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Abstract. We construct for a boson field in two-dimensional space-time with polynomial
or exponential interactions and without cut-offs, the positive temperature state or the
Gibbs state at temperature i/β. We prove that at positive temperatures i.e. β<ao, there
is no phase transitions and the thermodynamic limit exists and is unique for all interactions.
It turns out that the Schwinger functions for the Gibbs state at temperature i/β is after
interchange of space and time equal to the Schwinger functions for the vacuum or tempera-
ture zero state for the field in a periodic box of length β, and the lowest eigenvalue for the
energy of the field in a periodic box is simply related to the pressure in the Gibbs state at
temperature i/β.

1. Introduction

Although the study of the statistical mechanics for quantum systems
has made good progress the last ten years [1], the progress has been
best for discrete systems of lattice systems. The main difficulty in
connection with continuous systems has been that the group of time
automorphisms αt for the Schrδdinger particles is non local. The con-
sequence of this non locallity is that the infinite system of interacting
Schrodinger particles do not agree well with the generally accepted
picture of a quantum statistical mechanics described in terms of a local
C*-algebra or a C*-algebra of local operators, on which the time acts
as a group αf of C*-automorρhisms. Hence we get a somewhat dis-
couraging situation, that the only known realistic model of a statistical
quantum mechanics, namely the system of interacting Schrodinger
particles, does not conform to the highly developed abstract theory of
quantum statistical mechanics.

For this very reason the question of studying relativistic particles
instead of Schrodinger particles appears quite natural, since in any
relativistic theory there should be an upper bound for the propagation
speed and this would force the group of time automorphisms αr to be
local. This is the motivation for this paper.

We know free relativisic particles are described by free quantum
fields and it is a general belief that interacting relativistic particles are
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to be described by the interacting quantum fields. Unfortunately at
present time the interacting quantum fields are well understood only
in the case of scalar fields in two space time dimensions with polynomial
or exponential interactions.

In the case of weak polynomial interaction in two space-time
dimensions we have by the recent results on the particle structure
by Glimm, Jaffe, and Spencer [2], that in fact the interacting quantum
field is a description of a system of infinitely many interacting relativistic
scalar particles. Hence we see that at least in this case the interacting
relativistic particles are described by the interacting quantum fields,
so that the statistical mechanics of interacting relativistic particles
is nothing but the statistical mechanics of the interacting quantum
fields. So that for instance the vacuum state for the interacting quantum
field is nothing but the zero temperature state for the infinite system
of interacting relativistic particles described by the field. In the case of
weak polynomial interaction and strong exponential interactions in two
space time dimensions one also has a very clear picture of what happens
with the vacuum in the infinite volume limit, or as we would like to say
it here, one has a very clear picture of the thermodynamic limit in the
case of temperature zero. For the weak polynomial interactions this
was treated by Glimm, Jaffe, and Spencer [2], and in the case of expo-
nential interactions by Albeverio and H0egh-Krohn [3]. Hence good
candidates for a quantum statistical mechanics of interacting relativistic
particles are the polynomial and exponential interactions in two space-
time dimensions.

In this paper I study the thermodynamic limit of the positive tempera-
ture Gibbs state for the polynomial and exponential interactions in
two space time dimensions.

The method I use is strongly influenced by recent works by Nelson [4],
and may be denoted as the Markoff field approach. The Markoff field
approach was also a main ingredient in [3] and played also a certain
role in [2]. One of the advantages of the Markoff field approach is to
make available for quantum fields the methods of classical statistical
mechanics, and this is the way it is used in [3], leaning heavily on the
work of Guerra, Rosen, and Simon [5] that introduces a framework
which describes the Markoff fields as Ising ferromegnetic systems.

The way the Markoff field approach is used here is somewhat
different. In this paper we use the Markoff field to transform the problem
about the thermodynamic limit for the Gibbs state at temperature i/β
for the relativistic quantum statistical system into the problem of the
uniqueness of the vacuum for the system in a periodic box of length β.

In fact it turns out that for any of the interactions we consider,
namely the polynomial and the exponential interaction, the Markoff
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fields for the Gibbs state at temperature i/β is the Markoff field on the
cylinder Sβ x R, where Sβ is a circle of length β, that corresponds to the
Markoff field for the vacuum in the plane RxR, and this last Markoff
field is the limit of the first one as the temperature i/β goes to zero.

Using this method it is proved that the thermodynamic limit for the
Gibbs state exists for all positive temperatures i/β and all interactions
considered i.e. for strong exponential interactions as well as strong
polynomial interactions in two space time dimensions.

We see that this is in strong contrast to the vacuum or temperature
zero case for the polynomial interactions, where Glimm and Spencer
were only able to prove the existence of the infinite volume limit for
weak interactions, and from Dobrushin and Minlos [6] we know by now
that this is best possible, in fact for any even polynomial interaction in
two space-time dimensions they get that the thermodynamic limit is not
unique in the temperature zero case for strong enough interactions.
The reason for this difference is the above mentioned fact that while for
the temperature zero case we have a Markoff field in the plane RxR
so that the problem is two dimensional, we have for positive temperature
a Markoff field on the cylinder Sβ x R so that the problem is essentially
one dimensional, and therefore in a sense much simpler.

The Gibbs state at positive temperature i/β is of course not invariant
under the Lorentz group since it is given in terms of the energy operator.
There is however, a Lorentz invariant analogy of the Gibbs state at
positive temperature i/β. But this Lorentz invariant Gibbs state is
only to be found in a closed universe, the so called De Sitter universe,
and it will lead too far to give the construction of the positive temperature
state in the De Sitter universe in this paper. This will be dealt with
separately in a forthcoming paper.

2. The Gibbs-State for the Harmonic Oscillator

Consider the self adjoint operator

H0 = -^Δ+±(x,A2x)-±irA (2.1)

N ^2
on the Hubert space 2tf = L2(RN\ where A = ]Γ —-j- and A is a real

ί=ι dχί
symmetric N x N matrix bounded below by a positive constant, A^tcl,
c>0, xeRN and ( ,) is the natural inner product in RN.

Let λί9 ...,λN be the eigenvalues of A. It is well known that HQ has
discrete spectrum consisting of the points of the form

Σ ^ (2-2)



198 R. H0egh-Krohn

and zero. Hence for a positive β,e~βH° is of trace class and we get

hence

Let V(x) ^ — b be a real measurable function bounded below such that

H = H0+V(x) (2.4)

is essentially self adjoint. We say that H is the Hamiltonian for the
anharmonic oscillator. From V^—b we get H^HQ — b, which gives
us that H has discrete spectrum and together with (2.2) it gives a lower
bound for the eigenvalues of H, which is transformed into an upper
bound for the eigenvalues oϊe~βH. Hence e~βH is of trace class. Therefore
we may form the normal state ωβ on the von Neumann algebra B(J^ )
of all bounded operators on Jtf^ given by

ωp(A) = (tτe-βaΓlK(Ae-βH) (2.5)

for A e B(^\ ωβ is called the Gibbs-state for the anharmonic oscillator.
By the Feynman-Kac formula we know that the kernel e~βH(x, y)

of the operator e~βH is given by

(2.6)

with U(x) = ̂ (x,A2x)-^trA+V(x) and Eβ

(Xty} is the conditional ex-
pectation with respect to the Brownian motion in RN given that x(0) = x
and x(β) = y. So that £f0>0) is the expectation with respect to the normal
distribution indexed by the real Hubert space h of continuous functions
x(τ) from [0, /?] into RN, such that x(0) = x(/?) = 0 and the norm square

is finite.
Consider the Hubert space L2([0,j?];RN) of L2-integrable functions

from [0, β} into RN, and let kitj(s9 1) be the kernel of the inverse operator

of the self adjoint operator — — -j with boundary conditions x(0) = x(β) = 0

onL2([0,j8]:RN).Then
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and

(2.8)

j(β-s)t s^

The normal distribution indexed by h is the same as the Gaussian
process with mean zero and covariance function /c^(s, ί).

It is well known that the Brownian motion, hence also the process
above has support on the continuous functions from [0, /?] into RN.

In terms of the measures introduced above EfXty) is the expectation
with respect to the measure obtained from the normal distribution
indexed by h by a transformation on the continuous functions from
[0, j8] into RN given by

From (2.6) we now get that the kernel e~βH(x, y) is a continuous function
of x and y. It is well known in that case that tre~βH = \ e~βH(x, x) dx,
which together with (2.6) gives

-!U(x(τ))dτ

dx. (2.10)

By (2.9) EfXjX) is the expectation with respect to the measure on the
continuous periodic functions from [0,/Γ| into RN obtained from the
normal distribution indexed by h by the transformation x(τ)-»x(τ) + x.

Since 17(x) = %(x, A2x) —%trA + V(x) we have that

pβ
^

RN

-ίU(x(τ))dτ

RN

-ίV(x(τ))dτ

dx. (2.11)

On the other hand we easily verify that for any real continuous
function F defined on the space of continuous periodic functions from

ί £?*,*)
-±$(x(τ),A2x(τ))dτ

(2.12)

where Eβ is the expectation with respect to the normal distribution
indexed by the real Hubert space g of continuous periodic functions
from [0, /?] into RN, x(0) = x(/J), such that the norm square

/ dx(τ) dx(τ)

( dτ ' dτ
+ (x(τU2x(τ)) dτ (2.13)
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is finite. C is some positive constant independent of F. By setting V = 0
in (2.11) we get that C = tre~βH°.

We have thus proved the following formula

I e
-SV(x(τ))dτ

(2.14)

where Eβ is the expectation with respect to the normal distribution
indexed by the real Hilbertspace g of periodic functions from [0, β~]
into RN with norm square given by (2.13). Now tre~βίί° is given by (2.3),
and since i—e~βλί are the eigenvalues of the real symmetric matrix
1 - e~βA we get from (2.3) that

tτe-βHo = \l-e-βA\-1 (2.15)

where |1— e~βA\ is the determinant of the matrix l — e~βA. Hence
(2.14) may be written

-ίV(x(τ))dτ

(2.16)

Let now FteB(^f) z = 0, . . . , rc be multiplication operators by bounded
continuous functions Ft (x), ϊ = 0,..., n, and let 0 = s0 ̂  sί - ^ sn _ 1 ̂  sn = β.

Consider the operator

F e~SiHF e~(S2~Sί}H...F e~
(Sn~Sn~^H . (2.17)

From (2.6) we have that the kernel of F.e~
(Sί+ί'Sι}H is given by

ίl(x)β-<«"
U ( x ( τ ) ) d τ

. (2.18)

Since the Brownian motion is a homogeneous process, (2.18) may be
written in the form

U ( x ( τ ) ) d τ

(2.19)

where E\%$+*] is the conditional expectation with respect to the Brownian
motion given that x(st) = x and x(si+ί) = y. Utilizing now the Markovian
properties of the Browian motion we get that the kernel of the operator
FQe~s^HFγe~(S2~sύH is given by

-S U ( x ( τ ) ) d τ

_ p[θ,S2]~

-S U(x(τ))dτ

- S U(x(τ))dτ

-

(2.20)
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By induction we get the kernel of the operator (2.17) is given by

Fβ

£<r>(χ,y)

n-1

ί = 0

-J I7(x(τ))dτ
e> o (2.21)

By computing the trace of this kernel in the same way as we computed
the trace (2.16) of the kernel (2.6), we prove the following theorem.

Theorem 2.1. Let Ft e B(J^) i = 0,..., n be multiplication operators by
bounded continuous functions Ft(x), ΐ = 0,..., n, let 0 = s0 ̂  s1 - g sn = β,
and let H be the Hamiltonian for the anharmonic oscillator (2.4) then

UFA
i = 0

(2.22)

where \i —e βA\ is the determinant of the matrix i — eβA and Eβ is the
expectation with respect to the normal distribution indexed by the real
Hilbert space g of continuous periodic functions from [0,j8] into RN,
x(0) = x(β\ with norm square equal to

By a direct calculation one easily verifies the following remark.
Remark. The expectation Eβ in the theorem above is the expectation

with respect to the homogeneous Gaussian process on a circle of length β
with values in RN given by the covariance matrix Eβ(xi(s) Xj(t)) equal to the

matrix 1 2 °° /4π 2 Γ1 2π

β β n= i \ β2 / COS β

Summing up this series we get a more explicit expression for the Co-
variance matrix

Eβ(xi(0) Xj(t)) - (2A(eβA - 1))" L

Let αt be the C*-automorphism o

then

defined by

= e~itHBeitH

(2.24)

(2.25)

(2.26)

is analytic in t in the strip — β < Imt < 0, with boundary values at real t
equal to tr(£αf(C) e~βH) and at t-iβ equal to tΐ(Ca_t(B}e~βH).

tr(Bat(Qe-βH)
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Consider now an operator of the form (2.17).

1e-(β-n-1>a) (2.27)

is obviously analytic in the domain 0<Res1 <Res2 <Resn_1 <β
with boundary values at Resf = 0, i = 0, ...,n which are continuous
and uniformly bounded and given by

tr(F0αfI(F1)αt2(F2)...α,._1(FI1_1)e-'>fl) (2.28)

for sk = itk, k=i, ...,n— 1.
The continuity of (2.28) follows from the strong continuity of eltH.

Lemma 2.1. Let tte R and Ft be bounded continuous functions on RN,
then B(2ίf} is the smallest strongly closed linear space of operators that
contains all operators of the form α^^) αί2(F2) ... αίnCFw)

Proof. Since the smallest strongly closed linear space containing
the operators above is obviously a strongly closed C*-algebra of
operators, it is enough to prove that if B e B(Jtif) commute with at(F)
for all t and all continuous functions F then B = λl. Therefore assume
IB, α,(F)] - 0 for all t and F. Then [αf (B), F] = 0 for all F and t, hence
at(B) is a multiplication operator by an L^-function for all ί. Hence for
any real L^-function W

eίsWat(B)e-isW = oct(B) (2.29)
so that

(Jίwe-i*HγB(<fίHe-i*wγ = xt(B). (2.30)

By the Trotter-Kato product formula

strong lim (e'^-^yW'ί*-^ (2.31)
n->oo

and therefore by (2.30)
tt-w\ (2.32)

By letting W(x) increase to t/(x), we get that (1 + H — W)~l increase to
(1 -i/l)'1 so that (1 +H- W)'1 converge strongly to (1 -i^Γ1 and
so by the semigroup theorem e

lt(H~w^ converge strongly to e~l^Δ.
Hence by (2.32) we get that

Since oct(B) is a multiplication operator for all t we have that B is a
multiplication operator. But it is easy to see that if B is not equal to λl,
then ei^ABe~ί^A is not a multiplication operator. This proves the lemma.

Using that ωβ is a normal state we get the following theorem

Theorem 2.2. Let B and C be in B(tf\ then



Relativistic Quantum Statistical Mechanics 203

is analytic in the strip — β < Im t < 0, and continuous and uniformly
bounded w — βrglmtrgO. The boundary values satisfy the KMS condition

for real t.
Moreover, any operator B in B(^) may be approximated strongly

by linear combinations of operators of the form αίl(F1)αί2(F2)...αίn(FM),
where F1 ?...,FΠ are multiplication operators by continuous functions
F^x), ...,Fn(x), hence ωβ(B) mil also be approximated by the same linear
combinations of ωβ(oίtί(Fi)at2(F2)...octn(Fn)). Furthermore ω^(F0αίl(F1)
...αίn(Fπ)) is analytic in 0>Imί1 > -->Imtn> — β and its value for
tk= —iskk— 1, . . ., n with 0 = s0 ̂  sί ^ ^ sn ̂  β is given by

-SV(x(τ))dτ-SV(x(τ))dτ
0

where Eβ is the expectation given in Theorem 2.1.

3. The Gibbs-State for the Free Scalar Quantum Field

Let ΛcRn be a bounded domain in Rn with a regular boundary
dA. Let A2

Λ = — A + m2 where Δ is the Laplace operator in A with some
self adjoint boundary conditions on dA. If the constant functions satisfy
the boundary we shall assume that m > 0 if not only that m ̂  0, so that in
any case, A2

Λ is a self adjoint operator on the real Hubert space Lf (A) and

AA^cI, c>0. (3.1)

It is well known that AΛ has discrete spectrum and that e~βAΛ is of trace
class for all β>0, so that the Fredholm determinant |1 —e~βAΛ\ exists,
and by (3.1) it is different from zero.

Let hΛ be the real Hubert space D(AΛ)CL\(A) with norm square
equal to

2(x,AAx) (3.2)

for xeD(AΛ) where (,) is the inner product in L\(A\ hΛ depends of
course also on the boundary conditions on dA. Let now L2(hΛ) be the
complex Hubert space of L2 integrable functions with respect to the
normal distribution indexed by the real Hubert space hA.

The Hamiltonian H0(A) for the free scalar field in A with mass m
and the given boundary conditions is a self adjoint operator on L2(hA)
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which is denoted by

(3.3)

where ΔΛ denotes the Laplace operator on L*(Λ) and (,) is the inner
product on L\(Λ\ (3.3) is not a definition of H0(Λ) but just a convenient
notation. We shall now give the proper definition of HQ(Λ).

Let {ek}kL1 be the complete orthonormal base in L*(Λ) of eigen-
functions for AΛ

AΛek = λkek. (3.4)

The probability space for the normal distribution dnhΛ indexed by the
real Hubert space hΛ is then in a natural way identified with infinite
product of the probability spaces for the one dimensional normal
distributions

(3.5)
\ π /

so that
00

dnh, = Y dnλl . (3.6)
"λ / V Λ k v '

Hence L2(hΛ) may be identified with the infinite tensor product

k=ί

relative to the vectors fkeL2(dnλk) given by fk(xk)=i. Now L2(dnλk)
may be identified with L2(R) by the identification

(3.8)

for g<=L2(dnλk). Therefore L2(hΛ) may be identified with the infinite
tensor product

L2(h^= ®L2(R) (3.9)

relative to the vectors gk e L2(R) given by

*λ*xί. (3.10)

Let now Hλι be the Hamiltonian for a one dimensional harmonic
oscillator given by
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as a self adjoint operator on the /c-th component in the tensor product
(3.9). eitHk is then a strongly continuous unitary group on the fe-th
component wich leaves the vector gk invariant. It is then well known

00

that the infinite tensor product (X) eltHk exists and forms a strongly
fc=l

continuous unitary group on the infinite tensor product (3.9). We now
define H0(A) as the self adjoint infinitesimal generator of this unitary
group on L2(hA).

Definition. eitH0(Λ)= ^ eιtHk ^.i2)
k= 1

relative to the tensor decomposition (3.9).
From this definition we get immediately that e-^H^A^ is of trace

class for β > 0 and that

We now define the Gibbs-state for the free scalar field of mass m in A
with the given boundary conditions by

ωQ

β(Λ)(B) = (tτe-βHo(A)Γ1^(Be-βHo(Λ)) (3.14)

for any B in the C*-algebra B(L2(hΛ)).
Let F be a bounded continuous function on RN. From (3.9) we get

the following tensor decomposition

L2(hΛ) = L2(RN)®\ (§) L2(R)} (3.15)
[k=N+ί J

where the infinite tensor product here is also relative to the vectors
(3.10). F may then be identified with an element F(χ)l of B(L2(hA))
in accordance with the tensor decomposition (3.15). We shall denote this
element in B(L2(hΛ)} also by F. By L^h^ we shall understand the
maximal abelian algebra in B(L2(h)) containing all bounded continuous
functions F on RN for all values of N. It is obvious that L^h^ is the space
of L^-functions on the probability space associated with the normal
distribution indexed by hΛ.

Let HQ(A) be the infinitesimal generator of the unitary group on
L2(RN) given by

and let F 0,...,F 7 J_ 1 be bounded continuous functions on RN and
0 = 50 ̂  ^ sn = β. It follows then immediately from the definition
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(3.12) of H0(Λ) that if we consider F0,..., Fn_1 as elements in

)...Fn_1e~(β~Sn

i) then

(3.17)

where trN is the trace in L2(RN). By Theorem 2.1

k = l

n-l

Π
(3.18)

where Eβ

Ή is the expectation with respect to the normal distribution
indexed by the real Hubert space gN of continuous functions from the
circle Sβ of length β into RN with norm square equal to

N β

Σ.f
k=ί 0

dτ. (3.19)

Let ίfyί/t) be the real Hubert space of functions from SβxΛ into R such
that the norm square

+ m2ξ2~]dxdt (3.20)

is finite and such that for all ί, 0 ̂  ί ̂  β, ^(x, ί) satisfies the self adjoint
boundary conditions given by A2. If we consider ξ(x, f) as a function
η(t) from S^ into Lf (A\ then (3.20) takes the form

(3.21)

From (3.19) it then follows that gN is a closed subspace of ̂ (/l) generated
by all functions η(t) such that η(t) is in the subspace of Lζ(Λ) generated
by the N first eigenvectors eί9 . . ., eN of A, for all ί, 0 ̂  ί ̂  /?. This together
with (3.17) and (3.18) gives then that

tr(F
-(s2-sι)H0(A) ~(β-sn- ι)H0(Λ)

Γii-1

U*
.i = 0

(3.22)

where Eβ

Λ is the expectation with respect to the normal distribution
indexed by the real Hubert space gβ(Λ).

Since the bounded continuous functions on RN are obviously weakly
dense in L^h^, we may extend (3.22) to arbitrary F0,..., Fn_ 1 in L00(/ίyl).
Utilizing the remark following Theorem 2.1 we may also compute
the covariance for Eβ

Λ. We have thus the following theorem.
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Theorem 3.1.
then

tr(F £~ sιHo(Λ)j7 e-(s2-sι)H0(Λ)^^p ^ e-(β-sm-ι)H0(Λ)\

Γm-1

Π/.

where Eβ is the expectation with respect to the normal distribution indexed
by the real Hubert space 0β(Λ), of functions from the circle Sβ of length
β into D(AΛ) with norm square equal to

'V
where ( 9 ) ί s the inner product in Lζ(A). Eβ may also be characterized as the
Gaussian distribution with mean zero and co-variance which is invariant
on Sβ and given by

, η(t)J] = (φ, (2A(i - e^A-)' ' (e~tA* + e~ «-'

for 0 :g t ̂  jβ, where φ and ψ are in L2(Λ) and ( , ) is the inner product in L2(Λ).

If we consider the elements in gβ(Λ) as functions ξ(x9 1) from Sβ x A
into R satisfying the proper boundary conditions on dΛ9 then Eβ

Λ may
be characterized as the expectation with respect to the generalized
Gaussian prosess on Sβ x A with covariance function given by

where Gβ

Λ(x, y,s — ή is the Greensfunction for the self adjoint operator

— A + m2 on Sβ x A with the corresponding self adjoint boundarydt2

conditions on dA.
We define now the C*-automorphism oζ(Λ) on B(L2(hΛ)) by

oξ(Λ) (B) = e

Then for B and C in B(L2(hΛ)) we have that

ω°β(Λ) (B - αt°μ) (C)) = ω»β(Λ) (<£t(Λ) (B) ' C) . (3.24)

Moreover (3.24) is an analytic function of t in the strip — β<Im£<0?

which is continuous and uniformly bounded in — β^Imί^O, and the
boundary values satisfies the K MS condition

ω°β(Λ) (B - αf%(Λ) (C)) = ω°(A) (C<£t(Λ) (B)) . (3.25)

Further more, if F0, . . ., Fn are in L^(h^ then
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is analytic in 0> Im^ > •• >Imίm> — β and continuous and uni-
formly bounded in 0 ̂  Im tx ^ g; Im tm ̂  — β, and its value for
tk = — zsk, fe = 1,..., m with 0 = s0 ̂  s x . . . ̂  sm = β is given by

f[Fk(η(sA (3.26)
t=o J

Let 0C#n be a bounded open set in Rn and let φ €€$(&) and real.
It is easily seen that the normal distribution indexed by hΛ is quasi-
invariant under the transformation η-^η + φ, if ΘcΛ. Hence this
transformation induces a unitary transformation U(φ) on L2(hΛ).
Let V(φ) be the unitary transformation of multiplication by the L^h^
function el(φ'η) where (,) is the inner product in L2(Λ}. sίQ(Φ} is then
the smallest norm closed algebra in B(L2(hΛ)) containing U(φ) and V(φ)
for all real φeC$(G\ Since sfQ(&) is a C*-algebra which is faithfully
represented in each B(L2(hΛ)) for all A D (9, j/0(0) will not depend on the
particular A as soon as A D (9.

By (3.2) the normal distribution indexed by hΛ9 may be characterized
as the generalized Gaussian process with mean zero and covariance
function GΛ(x, y\ where GΛ(x, y) is the Greens function for the self-
adjoint operator AΛ. Let now (9 be contained in the interior oΐΛl and A2.
Since GAl(x, y) — GΛ2(x, y) is a smooth function for x and y in &, it follows
that the conditional expectations of the normal distributions indexed by
hΛl and hΛ2 with respect to the σ-algebra generated by functions of the
form (φ,η) with φeC$(&) are equivalent measures. From this it
immediately follows that ^Q(&) has equivalent representations in
B(L2(hΛi)) and B(L2(hΛ2)), so that the strong closure jtf(0) of s/0(Θ)
in B(L2(hΛ)) is independent of A as soon as & is contained in the interior
of A. We have obviously that J/(Ol)gj^(&2) if G±CG2.

 Let ̂  be the

norm closure of \j{^((9} \ (9 C Rn}.
Let now Bejtf(&). It is then well known that a$(Λ)(B)ej/(Θt),

where &t is the open set of points with distance smaller than t from 0,
and that oζ(A) (B) is independent of A as soon as &t is contained in the
interior of A. We shall denote this independent value by o$(B). αf is then a
C*-isomorphism from j/(0) into jtf(&t) for any &9 hence it extends to a
C*-automorρhism of j/.

Now let ^(ΰ) be all functions in L^h^ of the form f((η, φ±\ ((η, φ2),
...,(η,φN)), where f(xi9 ...,XN) is bounded continuous function on RN

and φ 1 ?..., φN is in CQ(&). We denote by j/0 the smallest norm closed
C*-algebra in j/ which contains all operators of the form α^F), for
F e J^((P) for some (9. ̂ Q is then obviously invariant under αf, and we
shall say that j/0 is the local algebra for the free field.
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Let FO, ...,Fm be in 3Fψ) for some Θ. We shall then show that

.al(Fm)) (3.27)

converge as A tends to Rn in such a way that it finally contains all bounded
sets, independently of the boundary conditions on dΛ. To see this,
choose any T>0. Then for \tk\ ^ Γ, k= 1,..., m, since A finally contains
any bounded set, we have that from a certain point on &τ is contained
in the interior of A, but then (3.27) is equal to

Now (3.28) is analytic in 0>Imί1 > •••> Imίm> —β and uniformly
bounded and continuous in O^Im^ ^•••^Imίm^ — β. The value of
(3.28) at the imaginary points tk = — ish k = 1,...,m and 0 = s0 ̂  s^ - - - ̂  sm= β
is by (3.26) given by

ω°β(Λ) (F 0 α°_ ί S ί (A) (FJ ... α°_ ί B m (Λ) (FJ) = E*A [ jl f (3.29)

where F£k is the translated by an amount sk around the circle Sβ of the
functions Fk in ^(Θ\ Since Fk9 fc = 0, ...,n are continuous bounded
functions of the stochastic variables (η, φ^), ...9(η9 φn\ we get that
(3.29) converge if the corresponding correlation function converge since
Eβ

Λ is the expectation with respect to a Gaussian distribution. We shall
now assume that the mass m > 0. By Theorem 3.1 the correlation function
for Eβ

Λ is given by Gβ

Λ(x, y, s -1\ That G^(x, y, s -1) converges as Λ
tends to #" in such a way that it finally contains all bounded sets follows
from the fact that Gβ

Λ is the Greens function for the self adjoint operator

32 n 32

~ +m2 (3.30)
dt2 & dx}

on Sβ x A, with some self adjoint boundary conditions on dΛ. So that
as Λ tends to Rn in such a way as to finally containing any bounded
set we get that Gβ

Λ(x, y,s — t) converge weakly to Gβ(x, y,s — t) which is
the Greens function on Sβ x Rn for the operator (3.30).

Since the local algebra for the free field ^Q is the smallest norm
closed C*-algebra containing α^F) for all t and Fe^(Θ) for some 0,
we have that elements of the form F0αf)

1(F1)...αί)

m(FJ are norm dense in
£/Q. Hence we have proved the following theorem.

Theorem 3.2. Let j/0 be the local algebra for the free field, then αf
defines a group of C*-automorphism of J3/0. There is a state ω^ on <$/0

which is invariant under α^ i.e.
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such that ω^(Bαt°(C)) is analytic in the strip — β<Imt<Q and uniformly
bounded and continuous in — β^lmt^O, and satisfies the KMS conditions
on the boundary

for real t.
Moreover, if F0, ...,Fm is in the subalgebra of £/0 'generated by the

fields at time zero then ω0(F0α° (FJ ... α?m(Fm)) is analytic in
0>Imί1 > >Imίm> — β and continuous and uniformly bounded in
O^IrrUi Ξ> §; — j8, and its value at the imaginary points tk=—isk,
k— 1 , . . . , m with Q = s0'^s1 '^sm = β is given by

where Eβ is the expectation with respect to the generalized Gaussian
process with mean zero and covariance function Fβ(x — y,s — t\ which
is the Greensfunction on Sβ x Rn for the self adjoint operator

on L2(Sβ x Rn)9 and F£k is the translated by the action of the circle group
Sβ on Sβ x Rn of the function Fk by the amount sk.

Furthermore, if B <= j/0 is in j/(Θ) for some bounded (9 then

A

as A tends to Rn in the sense that A finally contains any fixed bounded set.

Remark. Utilizing the formula (2.24) we get that Gβ(x, t) is given by

Gβ(x,s)= -i- f &(p9s)e-^xdp (3.31)
\LU) Rn

where for 0 ̂  s ̂  β

Gβ(p, s) = (2ω(l - e'βω))- 1 (e~sω + e-
(β~s}ω) (3.32)

with ω = ω(p) = ]/p2 + m2.
If we introduce the annihilation creation operators and the free

fields we have the relations

φ(x9 ή=-Γ- (2πΓM [βί(px+ωί)α*(p) + e-i(px+ω»a(pϊ] - T - (3.33)
1/2

where φ(x, t) is the free field at time t.
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The operator that counts the number of particles with momentum
p e Ω in a region Ω C Rn of momentumspace is given by

(3.34)
Ω

Introducing now the function

Δ β ( x 9 t ) = Gβ(x9-it) (3.35)
so that

Δβ(p, t) = (2ω(l - e-βω))~ x (eίtω + e'βωe'itω) (3.36)

we get the following formula for computing expectations of products
of fields

ω°β(φ(xi9 tί)...φ(xn, *„)) = < for n even

0 for rc odd (3.37)

where the summation runs over all partitions of (1, ...,2/c) with 2k = n
into disjoint pairs (il9 i2)(z3, i4)...(in-ί9 Q.

If we define the pressure for the free field at temperature j in the
usual way by

pϊ^β"1 lim μiΓMogίtrίe"^0^)), (3.38)
Λ-+Rn

where \Λ\ is the volume of Λ, we get by using the formuly

B°M) = \i-e-βΛΛ\-ι (339)

together with well known asymptotic formulas for the eigenvalues of the
Laplacian A in A as Λ increase to Rn, we get that the limit (3.39) always
exists and is given by

p<j> = -(2πΓnβ~l J log(l-e-βω(p))dp. (3.40)

If we take Λt = l — ̂ ^]n with periodic boundary conditions we have
that AΛl has the eigenvalues

/ 0^M \2 \£

(3.41)

where (ni9..., nn)eΈn. In this case we have the annihilation creation

operators af(p) and at(p) with p e —— Έn, for H0(Al). The operator that

counts the number of particles with momentum p E Ω in a region Ω C Rn

is now given by
(3:42)
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If we now compute the expected number of particles for the system in Al

we get
e-β<o(p)

ω^Λ,) (N,(Ω)) = £ , . (3.43)
peΩ L V

We now define the density of particles with momentum in Ω by

I Q°β(p) dp = Jim π 1/1,1 - x ωj}(4) (Λ/i(O)) . (3.44)

Then this limit exists and is given by

= (2πΓ» J -βalpydp. (3.45)
Ω -1 ~£

So that then density of particles with momentum p exists and is given by

p-β(o(p)

gg(p) = (2«)- 1_e-,a ( r t. (3-46)

and the particle density is given by

β-0ω(p)

gg = (2πΓ"f -Wp)^ (3-47)
Rn L — e

In correspondence with (3.45) and (3.46) we may introduce the partial
pressure due to partictes with momentum p by

p°(p) - -(2πΓΠ Γ ' log(l - e-*°W) . (3.48)

If we want to express the state ω^ in terms of annihilation creation
operators

(3.49)

where α* stands for a or α*, and heL2(Rn\ then we have the formula

--Ml/i f ϊR 1+e"^co(p)

ωO(eί(«*(h) + α(fc)) ) = g - J l l-β-^(P) ^ (3>50)

As a comparison we have that the corresponding quantity for a system
of free Schrodinger particles at temperature β and activity z is given by

e ι-« ""' . (3.51)
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To within the non relativistic approximation

1

we see that ωjj is the Gibbs state of free Schrόdinger particles of mass m
at temperature β and activity z = e~mβ.

4. The Gibbs-State for the Interacting Scalar Quantum Field
in Two Space-Time Dimensions

In the case of two space-time dimensions or equivalently one space
dimension, the interacting scalar field is relatively well understood in the
case of polynomial interactions ([2, 7-10]) and exponential interactions
([3] and [11]). In the case of positive mass m>0, it was proved by
Glimm-Spencer [2] that the thermodynamic limit for the temperature
zero (β = oo) state existed and is unique for weak polynomial interactions.
More recently Nelson [12] has established the existence of the thermo-
dynamic limit for strong polynomial interactions with Dirichlet boundary
conditions. Nelson's method which depends strongly on the Dirichlet
boundary conditions leads to the question of whether this limit is unique,
and in fact Dobrushin and Minlos [6] have announced the result that
there is a certain critical value for the interaction strength for any even
polynomial interaction above which the limit is not unique. For the
strong exponential interaction the existence and uniqueness of the
termodynamic limit for the temperature zero state was recently proved by
Albeverio and H0egh-Krohn [3], in the case of even interactions.

From what is said above we see that the thermodynamic behavior
of the temperature zero state is quite complex and that by the result
of Dobrushin and Minlos there are phasetransitions of the temperature
zero state for the even polynomial interactions.

In contrast with this complex picture for the temperature zero
state, we shall see that for the positive temperature (β<co) state or the
Gibbs state the thermodynamic limit always exists and is unique for the
polynomial interactions as well as for the exponential interactions,
without any restriction on the strength of the interaction, in the case
of two space-time dimensions.

Now let /
H, = H0+ $ : V ( φ ( x ) ) : d x (4.1)

-i

where φ(x) is the time zero free field of positive mass m > 0, in two space
time dimensions, and V(s) is either a polynomial which is bounded
below (4.2)
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or an exponential function i.e.

(4.3)

where dμ isji positive measure of compact support in the open intervall

ί/0 is the Hamiltonian for the free scalar field φ. Ht is then the
Hamiltonian for the corresponding interacting field with a space cut
off interaction. For details concerning the definition of Ht the reader
should consult the Refs. [7] and [10] for the case (4.2) and the Ref. [11]
for the case (4.3).

It is known that Ht is essentially self adjoint on the intersection of
the domains of H0 and Vt

Vt = \ : V ( φ ( x ) ) : d x (4.4)

and that Ht is bounded below

H^-b (4.5)

where b is some real number depending on Vh so that e~βHl is a bounded
operator.

We will now construct the Gibbs state for the space cut-off inter-
action (4.1).

Let A be an interval containing the interval [ — /,/] in its interior,
then we set

Ht(Λ) = H0(Λ) + \ : V(φ(x}): dx. (4.6)
-I

By the same methods that proves that Ht is essentially self adjoint
and bounded below we get that Ht(A) is essentially self adjoint and
bounded below. Moreover, we also get that Ht(A) has discrete spectrum
and that e~

βHl(A} is of trace class. We shall start by computing the trace
of e~βHι(A\ By the method of hypercontractivity [13] in the same way
as for Hh we have that Ht(Λ) may be approximated by operators Hn

such that
\\ -βHι(Λ) -βHn\\ .A (ΛΊ\\\e —e \\-~*v r+ / )

and Hn has the form

where Vt

(n} is in &(&) for some OcA. We shall prove below that
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Since V( n) is bounded we get by the Trotter-Kato product formula that

strong Km U " e * ' J = *->*», (4.10)

but this may obviously also be written in the form

[ _ JLH (A) -i V(n) _JLtfo(yl)]k

stronglimte 2k e k l e 2k J =e~βHn. (4.11)
fc-»oo

Now let V^ ^ — c, where c of course depends on n. Then

e-^"]\^el\ (4.12)
hence

/? β β β β

e ^k e k l e 2k ^e* e k , (4.13)

so that the ί-th eigenvalue of

is smaller or equal to eβc times the ί-th eigenvalue of e~
βHo(A\ On the

other hand we have by (4.11) that the ί-th eigenvalue of (4.14) converge
to the ί-th eigenvalue of e~βHn. Hence by dominated convergence
we get that the trace of (4.14) converge to the trace ofe~βHn, since e~

βHo(A}

is of trace class.
However the trace of (4.14) is by Theorem 3.1 given by

- (415)β_
k

Since the transformation FJ(w)(^(0))— Vt

(n}^(s)) is induced by the
action of the circle group Sβ on Sβ x Λ, and the generalized Gaussian
process corresponding to Eβ

Λ is homogeneous with respect to this action,
we have that the transformation is given by a strongly continuous
unitary group on L2 of the corresponding process, and therefore Vt

(n)(η(s))
is a strongly continuous function of s in the L2 space of the process.
Hence we get the strong L2 -convergence

β Λ ^ / / β Λ\ ? , ,
-T- Σ vι Ί^yO'-i) N ί ^(w)(^(s))^ ί4-1^)

as k-+co. By passing to an almost everywhere convergent subsequence,
we get by dominated convergence the corresponding convergence of
(4.15). Hence we have that

r _^F(M) s '

IF, (η(s»ds ^^
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/
Now the approximation of Vt= f :V(φ(x)):dx by functions Vt

(n) in

may be carried out in two steps. First we approximate Vt

[a'b\
where V^aM is equal to Vl in those points where V{ has values in the
interval [α, fc] and V}a'b} is equal to zero elsewhere. Under this approxi-
mation we have that Vt

(n) is uniformly bounded below so that e~βHn

~βHo(Λ and by hypercontractivity e converge to
e-β(H0(A)+vι« v) in norm? so that tre-βHn converge by dominated

convergence. On the other hand the right hand side of (4.17) will also
converge by dominated convergence since under this approximation
Vt

(n} is uniformly bounded below.
Then we remove a and b by first letting a-+ — oo and then b-»oo.

In both cases we have that both sides of the equation

(4.18)

converge by monotone convergence. Hence we have proved the following
formula

-!Vι(η(s))ds

Recalling the form of V{ this may also be written

-J J :V(ξ(x,s)):dxds

(4.19)

(4.20)

In the same way as we proved the formula (4.20) we prove the following

Lemma 4.1. Let F 0 , . . . ,F n _ x be inL^(h^ and0 = s0^s^ ^-••^sn = δ
then

tr(F0£
 Sl F^e S2 5l l ...Fn_1β )

β i
n-ί -J J :V(ξ(x,s)):dxds

|jc=0

where F^k is the translation of Fk by the amount sk in the action induced
by the circle group Sβ on the generalized Gaussian process ξ(x, s).

As in Section 3 we now define for any B e B(L2(hΛ))

al

t(A) (B) = e-ίtHl(A)BeitHl(A) (421)

ωl

β(Λ) (B) = (tr e~
βHl(Λ)Γ1 tτ(Be~pHl(A)). (4.22)

and

We then have that if B e j/(0) and Θt C A, then ocL

t(Λ) is independent of Λ,
and we denote this A independent value by αJ(J5). This then gives us a
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group of C*-automorphism α{ on si. It is well known that if θt C [ — /, /]
then αJ(K) is independent of /, and we shall denote this / independent
value by at(B\ and again αf gives us a group of C*-automorphism on si.

Let now si be the smallest norm closed C*-algebra in sJ con-
taining at(F) for all real ί and all Fe^(Θ) for any bounded G in β.
Elements in si of the form

with F0,F l5 ...,FW in
see that

converges as A tends to K and I tends to GO.
If Gti C [- U] C Λ ί = 1,..., n then (4.23) is equal to

F oc (F ^ oc (F) (4 231

then span a dense linear set in Λ/. We shall

(4.24)

(4.25)

By the definition (4.22) of ωl

β(Λ) we have that (4.25) is analytic in
0>Imί1 > '->lmtn> — β and uniformly bounded and continuous in
0 ̂  Im t1 ̂  ^ Im tn ̂  — β. Moreover, its values at the imaginary
points tk=—isk k=i,...,n with 0 = s0^s1 ^sίl is by Lemma4.1
given by

ωl

β(Λ). l_iSn(A} (Fa))

= ίl
- U:V(ξ(x,s)):dxds

Lfc=o

(4.26)

To prove that (4.24) converges as first A tends to .R and then / tends to oo,
it is therefore enough to prove that the same limits exists for the right
hand side of (4.26). Since Fk£^(Θ) fc = 0, ...,n, it is therefore enough;
if we want to prove that the limit exists as Λ-+R, to prove that Eβ

Λ

converge weakly as Λ->R. But since Eβ

Λ is the expectation with respect
to the generalized Gaussian process with mean zero and covariance
function G^(x, y:s~ ί), the weak convergence of Eβ

Λ follows from that
of the covariance function. Hence we find that the limit of (4.26) as
A-+R exists and is given by

Bf
k=0

-ί J :F(£(x,s)):dxds
e o -, E» Π

[k=0

-ί ί :V(ξ(x,s)):dxds
y 0 -I

(4.27)

where Eβ is the expectation with respect to the generalized Gaussian
process with mean zero and covariance given by the Greensfunction
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Gβ(x — y,s — t) for the self adjoint operator

(4 28)

on Sβ x R. For 0 ̂  t ̂  β we have that Gβ(x, t) is given by

G*(x, ί) = 4- ί e~ίxpG>, 0 dp (4 29)
2π i

where
, t) = [2ω(p)(l -e-

βω(p))Y1 [e-^(p) + e-αί-ί)ω(p)] (430)

To prove that (4.27) converges as /-^oo it is again enough, since
Fke 3F(&) for fc — 0, ...,w, to prove that Ef converges weakly as l->ao.
To do this we consider the Fourier transform of the generalized process
given by Ef

)ξ(x,s)dxds-ι (4.31)

where ψ is a C°° -function of compact support in SβxR. By (4.27) we
have that (4.31) is given by

β l

-S S :V(ξ(x,s)):dxds\

Eβe
(432)

β I -1 V^ J^

-J ί :V(ξ(x,s)):dxds\

Let ψ have support in Sβ x [ — a, a].
Consider now the Hamiltonian Hβ on L2(hβ) where hβ = hΛβ with

yl^ = [0, β] with periodic boundary conditions and Hβ is the corresponding
periodic Hamiltonian

Hβ = Hξ+$:V(φ(x)):dx (4.33)
ό

where Hξ = HQ(Λβ), Λβ = [Q9β] with periodic boundary conditions. It
is well known both in the polynomial and exponential case that Hβ

has a simple lowest eigenvalue with a normalized eigenvector which
we denote Ωβ.

By letting in Lemma 4.1 β tend to infinity and taking Λ in Lemma 4.1
fixed equal to the Λβ above, we obtain easily the formulas

Eβ

and

:V(ξ(x,s)):dxds\
=(βj},έΓ2/H*βj}) (4.34)

£*(V,£)g 0 -I
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where Ω°β is the normalized eigenvector of H$ corresponding to it
simple lowest eigenvalue and W[Stt}(if) is the unique bounded operator
satisfying the strong differential equation

7 Γ β

dt M [ o '

where φβ(x) is the free field corresponding to H^ with the initial condition
that

%.,](«/) =1 (4-37)
and

/(x, ί) = ψ(t, x). (4.38)

The analog of (4.34) and (4.35) in the temperature zero case is well known
and used for instance in [14] where they are called the Nelson symmetries.

Now that the limit of (4.31) and hence of (4.27) exists as ί-»oo
follows simply from the fact that Hβ has a simple lowest eigenvalue.
Hence we have

Lemma 4.2. Let
β i T| - 1

-f f :V(ξ(x,S)):dxds\

-f J :V(ξ(x,s)):dxds

Then the limit E^(el(®'®) as l-+ao exists and is given by

where f ( x 9 t ) = ψ(t,x). Moreover, the measure induced by E^ is locally
equivalent to the generalized Gaussian process given by Eβ, i.e. restricted
to the subalgebras generated by (ψ9 ξ) for ψ with support in a fixed interval
Sβx[ — a9ά] they are equivalent. The measure given by E^ is strongly
mixing with respect to space translations i.e.

lim E£ (^vi. V<v*3) - £2,(ei(V1^) E^(e^2^)
χ-* oo

where ψx(t, y) = ψ(t,y — x).

Proof. We have already proved everything up to the moreover
part. The moreover part follows immediately from the formula for E^
and the strongly mixing follows from the same formula together with
the fact that Ωβ belongs to a simple lowest eigenvalue of Hβ.

Theorem 4.1. Let <$$ be the local algebra for the interacting field,
i.e. the smallest norm closed C*-algebra in stf containing xt(F) for all real t
and all F e 3F(G) for any bounded (9 in R. There exists then a state ωβ on jtf
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such that ωβ is invariant under oct i.e.

for any B and C in j/. ωβ(B <xt(C)) is analytic in the strip — /? < Imί < 0
and uniformly bounded and continuous in — βrg lmf^O, and satisfies
the KMS conditions on the boundary

for real t. ωβ is invariant under space translations

and have the cluster property

ωβ is locally Fock, i.e. if we restrict ωβ to the subalgebra generated by
at(F) for t in a fixed interval [ — α, α] and F e 3F(G). For a fixed bounded (9,
then on this subalgebra ωβ induces the free Fock representation.

Moreover, if F0, ..., Fn is in 2F(&] for some bounded (9 then
ω0(F0αίl(F1)...αίn(FJ) is analytic in 0> Im^ >•••> Imίn> — β and
continuous and uniformly bounded in Og Imί! ^•••Ξglmί^ — β, and its
value at the imaginary points tk=—isk, k=i,...,n with 0 — s0^

5ι
^ rg sn = β is given by

where E^ is the expectation with respect to the generalized homogeneous
process on SβxR given in Lemma 4.2, and Fk

k is the translated of the
function Fk by the amount sk in the action of the circle group Sβ on Sβ x R.

Furthermore, if B is in the subalgebra generated by at(F) for t in a
fixed interval [ — a, a~] and F e <F((9) for a fixed bounded (9 then

ωβ(B) = lim lim ωl

β(Λ) (B) .
/-* oo A -+R

Proof. Linear combinations of elements of the form FQ^^F^. . .αίn(Fn)
are norm dense in jtf. We may show in the same way as for the temperature
zero case that ωl

β(Λ) is locally Fock uniformly in / and Λ. Since for /
and A big enough αίk(Ffc) = attk(A) (Fk) and oft(A) is strongly continuous
in Fock space we therefore get that

ωl

β(A)(F0atί(Fl)...atn(Fn)) (4.39)
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when we restrict tk,k=i,...,n to a bounded interval is continuous
in tk, k= 1, ...,n uniformly with respect to / and Λ. By passing to sub-
sequences we therefore get as first Λ-+R and then /->oo through sub-
sequences that (4.39) has a limit

^(FoaJF^.-aJf;)) (4.40)

which is continuous in tk, k= 1,..., n. On the other hand we have
already proved that (4.39) is analytic in 0>Imί1 > - >Imtn> -β
and that at the imaginary points

(4.41)

with 0 ̂  Si ^ ^ sn ^β, (4.41) converges as first Λ-+ R and then /->oo.
If we denote the limit by ω j3(F0α_ίsι(F1)...α_ίSn(Fn)) we get by

Lemma 4.2 that

(4-42)

(4.42) being a limit of functions which are uniformly bounded and
analytic in 0 > Im t ί > - - > Im tn > — β must itself be analytic and bounded
in the same domain. Since (4.40) is the limit of boundary values of these
functions, it must itself be the boundary value of (4.42). But this proves
that (4.40) must be independent of the subsequences chosen, so that
(4.39) converges as first Λ-*R and then /->oo to a limit (4.40) which is
continuous in tk9 k— ί,..., n. Hence (4.40) is the boundary value of a
function which is analytic in 0 > Im 11 > > Im tn > — β and uniformly
bounded and continuous in 0^Im^ ̂  ^ ϊmtn> — β and its value at
the imaginary points is given by (4.42).

Now ωβ as limit of states is again a state and extends by continuity
to all of j/. The invariance under αf follows from the corresponding
in variance for ωl

β(Λ) and similarity the KMS condition. The translation
invariance under space translations follows from (4.42) and the homo-
geneity of the generalized process given by E^ This homogeneity follows
from Lemma 4.2. The cluster property follows from the fact that E^
is strongly mixing with respect to space translations. This proves the
theorem.

Remark. If we now define the pressure pβ(V) at the temperature

— for the interacting field by

pβ(V) = β~* lim \ΛtΓ * log(tr(e-βHl(Alty (4.43)
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with Λt = [ — /,/], we get by Lemmas 4.1 and 4.2 and its proof that

Pβ(V) = p0

β-β-1eβ(V) (4.44)

where V describes the interaction so that

#,(/!<) = tfo(Λ,)+.f :V(φ(x)):dx
-I

and pQβ is the pressure for the free field given by (3.38) and (3.41), and
eβ(V) is the lowest eigenvalue of the periodic Hamiltonian

Hβ = Hξ+$:V(φ(x)):dx (4.45)
ό

where H^ = #0([0, j8]) with periodic boundary conditions.
We see that Theorem 4.1 gives a certain duality between the Gibbs

state at temperature i/β for the infinite volume interaction and the
corresponding vacuum or zero temperature state for the interaction
in a periodic box of length β. We shall denote this duality by the duality
principle for the relativistic Gibbs state. This duality principle may also
be expressed in terms of the Wightman functions or if we want also
in terms of the Schwinger functions for the interaction.

Let φ(x, t) be the interacting field at time ί, i.e.

φ(x9t) = ̂ (φ(x)) (4.46)

where φ(x) is the field at time zero, and (4.46) is an equation between
operator valued distributions in x for fixed ί. The Wightman functions
at temperature i/β for the infinite volume interaction is given by

W£(xi9 ti9..., xn9 O = ωp(φ(xl9 t1)...φ(xn, ίj), (4.47)

and the Wightman functions for the field in a periodic box of length β,
at temperature zero (β = oo) is given by

Wβ(xlti9...9xntJ = (Ωβ9φ(xi9tι)...φ(xn9tJΩβ) (4.48)

where Ωβ is a normalized eigenvector belonging to the lowest eigenvalue
eβ(V) for the Hβ, Hamiltonian in a periodix box of length β

Hβ = Hξ+l:V(φ(x)):dx (4.49)
o

where V is either a polynomial which is bounded below or an expo-
nential function of the type (4.3), and Hξ is the free Hamiltonian in a
periodic box of length β. We have then that (4.47) is analytic in ί1 ?..., tn

in the domain Q>Imt1> ->Imtn>—β and that (4.48) is analytic
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in Imίi >-">lmtn. The values at the imaginary points tk=—isk

ίoτ 0<sl9...<sn<β for (4.47) and sl< <sn for (4.48) is called the
Schwinger functions

Sβ

ao(xl9sl9...9xn9sJ=W£(xί9 -zs1? ...,*„, -isn) (4.50)
and

S$(xi9sl9...9xn9sJ=Wj°(xi9 -isi9...9xn9 -isn). (4.51)

We may now express the duality principle from Theorem 4.1 in terms
of Wightman- and Schwinger functions, and this gives us the following
duality theorem

Theorem 4.2. (The duality theorem). Let W^(xί9 ί1...xπ, £„) be the
Wightman functions at temperature i/β for the infinite volume interaction,
and let Wjf be the usual Wightman functions at temperature zero (β = co)
for the interacting field in a periodic box of length β. Let S^ and S^
be the corresponding Schwinger functions, i.e. the Wightman functions
at imaginary time, so that W^°(xίti, ...,xntn) and 5^)(x151, ...,xnsn) is
periodic with period β in x l 5 ...,xn.

Then W£(xί9 ί1 ?... xn, tn) is analytic in 0 > Im ίx > > Im tn > — β, and
Wf^(x1,tί,...xn,tn) is analytic in lmtί >•••> Imίπ, and for the corre-
sponding Schwinger functions we have

S^(xi9 51 ?..., xn9 sn) = S f ( s l 9 xl9..., sn9 xn).

Moreover the difference between the pressure for the free and the inter-
acting field at temperature i/β is equal to

where eβ(V) is the lowest eigenvalue for the interacting Hamiltonian
in the periodic box of length β.

Remark. It is understood that the interactionterms in the Hamiltonians
for the dual Wightman functions W£ and W^ are defined by consistent
Wick orderings, i.e. if the Wick ordering for the interaction of W£
is with respect to the free vacuum respectively the free bubbs state,
then the Wick ordering for the interaction of Wβ° is with respect to the
vacuum for H0 respectively the vacuum for Hβ.
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