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Faraday Transport in a Curved Space-Time
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Abstract. A covariant expression is given for the Faraday transport of electromagnetic
radiation in a curved space-time.

I. Introduction and Notation

It is our purpose here to derive a covariant expression for the propa-
gation of the polarization vector of a linearly polarized electromagnetic
wave through a magnetic interstellar or intergalactic plasma (Faraday
transport).

We shall consider the wave in the eikonal approximation and the
plasma in the 3-fluid approximation.

Let ρ, p, ft, uμ be the density, pressure, number density and 4-velocity
of the electron component and let ni9 uf be the number density and 4-
velocity of the ion component. We suppose that the electron component
is a perfect fluid. Its energy-momentum tensor is therefore of the form
tμv = (ρc2 -\-p)uμuv — pgμv. We neglect collisions between the electrons
and the ions and the molecules and we suppose that the degree of
ionization remains constant.

We shall consider the wave to be a perturbation of the background
potential Λμ of the form

Aμ = Aμ + εA'μ. (1.1)

The parameter ε characterizes the order of magnitude of the amplitude
of the wave. We shall suppose that ε <ζ 1 and we shall neglect quantities
quadratic in ε.

In the presence of the wave all of the quantities which describe the
electron fluid will be perturbed from their former value by a small
amount of the order of ε. We shall write all perturbed quantities in the
form (1.1).

Because of the relatively large mass of the proton, we shall suppose
that the ionic component remains unperturbed in the presence of the
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wave:

(1.2)

We consider the wave in the eikonal approximation and we write A'μ

as the product of an amplitude aμ and a phase factor e c :

• — ώ

A'μ = aμe
τ . (1.3)

ω is a constant with the dimension of inverse time. aμ and φ are functions
of the point in space-time xa; we suppose they are relatively slowly
varying functions with a characteristic length L which we shall assume
to be also the characteristic length of the background plasma. The
derivative of A'μ given by

dλA'μ = i^ξλA'μ + A'μ§λ9 (1.4)

where
ξλ = dλφ, Aμ>λ = (dλAμ)φ=const.

We set

dxa

We define r by — — = ξa and we set ;aξ
a = δ/δr.

We set

ξ2 = ξ ξ = ξaξ< e tc.

The perturbation of the fluid ρ' etc. will also be products of an
amplitude and a phase factor with the same phase as in (1.3). We shall use
only the following property which follows from this form:

dρ' ω

Jφ=ίΎρ e t α

The frequency of the wave in the rest frame of the electron component
is ωu - ξ. We can choose φ such that at a given point u ξ=ί.ω becomes
then the frequency at that point. At any other point on the same ray u ξ
will in general not be equal to one because of the gravitational and
kinematical red-shift corrections.

Define δ = c/ωL. The eikonal approximation is δ<ζί.
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We shall impose the Lorentz gauge condition:

Aμ.μ = 09 DμΛ
μ = 0.

Therefore we have

ξ a = O{δ). (1.5)

At each point introduce two vectors k* and la in the plane defined by
wα, ξa, such that

k > u = 0, fc2=-l, ξ l = 0, u Ί = ί . (1.6)

Let άμ be the component of aμ normal to uμ. Then because of (1.5)
we have

(1.7)

The phase velocity vp of the wave with respect to the electron fluid is
given by

c2/υ2

p = i-ξ2/(ξ.u)2. (1.8)

Let Fμv be the Maxwell tensor.
Because of the large value of the conductivity σ at low frequencies,

the unperturbed Maxwell tensor may be written in the form

Λβ Vg^βy6 Bfaβ9 (1.9)
where

B" = Bma, m

2=-ί, (1.10)

is the magnetic field in the rest frame of the electron component.
The specific enthalpy / of the electron fluid is defined by

ρc2 + p = rnc2nf. (1.11)

m is the electron mass. ωB = eB/mc is the Larmor frequency. We shall
suppose that

ωB/ω<ξί (1.12)

and we shall neglect terms quadratic in ωB/ω. The plasma frequency ωp

is defined by

^ (1.13)
m

II. Faraday Transport

The basic equations are Maxwell's equations:

DvF
μv = 4πe(nuμ - n^), (2.1 a)
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the equations of motion of the electron component:

Dvt
μv=-enFμvuv, (2.1b)

and the electron-number conservation equation:

Dv(nuv) = 0. (2.1c)

From these three equations, one derives, using (1.2), (1.9), the following
equations for the first order perturbations:

DvF
/μv = 4πe(n' uμ + nu'μ), (2.2a)

Dvt'
μv= -en{F'μvuv + Fμvu'v), (2.2b)

= 0. (2.2 c)

The problem is to solve (2.2 b, c) for ή and u'μ and to place the solution
in (2.2a). (2.2a) then becomes an equation for A'μ.

It is straightforward to calculate the following expressions in the
Lorentz gauge:

ω i— Φ

(ξ[μv] O(δ)) c , (2.3)

c , (2.4)

t'μv = i~ l(ρ>c2 + p')u ξuμ + (ρc2 + p)(u' • ξuμ + u ξu'μ)
c (2.5)

Neglecting terms of order δ and using (1.11) we find then the following
equations

ί 2 + " £ θ l ^ * = 4πφ M ' « + «'«"), (2.6)ί 2 + α £
c \ or )\

^Λ=0, (2.7)

{ 2 8 )

ωu ξ

n'u-ξ + nu'-ξ = 0. (2.9)
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From (2.7) and (2.9), we find pf = mnc2f'; that is, the perturbation is
isentropic.

Let υs be the velocity of sound in the electron fluid:

pf = v2ρf. (2.10)

Using (1.12) and (2.10), the system of Eqs. (2.6)-(2.9) yields in a
straightforward manner the following equations for the transverse and
longitudinal components of aμ:

ω δr δr

ωt

fcu ξ fω2 (2.11)

_H_ ωB

s i r r

vp v2

p-c2

1 2

c υί-υ2

c
n M T μ k 4 -

υ2

lie (δlμ ,α δua , .

ω \ δr δr

-v;
β M

lie Λr δif
a

ω

iω2

dr δr

ωB

(2.12)

ω δr fω2 fωξ u v2

p

We now use explicitly the assumption that the wave is linearly
polarized. We assume that the transverse part άμ of aμ is real. Because
of the hypothesis that <5<ξ 1, the Eqs. (2.11) and (2.12) must be valid as
complex equations. If we equate therefore the real and imaginary parts
to zero, use (1.12) and neglect again terms of order δ, we find the following
equations:

= ω2

p/fω2, (2.13)

(2.14)

Equation (2.13) is the dispersion relation for linearly polarized
transverse radiation. The ξ-lines are time-like and describe a motion
with group velocity Vy — v'1. Thus the amplitude propagates, according
to (2.14), with v <c.
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The equation which interests us here is (2.14). If we write άμ in the form

άμ = άnμ, n2=-ί, (2.16)

then we find from (2.14) a conservation equation for the amplitude:

(a2ξ%λ = 0, (2.17)

and a transport equation (Faraday transport) for the polarization
vector nμ\

δrf _ δu" ωB ω2

p

δr ~ ίn* δr 2c f2ω2u-ξU v + k * Λ v ) " ' (ZΛ*>

In deriving this equation we have neglected terms of order ω2δ/ω2.
Therefore, for it to be significant it is necessary that

δ<ωB/ω. (2.19)

Also we obtained Eq. (2.15) by neglecting terms of order ω2δ/ω2 which
would contribute, through the last term on the right-hand side of (2.11),
a term of order ω2δ2/ω2 to (2.14). Therefore, for (2.14) to be significant
it is necessary that

^ 4 ^ 2 (2.20)
(O

4 ^ω ω (Op

However, considering the definition of δ, we have also from (2.18)

ω ω

Therefore, we must have

(2.21)

δ<-^<ί. (2.22)
ω

The three inequalities which lead to Eq. (2.18) are (1.12), (2.19), and (2.22).
Consider the limit ωp->0. This is equivalent to the vacuum case since

we have neglected the effect of the neutral matter. (We have set the
dielectric constant and the permeability equal to one.) Equation (2.14)
is no longer valid since we can no longer neglect the last term on the
right-hand side of Eq. (2.11). However Eq. (2.13) yields

ξ2 = 0, (2.23)
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and from (2.11) and (2.12) [or directly from (2!6)] we obtain

δaμ

2—+a»ξλ.λ = 0. (2.24)
or

The decomposition of aμ into transverse and longitudinal parts is
no longer necessary since there is no dispersion. It is also no longer
possible since we have no vector field uμ. However, if we write aμ = aήμ,
with ή2 = — 1, then we find that a = a and (2.17) remains valid. We find
also from (2.24) that ήμ is transported parallelly along the ξ-lines.

Equation (2.23) was first obtained in a curved space-time by von
Laue [1]. Equation (2.24) was obtained by Misner (see, for example [2]).
Ehlers [3] has made a systematic study of the WKB approximation as
applied to Maxwell's equations in a curved background metric.

III. Faraday Rotation

Introduce a unit vector field pμ normal to kμ and uμ and such that
δpμ/δr is normal to nμ. Let ψ be the angle between nμ and pμ; let α be the
angle between Bμ and kμ. Then

faβri*pβ = sinxp cosα, (3.1)

and (2.18) yields the following equation for ψ:

^ ωUξ ω J (3.2)
dr 2c f2ω2(wξ)2

This is the Faraday rotation formula (see for example [4]). The extra
red-shift factor u ξ in the numerator may be understood in the following
way.

Let y be the curve along which the light travels, from the point of
emission to the point of absorption. Let s be the arc length along the
electron-fluid flow lines. Then the total angle through which the polariza-
tion vector rotates is given by

r dψ , f dip ds

l d r \ d r (33)

In the last expression on the right-hand side of this equality, dψ/ds is the
rate of Faraday rotation as seen by an observer at rest with respect to the
electron fluid. Since we are neglecting curvature this must be equal to the
corresponding expression in a flat space-time. The extra red-shift factor
comes from ds/dr — u ξ.

The author would like to thank the referee for his critical comments.
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