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Abstract. A family of solutions of the vacuum Jordan-Brans-Dicke or scalar-tensor
gravitational field equations is given. This family reduces to the Kerr rotating solution
of the vacuum Einstein equations when the scalar field is constant. The family does not have
spherical symmetry when the rotation is zero and the scalar field is not constant. The method
used to generate the new solutions can also be used to obtain vacuum Jordan-Brans-Dicke
solutions from any given vacuum stationary, axisymmetric solution.

1. Introduction

Heckmann, Jordan and Fricke [1] and Brans [2] have discussed
static spherically symmetric solutions of the vacuum Jordan-Brans-Dicke
[JBD] gravitational field equations. The first solution in the list of four
families of solutions which Brans gives is a generalisation of the Schwarz-
schild solution of the vacuum Einstein field equations but has the
property that the event horizon of the Schwarzschild solution becomes a
singular surface and may not be termed a "black hole". The Brans
solution I was later discussed in a different context and with different
interpretation by Janis et a\. [3] (see also [4-6]). Charged versions of
Brans' solutions were recently given by Buchdahl [7] and Luke and
Szamosi [8].

Hawking [9] and Johnson [10] (cf. Thorne and Dykla [11]) say
that the only black holes in the JBD theory [12] are Einstein black
holes. This means that the Kerr family of solutions with constant scalar
field are the only stationary black hole solutions of the vacuum JBD
equations provided that the Carter conjecture is true. Nariai [5]
suggests that the lack of black holes solutions with non-constant scalar
field means that the JBD theory gives quite different predictions for
gravitational collapse to those in the Einstein theory.

So far there have been no exact rotating solutions of the vacuum
JBD equations which reduce to the Kerr solution when the scalar
field is zero. A family of such solutions is given in this paper. They are
axisymmetric and stationary but do not reduce in the static case (when
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the rotation is zero) to Brans' solution I as may be expected but to non-
spherically symmetric solutions in a family discussed by Penney [13].

The method of generation of the new vacuum JBD solutions from
the Kerr solution discussed here works also with any vacuum stationary
axisymmetric solution other than the Kerr solution taken as the basic
solution.

2. Basic Equations

The vacuum JBD field equations can be written as

Rμv = -fΦ,μΦ,v. (1)

Here Φ is a scalar field, / a coupling constant, proportional to 2ω -h 3
where ω is the coupling constant of the JBD theory, and the conformal
frame being used is the "Einstein frame" as discussed by Dicke [14]
(see also [9]). The field Eq.(l) also arise when a massless scalar field is
coupled to the gravitational field in Einstein's theory and when there are
no other source terms present. The Bianchi identities give for Eq. (1)
the wave equation

ΠΦ = 0 (2)

so that the extra field equation in the JBD theory is automatically
satisfied in the vacuum case.

Solutions of (1) will only be sought for a stationary, axisymmetric
space, in which case the metric can always be written as

ds2 = e2vdt2 - e2ψ(dφ - ωdtf - e2\dx2)2 - e2β(dx3)2 (3)

where v, ψ, ω, α, and β are functions of x2 and x3 only, and where the
scalar field is a function of x2 and x3 only, that is

Φ = Φ(x2,x3). (4)

There is coordinate freedom in the metric to restrict a and β by a coordi-
nate condition such as the condition

a = β (5)

which will be applied through most of this paper.
With

xμ = (t,φ,R9θ)9 (6)



Jordan-Brans-Dicke Kerr Solutions 337

the field equations can be written down from Chandrasekhar and
Friedman [15] as

Φθ = (V + ψ)RΘ + VRVΘ + ψRψg - βR(v + ψ)g - βθ{v + ψ)R

-Wψ'2vωRωθ

Φβ =βRR + ββθ + βR(v + Ψ)R ~ βe(v + ψ)θ + (v + Ψ)ΘΘ

)θ
( /Q)

0 - ωRR + ωR(3ψ - v)R + ωθθ + ωθ(3ψ - v)β (7e)

O = (e*+*)RR + {ev+*)0θ. (7f)

The last three equations are, respectively, the Rίί9 the R® and the RQ + R[
equations. Any non-constant solution of (7f) may be chosen and is
equivalent to any other non-constant solution through a coordinate
change (see [16]). The solution taken here is

= Γ(R)sinθ (8)
where

= eR-i(M2-a2)e-R (9)

and where M and a are constants.

3. Brans' Solution /

For Brans' solution I to be written as a solution of the field Eq. (7),
a conformal mapping and a coordinate change must be made to the
form as given by Brans [2]. The solution then becomes

φ = φo ± {(1 _ D2)βff In \(eR -^M)/{eR + £ M)|

where βo,vo,Φo and D are constants. When D=ί the solution is the
Schwarzschild solution. It follows that the solution may be written as

= vs(R)-β(R) (11)
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where the subscript S denotes the equivalent term in the Schwarzschild
solution and β is an extra variable which must be added to the "S"
variables to obtain the new solution. The e2vdt2 part of the metric is thus
multiplied by e~2^ and the remaining three-space part by its inverse.
ψ + v remains unchanged. When looked at with Eq. (7) as the starting
point, the addition works because the vacuum Eq. (7b—f) (with Φθ = 0,
ω = 0) are linear in the β variable and give

0 = βRR + βRΓ/Γ + Schwarzschild terms (12)

where the contribution of the Schwarzschild terms is obviously zero.
After these equations are solved for β, (7a) is solved for Φ.

4. Rotating Solutions

The approach as outlined in the last part of Section 3 does not carry
over directly into the case of a rotating metric because of the presence
of the ω terms in Eq. (7). However if only the change

i) (13)

is made where βκ is the value of β for some known vacuum solution,
β is some extra variable, and v, ψ9 and ω keep their forms for this known
metric, then the field Eq. (7) give

- fΦl = βRR + βθθ ~

-fΦRΦθ = ~βRcotθ-βθΓ/Γ (14)

- fΦθ = βRR + βθθ + βRΠΓ - βθ cot θ .

Thus the geometry within the group orbits (generated by d/dt and
d/dφ) is left unchanged; only the complementary (R, θ) surfaces are
deformed. When Eq. (14) are solved for some β and Φ and β formed from
(13), then a rotating solution which satisfied (1) has been found. Φ will
satisfy (2) or

ΦRR + ΦΘΘ + ΦRΠΓ + Φθ cot θ = 0 . (15)

Conversely, where a solution Φ of (15) is known, β can be found from
(14), that is from

βR(Γ'2/Γ2 + cot2 θ) = f\ΦRΦe cotθ + i (Φ 2 - Φ2) Γ/Π

Φ2)tθ-]

The integrability condition for β is satisfied by (16); thus for every
solution Φ of (15), a solution β of (16) exists and thus a new vacuum
JBD or scalar-tensor solution may be found.
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The most relevant solution is probably that in the case when Φ
depends on R only. Then, from (15),

eR-\(M2-a2f
φ = φQ + A In (17)

eR+\(M2-a2f
where A and Φo are constants. Notice that Φ tends to Φo as R tends to
infinity and that Φ is singular on Γ = 0. Equation (16) now gives

β = βo+ fA2 In \Γ2/{Γ2 + (M 2 - a2) sin26>}| (18)

where β0 is a constant.
There is a corresponding solution when Φ depends on θ only.
Another solution of (15) and (16) is

β = βo + A(Γsinθ)2, Φ = Φ0±2(-A/f)*Γ'cosθ (19)

which is interesting in that with A negative and hence / positive, the
metric will in general be asymptotically flat if the "background" vacuum
metric is and the curvature invariant will not become infinite at any
other values of R and θ other than where the corresponding invariant of
the background metric does. The scalar field however becomes in-
finite for infinite R.

If Φ is constant, the only solution for β is β = constant; that is no
new vacuum solutions can be formed with constant Φ.

5. Jordan-Brans-Dicke-Kerr Solutions

The Kerr solution, because it is a stationary and axisymmetric
vacuum solution, can have a scalar field "added" onto it in the way
discussed in Section 4. In the coordinates (3), the Kerr metric has been
given by Boyer and Lindquist [17] as

e2tp = sin2ΘP/Σ, e2v = ΣA/P, ω = 2Mar/P

e2« = Σ/A, e2» = Σ
where

Σ = r2 + a2 cos2 θ, A=r2 + a2-2Mr,

+ 2)
When the coordinates are changed so that α = β,

(22)
= Γ2(R)={eR-±(M2-a2)e-R}2

and ψ, v and, ω can be calculated immediately as functions of R. A — Γ2

can be solved for r as
R i 2 - a2) e~R . (23)
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New solutions which are either "vacuum Kerr-Jordan-Brans-Dicke"
solutions or "scalar-tensor-Kerr" solutions can then be obtained by
multiplying the e2β(dR2 + dθ2) section of the Kerr metric by e2β where β
is given by solving (15) and (16) and by keeping the rest of the metric
unchanged.

Consider the solution with Φ a function of R only, \M\ > \a\, and Φ
and β given by (17) and (18), but with βo = 0. Then

Φ = Φ 0 + i Λ l n | ( r - r + ) / ( r - r _ ) | (24)

where r+ and r_ are the two solutions of Δ = 0, namely

r±

β = fA2ln

r±=M±{M2-a2f, (25)

(26)
(r _ M)2-(M2-a2) cos2 θ

Equation (24) can be written for large r as

Φ = Φ0- A(M2 - a2f/r + 0(r~2). (27)

This shows the sense in which A is the "scalar charge" of the solution.
M and a are the mass and specific angular momentum respectively.
In these coordinates, both e2a and e2β are multiplied by e2β for the new
solution to be obtained.

The curvature invariant R becomes infinite on Γ = 0 for / > 0
(equivalent to ω > -§) which is the expected value of/in the JBD theory.
The Kerr metric event horizons r = r+ and r = r_ then both become
singular surfaces. Φ is singular on each of these surfaces. As r tends to
infinity, Φ is asymptotically constant and the metric is asymptotically
flat. This solution with a = 0 (no rotation) is not the Brans — I solution
but is a member of a family of solutions discussed by Penney [13]
[his Eq. (12) with ,4=1] and is not spherically symmetric.

6. Discussion

Any stationary and axisymmetric vacuum solution, including the
Kerr solution, can be used to generate a new family of vacuum JBD or
scalar-tensor solutions by using the method discussed in Section 4.
Other work on generating new solutions in the vacuum and JBD cases
from given vacuum solutions has been discussed by Geroch [18,19],
Buchdahl [20] and other writers. The relationships between these
methods has been discussed by Sneddon and the author [21].
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