ—sn—l)Hé\'(A))
k=N+1
where try is the trace in L,(R"). By Theorem 2.1
try(Foe StHOW | F, e~ Fmsn-nHJWA
e : ) (3.18)

= INI (1—e P71 ER [”l:f F(x(si))]
k=1 i=0

where Ef is the expectation with respect to the normal distribution
indexed by the real Hilbert space gy of continuous functions from the
circle S; of length f into R with norm square equal to

N B dxk 2
>0 (d—f> +?t£(xk(r))2} dr. (3.19)
k=10

Let g4(4) be the real Hilbert space of functions from S, x A into R such
that the norm square
B Tf 0e\? "o 0EN? 22
e e 2
ofj[( 6t) +i§1(6xi) tmet]dxdi (320
is finite and such that for all t, 0 <t < B, &(x, t) satisfies the self adjoint

boundary conditions given by 42 If we consider £(x,t) as a function
n(t) from S into L5(A), then (3.20) takes the form

£l(dn  dn >
(55 + e azncon . 621)
From (3.19) it then follows that gy is a closed subspace of g,(A) generated
by all functions #(t) such that #(t) is in the subspace of L5(A) generated
by the N first eigenvectors ey, ..., ey of A, for all t, 0 <t < . This together
with (3.17) and (3.18) gives then that

tr(FOe—mHo(A)Fle—(sz—sl)Ho(A) F 1€—(/K—sn_1)H0(A))
PR S

n—1
=1 —e FAa" 1 Ef [ I1 Fi(”(si))} ,

i=0

(3.22)

where Ef is the expectation with respect to the normal distribution
indexed by the real Hilbert space g;(A).

Since the bounded continuous functions on R¥ are obviously weakly
dense in L (h,), we may extend (3.22) to arbitrary F,, ..., F,_; in L (h,).
Utilizing the remark following Theorem 2.1 we may also compute
the covariance for E4. We have thus the following theorem.



Relativistic Quantum Statistical Mechanics 207

Theorem 3.1. Let F,,...,F,,_, bein L (h,),and 0=s,<s; <---<s5,,=f,

then
tr(FOe—sto(A)Fle—(sz—n)Ho(A)‘”Fm_ 18—([3--5,"~ 1)Ho(/1))

m—1
“li=e 8 TT Fos)
i=0
where EP is the expectation with respect to the normal distribution indexed
by the real Hilbert space gz(A), of functions from the circle Sy of length
B into D(A ,) with norm square equal to

£[(dn dn 2

e d
() + oo, Aznco .
where (, ) is the inner product in LX(A). E* may also be characterized as the
Gaussian distribution with mean zero and co-variance which is invariant
on Sy and given by

E4L(¢, n(0) (w, n(0)] = (@, A1 — e~ #A4) 71 (e7 42 4 e~ P70 41 )

for0 =<t < B, where @ andy arein L,(A) and (,) is the inner product in L,(A).
If we consider the elements in gy(A) as functions ¢(x, t) from S, x A4
into R satisfying the proper boundary conditions on 04, then E may
be characterized as the expectation with respect to the generalized
Gaussian prosess on S, x A with covariance function given by

EL(E(x, 8) S0, 1) = Gli(x, y, s — 1)
where Gh(x, y,s —t) is the Greensfunction for the self adjoint operator
82
e
conditions on JA.
We define now the C*-automorphism o« (A) on B(L,(h,)) by

— A+ m? on S; x A with the corresponding self adjoint boundary

al(A) (B) = e~ itHol) BoitHold) (3.23)
Then for B and C in B(L,(h,)) we have that
@§(A) (B - 47 (4) (C) = wp(A) (22 (4) (B) - C). (3.24)

Moreover (3.24) is an analytic function of ¢ in the strip —f <Imt <0,
which is continuous and uniformly bounded in —f <Im¢ <0, and the
boundary values satisfies the K M S condition

wp(A4) (B - ;5(4) (C)) = wj(A) (Cal (4) (B)). (3.25)
Further more, if Fy, ..., F, are in L (h,) then

@y (A) (Footf, (A) (Fy)...a, (4) (F,))
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is analytic in 0>Im¢; >--->1Im¢t,>—f and continuous and uni-
formly bounded in 0=Imt¢,=---=Imt,=—f, and its value for
te=—is, k=1,....,m with 0=s7<s;... <5, =f is given by

m

OYA) (For g (A) (FL)..2 1o, (A) (Fu) = E [n n(sk)} (3.26)

k=0

Let O CR" be a bounded open set in R" and let ¢ € C7(0) and real.
It is easily seen that the normal distribution indexed by h, is quasi-
invariant under the transformation n—#n+ ¢, if ©CA. Hence this
transformation induces a unitary transformation U(p) on L,(h,).
Let V(¢p) be the unitary transformation of multiplication by the L (h,)
function €' where (,) is the inner product in L,(A). .o7,(0) is then
the smallest norm closed algebra in B(L,(h 4)) containing U(¢p) and V(¢)
for all real ¢ € C3(0). Since o7,(0) is a C*-algebra which is faithfully
represented in each B(L,(h ) for all A D O, o/,(0) will not depend on the
particular A as soon as A4 D (.

By (3.2) the normal distribution indexed by h,, may be characterized
as the generalized Gaussian process with mean zero and covariance
function G ,(x,y), where G ,(x,y) is the Greens function for the self-
adjoint operator A 4. Let now @ be contained in the interior of A, and A4,.
Since G 4,(x, y) — G 4,(x, y) is a smooth function for x and y in ¢, it follows
that the conditional expectations of the normal distributions indexed by
h,, and h,, with respect to the og-algebra generated by functions of the
form (p,n) with ¢e C3(0) are equivalent measures. From this it
immediately follows that .o7,(0)) has equivalent representations in
B(L,(h,,)) and B(L,(h,,)), so that the strong closure 2Z(0) of </,(0)
in B(L,(h,)) is independent of A as soon as @ is contained in the interior
of A. We have obviously that .« (0,) C.Z(0,) if O, CO,. Let o/ be the
norm closure of U {</(0)|0 C R"}.

Let now Be.Z(0). It is then well known that al(A)(B)e.Z(C,),
where O, is the open set of points with distance smaller than t from 0,
and that o (A) (B) is independent of A as soon as 0, is contained in the
interior of A. We shall denote this independent value by o, 9(B). «? is then a
C*-isomorphism from .o/ (0) into .27 (0,) for any 0, hence it extends to a
C*-automorphism of .o7.

Now let Z (0) be all functions in L (h,) of the form f((n, ¢,), (1, @2),

., (1, oy)), where f(x,, ..., xy) is bounded continuous function on R
and @, .. o P is in C§(0). We denote by .o, the smallest norm closed
C*-algebra in o/ which contains all operators of the form at 9(F), for
F e Z(0) for some 0. o7, is then obviously invariant under o, and we
shall say that .7, is the local algebra for the free field.
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Let F, ..., F, be in #(0) for some @. We shall then show that
wp(A) (Foo, (Fy)...op, (F,,)) (3.27)

converge as A tends to R” in such a way that it finally contains all bounded
sets, independently of the boundary conditions on dA. To see this,
choose any T>0. Then for [t,] =T, k=1, ...,m, since A finally contains
any bounded set, we have that from a certain point on (), is contained
in the interior of A, but then (3.27) is equal to

@(A) (Foold (A) (Fy)...00 () - (3.28)

Now (3.28) is analytic in 0>Im¢, >--->Im¢,> —f and uniformly
bounded and continuous in 0=Im¢, =---=Im¢, > —f. The value of
(3.28) at the imaginary points t, = —is;, k=1,...,mand 0=5, < s, ---<5,,=
is by (3.26) given by

() (Foo s, (A) (F) ... 021, (A) (F,)) = B [H F} . (329

where F{* is the translated by an amount s* around the circle S, of the
functions F, in Z(0). Since F,, k=0,...,n are continuous bounded
functions of the stochastic variables (n, ¢,),...,(%,®,), we get that
(3.29) converge if the corresponding correlation function converge since
E® is the expectation with respect to a Gaussian distribution. We shall
now assume that the mass m > 0. By Theorem 3.1 the correlation function
for E% is given by GA(x,y,s—t). That G¥(x,y,s—t) converges as A
tends to R" in such a way that it finally contains all bounded sets follows
from the fact that G/ is the Greens function for the self adjoint operator
82 n 82

— i; e +m? (3.30)
on S;x A, with some self adjoint boundary conditions on dA. So that
as A tends to R" in such a way as to finally containing any bounded
set we get that G%4(x, y, s — ) converge weakly to G*(x, y, s — t) which is
the Greens function on S; x R" for the operator (3.30).

Since the local algebra for the free field .o/, is the smallest norm
closed C*-algebra containing a?(F) for all ¢t and F e #(0) for some 0,
we have that elements of the form F,o? (F;)...a0 (F,) are norm dense in
;. Hence we have proved the following theorem.

Theorem 3.2. Let o/, be the local algebra for the free field, then o
defines a group of C*-automorphism of o/,. There is a state wp on o,
which is invariant under « i.e.

03(B - o0(C)) = w3 ( (B) - C),
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such that w3(Bay(C)) is analytic in the strip —f <Imt <0 and uniformly
bounded and continuous in — B < Imt <0, and satisfies the KMS conditions
on the boundary

CU(OR(B - orp- i5(0) = w?(C -2 (B))

for real t.

Moreover, if F, ..., E, is in the subalgebra of </, generated by the
fields at time zero then w§(Fyof (Fy)...op (F,)) is analytic in
0>1Imt, >--->Imt,>—f and continuous and uniformly bounded in
0=Imt, =---=—f, and its value at the imaginary points t, = —is,
k=1,...,mwith0=s,=<s,--- <s,,=f§ is given by

a)(ﬁ)(FOa(lis‘(Fl)”'a(—)ism(Fm))=Eﬂ [ﬁ ik}a

k=0

where EP is the expectation with respect to the generalized Gaussian
process with mean zero and covariance function FF(x—y,s—t), which
is the Greensfunction on Sy x R" for the self adjoint operator

52 n 32
o e

i=1

on L,(S;x R"), and F* is the translated by the action of the circle group
Sy on Sy x R" of the function Fy by the amount s,.
Furthermore, if Be o/ is in o/ (0) for some bounded O then

w)(B)= li/rin w)(A4)(B)
as A tends to R" in the sense that A finally contains any fixed bounded set.

Remark. Utilizing the formula (2.24) we get that G#(x, t) is given by
1

G*(x,s) = G*(p,s) e~ r*d (3.31)
(9= G5 1 609 e mdp
where for 0<s< f8
G*(p,s) =Rl —e FO) 1 (75 4 ¢~ B99) (3.32)

with o = w(p)=/p? + m%.
If we introduce the annihilation creation operators and the free
fields we have the relations

n ; . d
o(x, 1) = l—’/—z—@n)‘fj [P0 g¥(p) 4 ¢~ 1P+ 004 p)] j (3.33)

where ¢(x, t) is the free field at time ¢.
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The operator that counts the number of particles with momentum
peQ in a region Q C R" of momentumspace is given by

N(@Q)= | a*(p)a(p)dp . (3.34)
2
Introducing now the function
AP(x, 1) = GP(x, —it) (3.39)
so that . ‘ .
Ap,t)=QRo(l —e F) L (" + e FPe1?) (3.36)

we get the following formula for computing expectations of products
of fields

ZAﬂ(xll‘—' xi2, til - tiz)' . .Aﬂ(xin__] '_xin, tin-l - tin)
o (@(xy, ty)...0(x,, 1)) = for n even
0 for n odd (3.37)

where the summation runs over all partitions of (1, ..., 2k) with 2k=n
into disjoint pairs (iy, i5) (i3, i4)...(i,— 1, Iy)-
If we define the pressure for the free field at temperature § in the
usual way by
py=B"" lim [A]7 log(tr(e Mo ), (3.38)

where |4] is the volume of A, we get by using the formuly
tr(e” FHOM) = || — g~ FAa)~1 (3.39)

together with well known asymptotic formulas for the eigenvalues of the
Laplacian 4 in A as A increase to R”, we get that the limit (3.39) always
exists and is given by
py=—Q2n) " p~" | log(1 —e #*@)dp. (3.40)
RYI
If we take A,=[—%,%]" with periodic boundary conditions we have
that A, has the eigenvalues

(ii ( 27;'” )2 + mz)% (3.41)

where (ny,...,n,)€Z". In this case we have the annihilation creation

2Tn -Z", for Hy(A)). The operator that
counts the number of particles with momentum p € Q in a region Q C R"

is now given by

operators af(p) and q,(p) with pe

N(@= ). at(p)afp). (3:42)

pef
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If we now compute the expected number of particles for the system in A,

we get
e Fo)

wp(A) (N(Q)= Y T e - (3.43)

pef

We now define the density of particles with momentum in Q by
fepp)dp= Am 147" wf(4) (N,(R))- (3.44)

Then this limit exists and is given by

o B e Bop
ngﬂ(p) dp=(2m) "gmdp. (3.45)

So that then density of particles with momentum p exists and is given by

R B e Fo@)
es(P)=(2m) " o (3.46)
and the particle density is given by
0 _ e Fo
Qﬂ =(27[) " [ { — e__pw(p) dp . (347)
Rn

In correspondence with (3.45) and (3.46) we may introduce the partial
pressure due to particles with momentum p by

py(p)=—Q2n)"" B~ log(1 —e PO, (3.48)

If we want to express the state wj in terms of annihilation creation
operators

a*(h)=[h(p)a® (p)dp (3.49)

where a* stands for a or a*, and he L,(R"), then we have the formula

12 1+e-Bw(p)

T-e7Pot (3.50)

e =3I lh(p)
wg(el(a*(h)"'a(h))) =e

As a comparison we have that the corresponding quantity for a system
of free Schrodinger particles at temperature  and activity z is given by

[

1 1+ze 2m°
= 5 @) ————dp

2

(3.51)
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To within the non relativistic approximation

1
w(p)~m+ ——p*
®) om P
we see that wj is the Gibbs state of free Schrddinger particles of mass m
at temperature  and activity z=e " "”,

4. The Gibbs-State for the Interacting Scalar Quantum Field
in Two Space-Time Dimensions

In the case of two space-time dimensions or equivalently one space
dimension, the interacting scalar field is relatively well understood in the
case of polynomial interactions ([2, 7-10]) and exponential interactions
([3] and [11]). In the case of positive mass m>0, it was proved by
Glimm-Spencer [2] that the thermodynamic limit for the temperature
zero (B = oo) state existed and is unique for weak polynomial interactions.
More recently Nelson [12] has established the existence of the thermo-
dynamic limit for strong polynomial interactions with Dirichlet boundary
conditions. Nelson’s method which depends strongly on the Dirichlet
boundary conditions leads to the question of whether this limit is unique,
and in fact Dobrushin and Minlos [6] have announced the result that
there is a certain critical value for the interaction strength for any even
polynomial interaction above which the limit is not unique. For the
strong exponential interaction the existence and uniqueness of the
termodynamic limit for the temperature zero state was recently proved by
Albeverio and Heegh-Krohn [3], in the case of even interactions.

From what is said above we see that the thermodynamic behavior
of the temperature zero state is quite complex and that by the result
of Dobrushin and Minlos there are phasetransitions of the temperature
zero state for the even polynomial interactions.

In contrast with this complex picture for the temperature zero
state, we shall see that for the positive temperature (8 < o) state or the
Gibbs state the thermodynamic limit always exists and is unique for the
polynomial interactions as well as for the exponential interactions,
without any restriction on the strength of the interaction, in the case
of two space-time dimensions.

Now let I

H=Hy+ | :V(p(x)):dx (4.1)
where ¢(x) is the time zero free field of positive mass m > 0, in two space
time dimensions, and V(s) is either a polynomial which is bounded

below V(s)= P(s) 42)
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or an exponential function i.e.

V(s)={ e du(e) 43)

where dy is a positive measure of compact support in the open intervall
(~)/2x, )/ 2n).

H, is the Hamiltonian for the free scalar field ¢. H, is then the
Hamiltonian for the corresponding interacting field with a space cut
off interaction. For details concerning the definition of H, the reader
should consult the Refs. [7] and [10] for the case (4.2) and the Ref. [11]
for the case (4.3).

It is known that H, is essentially self adjoint on the intersection of
the domains of H, and ¥,

Ve ] 1 Vi) dx (44

-1
and that H, is bounded below
H=-b 4.5)

where b is some real number depending on ¥}, so that e ##' is a bounded
operator.

We will now construct the Gibbs state for the space cut-off inter-
action (4.1).

Let A be an interval containing the interval [—/,[] in its interior,

then we set -
1

H(A)=Hy(A)+ [ :V(p(x)):dx. (4.6)

By the same methods that proves that H, is essentially self adjoint
and bounded below we get that H/(A) is essentially self adjoint and
bounded below. Moreover, we also get that Hj(A) has discrete spectrum
and that e #H™ js of trace class. We shall start by computing the trace
of e #H By the method of hypercontractivity [13] in the same way
as for H,, we have that H,(A) may be approximated by operators H,
such that

”e—ﬂHz(A) _ e—ﬂHn” -0 4.7

and H, has the form
Hy(A) = Ho(A) + V" (4.8)
where V™ is in Z (0) for some O C A. We shall prove below that

tre” PHn tr g™ A 4.9)
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Since V| is bounded we get by the Trotter-Kato product formula that

B BoonlF
.| =L ey v _
strong lim L’ KOO kT J =e FHn (4.10)

k—

but this may obviously also be written in the form

szHoM) 4 V(")e—iHo(A)}

strong lim [ =e FHn, @.11)

k—

Now let V| > — ¢, where ¢ of course depends on n. Then

B s
— - yn) =
”e e, (4.12)
hence
B B B BB
——~Ho(A) TV =53 Ho(d) _ e — 7 Ho(d)
e e KLk g KT (4.13)

so that the i-th eigenvalue of

B B B
-5 Ho(A) — Ly — Ho|*
le 2k e 2k

4.14)
is smaller or equal to ¢ times the i-th eigenvalue of e™#H#o), On the
other hand we have by (4.11) that the i-th eigenvalue of (4.14) converge
to the i-th eigenvalue of e ##» Hence by dominated convergence
we get that the trace of (4.14) converge to the trace of e #H since ¢~ #Ho()
is of trace class.

However the trace of (4.14) is by Theorem 3.1 given by

[ — e~ B4a~ L BB [exp{———z V‘”)( (ﬂ(, 2)))” (4.15)

Since the transformation V,"(1(0))— V" (n(s)) is induced by the
action of the circle group S; on S;x A, and the generalized Gaussian
process corresponding to E/ is homogeneous with respect to this action,
we have that the transformation is given by a strongly continuous
unitary group on L, of the corresponding process, and therefore ;" (1(s))
is a strongly continuous function of s in the L, space of the process.
Hence we get the strong L,-convergence

B w(, (B
n Zl Vi n < V- 3) f V" (n(s)) ds (4.16)
i=
as k—oo. By passing to an almost everywhere convergent subsequence,
we get by dominated convergence the corresponding convergence of
(4.15). Hence we have that

tre” Ffn=|{ — e FP4a "1 Ef

e o 4.17)

-IV‘”)(U(S))dS}
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1
Now the approximation of V= | :V(¢(x)):dx by functions ¥ in
-1

Z(0) may be carried out in two steps. First we approximate V[,
where V[“" is equal to ¥ in those points where ¥, has values in the
interval [a, b] and V" is equal to zero elsewhere. Under this approxi-
mation we have that ¥ is uniformly bounded below so that e ##»
<ef. e PHoM  and by hypercontractivity e f#+  converge to
e PHOMTVIZ®) in norm, so that tre #H» converge by dominated
convergence. On the other hand the right hand side of (4.17) will also
converge by dominated convergence since under this approximation
V™ is uniformly bounded below.

Then we remove a and b by first letting a— — oo and then b— co.
In both cases we have that both sides of the equation

]
- V,[“"’l(n(S))dS]
e

tr g AHOM VM) — | _ o= fAa) =1 Ef (4.18)

converge by monotone convergence. Hence we have proved the following
formula

B
= Vilu(s))ds
tre P =|{ — g 44" 1 Efle ©

4.19)
Recalling the form of V] this may also be written
B
—f ; V(&(x,s)):dxds
tre PHIA = |f — g Fda "1 Ehle o } (4.20)

In the same way as we proved the formula (4.20) we prove the following
Lemma 4.1. Let F,,...,F,_, bein L (h,) and 0=5,<8, <---<5,=0

then

tr(FOe‘Sle(A)Fl e‘(Sz—sl)Ht(A). . 'Fn— 16“(13“51-)!11(/1))

B
n—1 =[] § :V(&(x,s)):dxds
=l —e P ER| ] Five ©
k=0

where Fj¥ is the translation of F, by the amount s, in the action induced
by the circle group Sy on the generalized Gaussian process £(x, s).

As in Section 3 we now define for any B e B(L,(h,))
oal(A) (B) = e~ 1D BitHi(4) 4.21)
wh(A) (B)=(tr e D)~ L tr(Be~ PH() (4.22)

and

We then have that if B e .o/(0) and 0, C A, then a}(A) is independent of A,
and we denote this A independent value by o!(B). This then gives us a
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group of C*-automorphism o on .«7. It is well known that if ¢,C [ ~1, []
then o/(B) is independent of [, and we shall denote this [ independent
value by o,(B), and again o, gives us a group of C*-automorphism on <.

Let now o/ be the smallest norm closed C*-algebra in o/ con-
taining a,(F) for all real ¢t and all Fe % (0) for any bounded @ in R.
Elements in .o/ of the form

Foot,(Fy)...., (F,) (4.23)

with Fy, Fy, ..., F, in #(0) then span a dense linear set in /. We shall
see that

wg(A) (Foor, (Fy).... o, (F,)) (4.24)

converges as A tends to R and [ tends to co.
IfO, c[—11]JCcAi=1,..., nthen (4.23) is equal to

w(A) (Footy, (4) (Fy)....oq,(4) (F,)). (4.25)

By the definition (4.22) of wj(A4) we have that (4.25) is analytic in
0>Imt, >--->Imt,> —f and uniformly bounded and continuous in
0=Imt, =---=2Imt, > —f. Moreover, its values at the imaginary
points t,=—is, k=1,..,n with 0=5,=<s,---<s, is by Lemma4.1
given by

@A) Fool i, (A) (Fy)....oL i (A) (F) (4.26)

61 -1 1
= § § :V(&(x,s)):dxds n = § :V(&(x,s)):dxds
fale Tl of g o]
k=0

To prove that (4.24) converges as first A tends to R and then [/ tends to oo,
it is therefore enough to prove that the same limits exists for the right
hand side of (4.26). Since F,e #(0) k=0, ...,n, it is therefore enough;
if we want to prove that the limit exists as A— R, to prove that Ef
converge weakly as A4— R. But since E” is the expectation with respect
to the generalized Gaussian process with mean zero and covariance
function GA(x, y;s—t), the weak convergence of Ef follows from that
of the covariance function. Hence we find that the limit of (4.26) as
A— R exists and is given by

B 1

-1 B 1
n —§ § V(&(x,s)):dxds n —f § :V(&(x,s):dxds
Ef[n sz} = (Eﬁ {e 0 -1 D E? {H F]fke 0 -1 }
k=0 k=0

4.27)

where Ef is the expectation with respect to the generalized Gaussian
process with mean zero and covariance given by the Greensfunction
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G*(x — y, s — t) for the self adjoint operator

02 0?
——a—ty — *a;'z— +m? (4.28)

on S;x R. For 0=t < f§ we have that G’(x, 1) is given by

GP(x, ) = —217; [ e~ G (p, 1) dp (4.29)
R

Gﬂ(p, 1) =[2w(p) (1 — e—ﬂw(p))]— 1 [e—tw(p) + e—(ﬂ—t)w(p)] (4.30)

where o(p) = sz +m?>.

To prove that (4.27) converges as [—oo it is again enough, since
F,e Z(0) for k=0,...,n, to prove that Ef converges weakly as [—oc0.
To do this we consider the Fourier transform of the generalized process
given by Ef

where

Ef’[ei” w(x,s){(x,s)dxds] (431)

where y is a C*-function of compact support in S; x R. By (4.27) we
have that (4.31) is given by

B 1 -1
—§ §:V(&(x,s)):dxds
Efle o~
4.32)

B 1
= [ :V(&(x,s):dxds

.EP {ei(%é)e 0 -1
Let y have support in Sy x [ —a, a].

Consider now the Hamiltonian H; on L,(hs) where hy=h,, with
Ay = [0, f] with periodic boundary conditions and H is the corresponding
periodic Hamiltonian 5

Hy=H+ [ :V(p(x)):dx (4.33)
0
where Hf = Hy(Ay), A5=[0, ] with periodic boundary conditions. It
is well known both in the polynomial and exponential case that H,
has a simple lowest eigenvalue with a normalized eigenvector which
we denote Q.

By letting in Lemma 4.1 § tend to infinity and taking A in Lemma 4.1

fixed equal to the A, above, we obtain easily the formulas

B 1
—§ f :V(&(x,s)):dxds

Efle o -1 =(Qg,e’2’Hf’Q,‘§) (434)

and .

= § :V(&(x,s)):dxds

E?f {ei(w,f)e o -1 ]

435
=(e_(l—a)HBQg) I/I/['—a,a](if‘) e—(l_a)Hﬁgg)’ ( )
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where Qf is the normalized eigenvector of Hf corresponding to it
simple lowest eigenvalue and W ,4(if) is the unique bounded operator
satisfying the strong differential equation

B
T Wl D= Wialif) |=Hy+1 [ [0 0,00 dx| (436

where ¢,4(x) is the free field corresponding to Hf, with the initial condition
that

Wis(if)=1 (4.37)

fx, ) =vp(t,x). (4.38)

The analog of (4.34) and (4.35) in the temperature zero case is well known
and used for instance in [ 14] where they are called the Nelson symmetries.

Now that the limit of (4.31) and hence of (4.27) exists as [—~co
follows simply from the fact that Hy has a simple lowest eigenvalue.
Hence we have

Lemma 4.2, Let

and

Bl -
i —§ § :V(&(x,s):dxds !
Ef(e’(“”é))= Efle o -t
B 1
X —f § V(&(x,s)):dxds
. Ef| W9 0 1 ]

Then the limit E? (¢'"*®) as |- o0 exists and is given by
Ego (ei(w,é)) = (Qﬂy I/‘/E—a,a](if) ‘QB)

where f(x,t)=1y(t,x). Moreover, the measure induced by EP is locally
equivalent to the generalized Gaussian process given by EP, i.e. restricted
to the subalgebras generated by (v, &) for v with support in a fixed interval
Syx[—a,a] they are equivalent. The measure given by E’ is strongly
mixing with respect to space translations i.e.

}anlo Elzo(ei(m,é)ei(w’z‘,i)) - Effo(ei("’"‘f)) . Ego(ei(.pz,g))

where p(t, y) =(t, y — X).

Proof. We have already proved everything up to the moreover
part. The moreover part follows immediately from the formula for E4
and the strongly mixing follows from the same formula together with
the fact that Q, belongs to a simple lowest eigenvalue of H;.

Theorem 4.1. Let o/ be the local algebra for the interacting field,
i.e. the smallest norm closed C*-algebra in of containing o,(F) for all real t
and all F € #(0) for any bounded O in R. There exists then a state wy on </
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such that wy is invariant under o, i.e.

wy(B(C)) = wy(a—(B)- C),

for any B and C in . wy(B - o,(C)) is analytic in the strip —f <Imt <0
and uniformly bounded and continuous in —f<Imt <0, and satisfies
the KMS conditions on the boundary

wp(B o, 5(C)) = ws(C-a_(B))
for real t. w, is invariant under space translations

and have the cluster property

lim (B, - C)=w,(B) - wy(C).

wy is locally Fock, i.e. if we restrict w; to the subalgebra generated by
o,(F) for tin a fixed interval [ —a, a] and F € % (0). For a fixed bounded 0,
then on this subalgebra w; induces the free Fock representation.

Moreover, if F,, ..., F, is in F(0) for some bounded O then
wp(Foo,,(Fy)...0 (F,) is analytic in 0>Imt,>--->Imt,>—f and
continuous and uniformly bounded in 0= Imt, =---=1Im¢t,= —f, and its
value at the imaginary points t,= —is,, k=1,...,n with 0=5,=s,
<---<s,=f is given by

Op(FutisF)-is D)= B2 | T1 P2,

where EP. is the expectation with respect to the generalized homogeneous
process on Syx R given in Lemma4.2, and Fj* is the translated of the
Jfunction Fy by the amount s, in the action of the circle group S; on S;x R.

Furthermore, if B is in the subalgebra generated by a,(F) for t in a
fixed interval [ —a, a] and F € F(0) for a fixed bounded O then

wy(B)= }thlo /llig}z wiy(A) (B).

Proof. Linear combinations of elements of the form Fya, (F})...o, (F,)
are norm dense in /. We may show in the same way as for the temperature
zero case that wj(A) is locally Fock uniformly in / and A. Since for [
and A big enough o, (F,) =0 (A1) (F,) and oj(A) is strongly continuous
in Fock space we therefore get that

@A) (Foa (Fy).... 0, (F,)) (4.39)
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when we restrict t,,k=1,...,n to a bounded interval is continuous
in t,, k=1, ...,n uniformly with respect to ! and A. By passing to sub-
sequences we therefore get as first A— R and then /—oo through sub-
sequences that (4.39) has a limit

wp(Fod;, (Fy)...o,(F,) (4.40)

which is continuous in f,k=1,...,n. On the other hand we have
already proved that (4.39) is analytic in 0>Im¢; >--->Im¢t,>—f
and that at the imaginary points

wp(A) (Foor_ 5, (Fy)...0_ 5, (F,)) (4.41)

with 05, <--- <5, < B, (4.41) converges as first A—R and then [— co.
If we denote the limit by wy(Foo_;, (Fy)...a; (F,) we get by
Lemma 4.2 that

0p(Fott—is,(Fy)ontr—ss (F) = EL, (fl F) (442)

k=0

(4.42) being a limit of functions which are uniformly bounded and
analyticin0 > Im¢, >--- > Imt,> — f must itself be analytic and bounded
in the same domain. Since (4.40) is the limit of boundary values of these
functions, it must itself be the boundary value of (4.42). But this proves
that (4.40) must be independent of the subsequences chosen, so that
(4.39) converges as first A— R and then [— o0 to a limit (4.40) which is
continuous in t,, k=1, ...,n. Hence (4.40) is the boundary value of a
function which is analytic in 0> Im¢, >--->Imt¢,> —f and uniformly
bounded and continuous in 0=Im¢, =---=Imt,> —f and its value at
the imaginary points is given by (4.42).

Now w as limit of states is again a state and extends by continuity
to all of /. The invariance under «, follows from the corresponding
invariance for wj(A) and similarily the K MS condition. The translation
invariance under space translations follows from (4.42) and the homo-
geneity of the generalized process given by E£ . This homogeneity follows
from Lemma 4.2. The cluster property follows from the fact that E%
is strongly mixing with respect to space translations. This proves the
theorem.

Remark. If we now define the pressure py(V) at the temperature

% for the interacting field by

pp(Vy=p"" lle |4~ log(tr (e AHi(n)) (4.43)
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with A,=[—11], we get by Lemmas 4.1 and 4.2 and its proof that
pe(V)=ps— B teg(V) (4.44)

where V describes the interaction so that
1
H(4)=Hy(A4) + | : V(p(x)):dx
=1
and pg is the pressure for the free field given by (3.38) and (3.41), and
ey(V) is the lowest eigenvalue of the periodic Hamiltonian
8
Hy=H{+ [ :V(p(x)):dx (4.45)
0
where Hf = Hy([0, B]) with periodic boundary conditions.

We see that Theorem 4.1 gives a certain duality between the Gibbs
state at temperature 1/8 for the infinite volume interaction and the
corresponding vacuum or zero temperature state for the interaction
in a periodic box of length 8. We shall denote this duality by the duality
principle for the relativistic Gibbs state. This duality principle may also
be expressed in terms of the Wightman functions or if we want also
in terms of the Schwinger functions for the interaction.

Let ¢(x, t) be the interacting field at time ¢, i.e.

@(x, 1) = o,(@(x)) (4.46)

where ¢(x) is the field at time zero, and (4.46) is an equation between
operator valued distributions in x for fixed ¢. The Wightman functions
at temperature 1/f for the infinite volume interaction is given by

W£(X1, ti’ ey X,,, tn) = w[i(q)(-xla tl)'*‘¢(xnn tn)) > (447)

and the Wightman functions for the field in a periodic box of length S,
at temperature zero (f = oo) is given by

%(xltla (] xntn) = (‘Qﬁ’ q)(xla tl)"'(p(xna tn) Qﬂ) (448)

where € is a normalized eigenvector belonging to the lowest eigenvalue
ey(V) for the Hy, Hamiltonian in a periodix box of length
]
Hy=Hi+ | 1 V(p(x)):dx (4.49)
0
where V is either a polynomial which is bounded below or an expo-
nential function of the type (4.3), and H{ is the free Hamiltonian in a
periodic box of length 8. We have then that (4.47) is analytic in ¢, ..., t,
in the domain 0> Imt¢, >--->1Imt,> —f and that (4.48) is analytic
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in Im¢;>--->1Im¢t, The values at the imaginary points f,= —is;
for 0<sy,...<s,<p for (447) and s, <---<s, for (4.48) is called the
Schwinger functions

SE X1y 815 ves Xy )= WE(xy, —iSy, ..., X, —i5,) (4.50)
and
SE (X1, 815 s Xy $) = WPy, =08y, ..., X, —i5,). (4.51)

We may now express the duality principle from Theorem 4.1 in terms
of Wightman- and Schwinger functions, and this gives us the following
duality theorem

Theorem 4.2. ( The duality theorem). Let WE(x,,t,...x,,t,) be the
Wightman functions at temperature 1/ for the infinite volume interaction,
and let Wy° be the usual Wightman functions at temperature zero (f = o0)
for the interacting field in a periodic box of length p. Let S% and Sy
be the corresponding Schwinger functions, i.e. the Wightman functions
at imaginary time, so that Wy°(x;ty, ..., Xx,t,) and SF(x;s, ..., X,s,) is
periodic with period B in x4, ..., X,.

Then WE(x,,ty, ... x,, t,) is analyticin0>Imt, >--->Im¢t,> — B, and
Wi°(x1, ty, ... Xy t,) is analytic in Imt; >--->1Imt,, and for the corre-
sponding Schwinger functions we have

S8 (X1, 815 s Xy 8,) =S5 (81, X1, o0y Sy X,) -

Moreover the difference between the pressure for the free and the inter-
acting field at temperature 1/ is equal to

Pp(o) - Pﬂ(V) =p" 1eﬂ(V)

where ey(V) is the lowest eigenvalue for the interacting Hamiltonian
in the periodic box of length f3.

Remark. It is understood that the interactionterms in the Hamiltonians
for the dual Wightman functions W2 and W;* are defined by consistent
Wick orderings, ie. if the Wick ordering for the interaction of W/
is with respect to the free vacuum respectively the free bubbs state,
then the Wick ordering for the interaction of W, is with respect to the
vacuum for Hy respectively the vacuum for Hy.
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